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Abstract

Cyberbullying has become one of the most pressing concerns for online
platforms, putting individuals at risk and raising severe public concerns.
Recent studies have shown a significant correlation between declining mental
health and cyberbullying. Automated detection offers a great solution to this
problem; however, the sensitivity of client-data becomes a concern during
data collection, and as such, access may be restricted. This paper demon-
strates FedBully, a federated approach for cyberbullying detection using
sentence encoders for feature extraction. This paper introduces concepts of
secure aggregation to ensure client privacy in a cross-device learning system.
Optimal hyper-parameters were studied through comprehensive experiments,
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and a computationally and communicationally inexpensive network is pro-
posed. Experiments reveal promising results with up to 93% classification
AUC (Area Under the Curve) using only dense networks to fine-tune sentence
embeddings on IID datasets and 91% AUC on non-IID datasets, where IID
refers to Independent and Identically Distributed data. The analysis also
shows that data independence profoundly impacts network performance, with
AUC decreasing by a mean of 5.1% between Non-IID and IID. A rich
and extensive study has also been performed on client network size and
secure aggregation protocols, which prove the robustness and practicality
of the proposed model. The novel approach presented offers an efficient
and practical solution to training a cross-device cyberbullying detector while
ensuring client-privacy.

Keywords: Federated learning, convolutional neural network, secure aggre-
gation, natural language processing, cyberbullying.

1 Introduction

The advent of social media has led to significant advancement in the field of
modern communication. However, such advancements do not come without
repercussions, cyberbullying being one of the significant ones. Cyberbullying
comprises of bullying behaviours which may present negative connotations
on the victim [1]. Victims of bullying have reported multiple symptoms of
depressive and suicidal behaviour [2—4]. Therefore, a quick and automated
detection method can be an efficient solution to prevent future cyberbullying
cases [5-8]. However, samples/data from real-world bullying cases often
consist of sensitive material (such as names of individuals/parties involved)
and may often be censored or restricted. Hence, a federated approach that
protects client privacy can offer a great solution to this.

Federated learning is a framework that allows models to be trained on
privacy-sensitive data. In this methodology, raw data is not shared with par-
ticipating clients/entities, which may or may not include a centralized server.
This allows for the protection of sensitive client data, which is desirable for
the focused problem statement. However, this class of algorithms is plagued
with communication bottlenecks and adversarial central servers.

Therefore, to protect the anonymity of client data, solutions employing
secure aggregation has been proposed. Secure aggregation is adopted to
protect privacy-sensitive data against an insecure communication channel or a
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malicious central server. By utilizing recent advances in natural language pro-
cessing, the paper employs pre-trained sentence encoders to extract features
from the input text data, which reduces the overall size of weights-per-client
to be communicated. This paper formalizes a methodology to:

1. Adapt secure aggregation to the federated averaging methodology of
aggregation. Implement FedBully for fast cyberbullying detection.

2. Analyze the performance of FedBully with the different protocols of
secure aggregation, thereby showing that model performance remains
unaffected by it.

3. Extensive experiments regarding sampling rate and dataset imbalance
are studied, and sensitivity to both factors is analyzed.

2 Related Work
2.1 Privacy-Enabled Federated Learning

Federated learning is “a framework for privacy securing distributed learn-
ing” [9]. A module for on-device training and privacy-preserving machine
learning. Numerous toolkits and architectures have been proposed in various
areas of implementation such as computer vision [10-12], and next-word
prediction in mobile keyboards [13—17]. It gives a real-world solution to the
problem of client privacy for on-device sensitive data [18, 19]. For compar-
ison techniques such as anonymization, critical information withholding, to
name a few, have been implemented, however, these algorithms tend to reduce
the final performance of the model and take enormous computational/manual
effort to perform. However, a convenient workaround can be found using
federated learning. It offers to solve collaborative learning problems while
keeping the privacy of the users. Despite this, it has faced some significant
issues, primarily due to:

* Limited resources for communication with all the devices participating
in an aggregation round and sporadic dropping out of participating
individuals.

* Sensitive content within contributed data about the clients/parties
involved.

This paper looks at the above two problems and attempts to balance
communication complexity, client-level privacy, and model performance.
The following literature introduces a novel practical approach to the above
complexities while ensuring time efficiency and high performance.
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2.2 Cyberbullying Detection

Automatic cyberbullying detection offers a quick way to curb this toxic
environment, and recent research has been invested in developing high-
performing detectors [20-24]. Various deep learning approaches have been
explored, including but not limited to using attention-based Bi-LSTM
approach [25-28] and sentence encoders for the task [29]. J. Yadav et al.
proposes BERT augmented with a linear fully connected dense layer as
a classifier [30]. These studies provide insight and reinforce that sentence
embeddings can give high performance in cyberbullying detection.

However, these papers do not critically analyze privacy issues and
lack practical deployment due to the extensive pre-processing required to
anonymize user datasets [31, 32]. FedBully offers a solution to this and
provides client level anonymity by employing federated learning.

Author’s Note: A recent contribution by Zhu et al. [33] proposes TextCNN,
which utilizes institutionalized federated learning for intent classification.
However, they employed word vectors such as word2vec. However, with
rigorous development in the field of sentence encoders such as SBERT [34],
Universal Sentence Encoders [35], and InferSent [36], their performance and
applications have not been incorporated with federated learning. The follow-
ing proposal integrates both sentence encoders and federated learning.

2.3 Secure Aggregation

The secure aggregation [37-39] framework proposes five baseline protocols
to solve each threat level in a refining manner.

2.3.1 Protocol 0

Each protocol is developed in a series of refinements, looking at the proposed
protocol O or masking with one-time pads. The proposed methodology calls
for pair-wise secure communication channels for each client participating
in the aggregation. It then asks each pair to select a matched pair of input
perturbations, i.e., for a task of calculating x = wel Tus the selected user, u
samples a vector s, ,,y uniformly from a random distribution [0, R) for every
other user, v. Once selected every pair computed their perturbations using
Puv = Sup — Svu(mod R), thereby having the relation p,, , = py . [37, 65].
Accurate aggregation is guaranteed as perturbations cancel each other, as

validated by:
T = qu"i_zzpu,v

uelU uelU veU
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:Z$u+225u,v_225uu

uelU uelU velU uelU velU
= Z Zy(modR)
uelU

Here, x,, is user data for user u, T is the securely computed mean, s, )
is a sampled vector from a random distribution [0, R) for every other user,
Pup = Suw — Svu(modR) represents the computed perturbations.

The proposed methodology guarantees perfect privacy for the users;
however, it severely lacks robustness. If any user u drops out during com-
munication, this protocol will be unable to return accurate results, thereby
sabotaging the central model. At the same time, it requires the availability of
highly secure pairwise communication channels, which can be expensive.

2.3.2 Protocol 1

Protocol 1 attempts to make protocol 0 more robust, by incorporating public-
key cryptography, thereby reducing the complexity of key-sharing and secure
communication channels required. At the same time, it allows flexibility
by performing aggregation once a fixed number of users join the aggre-
gation step. Once a required number of clients is achieved their data is
communicated amongst the participating groups, allowing for unmasked
aggregation [37, 67].

However, this methodology can be used to maliciously compute a tar-
get user’s data x;. By implying all other users to share their respective
perturbations S, ., where uy, is the target client. Therefore, risking client
privacy.

2.3.3 Protocol 2

This protocol refers to double masking as a methodology to thwart a mali-
cious server, here each user performs double-masking to protect x,, by adding
a random value, b,. It is given by the equation:

xl, = wyby + Z Z Suw, wherev e U — {u}

During the unmasking round, the server makes a choice with respect to
each user, u € U1, from each surviving member v € U2. The choice made
either requests a share of sum s, ,, or the perturbations associated, b,,. After
gathering at least ¢ shares of sum s, , for all w € U1 and ¢ shares of b, for
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all u € U2, allowing the server to reconstruct the secrets and thereafter the
aggregate value [37, 66].

This system clearly increases privacy protection even during user drop-
page, it also incorporates double masking and inherently has stronger secu-
rity. However, it is computationally expensive, thereby reducing the efficiency
of the final aggregator model.

2.3.4 Protocol 3

Protocol 3 works towards efficient secret exchange, attempting to reduce
computation and communication complexity. Understanding that the use of
secret values could be contained as a vector of pseudorandom values derived
from a cryptographically secure pseudorandom generator (PRG). Thus, only
the seeds for s, , and b, must be communicated. Reducing the complexity
of communication from sending a k-dimensional vector to a seed value. This
protocol also incorporates the Diffie-Hellman secret key sharing protocol,
where each user u € U broadcasts their public key at the beginning of the
entire process.

The secrets are shared through their seed values, as inverse perturbations
given by, s, , = PRG(seed) and s, , = —PRG (seed). Having learned the
secret key, the server can reconstruct all the perturbations of user, u during the
secret sharing round. The aggregation is done as before. This methodology
drastically reduces computational and communication complexity [37, 65].
However, it lacks pairwise secure communication thus causing a trade-off
between communication efficiency and security.

2.3.5 Protocol 4

Now exploring protocol 4 or minimizing trust in practice, as described above,
the authors propose a server-mediated key agreement [37]. It also derives the
concept of double masking from protocol 2 generating ¥, additional mask is
also added given by,

Yu = Ty + bu + Z pu,v(mOdR)
veUl

This allows for more efficient communication by reducing the complexity
of the data to be transferred. On a final note, protocol 4 offers an efficient and
practical means for aggregation and, therefore, is presented as the proposed
methodology for aggregation [37].

In this paper, secure aggregation is implemented for the federated learning
process to protect client privacy from the malicious central server. Proto-
cols 0 and 4 are implemented to produce successful results. The FedBully
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implementation of the methodology allows easier communication while
reducing the computational load on client devices.

3 Proposed Methodology

3.1 Cross-Device Federated Learning for Sentence Embeddings
with Secure Aggregation

FedBully employs federated averaging to classify toxic/bullying content from
different clients involved in such incidents. The objective of the proposal:

* To produce a decentralized learning model.
* Make the model to apply SOTA NLP techniques, namely sentence
encoders.

Unlike word embeddings, sentence encoders generate a single embedding
for the entire sentence. This embedding can be taken as an input for the
client models. For weight aggregation, the weight updates are computed and
sent to the central server. This allows for faster convergence of the central
model. However, the setting discussed in the proposal is cross-device feder-
ated learning which is riddled with lots of issues [13]. Secure aggregation
is employed, which takes into account client dropouts and communication
failure. To enable this, masking with one-time pads and minimizing trust in
practice from practical secure aggregation for federated learning on user-held
data has been implemented [37].

The algorithm presented in 1 is an integration of federated learning with
sentence encoders for future extraction. To enable additional security, secure
aggregation is introduced. For protocol 0 as described in Section 2.3, masking
with one-time pads, pair-wise secure communication channels are imple-
mented for each client participating in the aggregation. These connections
are made across all clients, and perturbations are shared. Each client u then
updates its weight with the sum of all the perturbations from every other
client, then sends them to the central server for aggregation.

In contrast to protocol 0, protocol 4 or minimizing trust in practice
includes double masking and key sharing and a solution to user dropouts [37]
descripted in Section 2.3. A Diffie-Hellman secret key agreement protocol
is followed to produce security in the practical set-up; at the same time,
double masking (b,,) is employed to produce better security. A cryptograph-
ically secure pseudorandom generator (PRG) is used to seed the generation
of perturbations, significantly reducing communication size. This is finally
shared with the centralized server.
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The pseudo-codes for the FedBully training procedure are portrayed
in Algorithm 1, which takes into account protocol 4, minimizing trust in
practice, which is more practical and substantial than masking with one-time
pads.

The proposed algorithm differs from previous implementations of cyber-
bullying detection and federated intent classification in the following aspects:

* The proposed methodology protects client privacy and enables dis-
tributed learning, thereby allowing a more significant portion of the
community to collaborate in its training. FedBully introduces federated
learning to secure said methodology compared to previous implementa-
tions that have used only sentence encoders for cyberbullying detection.
The proposed method is coherent with cross-device federated learning,
where the number of participating clients is huge while permitting
sampling.

* Additional security is ensured by using secure aggregation, minimizing
trust in practice, which provides a secure method of communication
while ensuring solutions to important issues like communication failures
and drop-outs for clients. Compared to implementations of institutional
federated learning for intent classification, the proposed methodology
allows cross-device federated learning with secure aggregation, allow-
ing client-dropouts, communication efficiency, and resource constraints,
which are not handled by the prior.

* The proposed algorithm employs secure aggregation, which uses shared
perturbations. In contrast to this, when differential privacy is involved,
the training module on each dataset must conform to the predefined
privacy limit. Therefore the number of samples that can be drawn
from a dataset without violating the privacy limit is co-variant to the
E.q, & o which are privacy limit, sampling ratio, and noise multiplier
respectively. FedBully breaks this barrier by using secure aggregation,
giving a practical solution to a rather sensitive topic.

3.2 Handling lID/non-IID and Imbalanced Data Load

As described in cross-device federated learning for sentence embeddings
with secure aggregation in Algorithm 1, this paper is aimed to introduce
a practical and secure model for cyberbullying detection. Empirical data
does not conform with any standards, including cross-silo federated learn-
ing standards [13]; therefore, practices must be developed according to
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Algorithm 1 FedBully

Require: K: K clients indexed by k
m: sample ratio required to begin aggregation
[: ratio required to complete aggregation
w: trainable parameters or weights
E: the number of epochs for local training
7: learning rate for training
Dy, text data of client k
FEDERATED TRAIN
Initialize w®
fort €1,...7T do
U1 + (Sampled m ratio of clients)
CPE declared for ever u € U1
for all D, € U1® in parallel do
w'" « ClientUpdate(w* =", Dy)
end for
U2® (ratio of clients remaining)
for client, € U2 do
store: either p, , :u € Ul,v € U20rb, : u € Ul
if stored 1 share of py,» : w € UI\U2 and b, : u € U2 then

break
end if
end for
1
w® > ueu? wy ™ — Pucvabu = Ducrn ZvEUl\UZ Pu,v

end for
function ClientUpdate(wo, d)
embedded < sentenceEncoder(d)
foriel,...,Edo
for b € batches B embedded do
w < w—nVi(w:b)
end for
end for
w' +— w
for client; € U1® — clienty do
if sy, ; is not determined then
Sk,i < sampled from [0, R)
si,k < sampled from [0, R)
end if
Pk,i < PRG(Sk,i) — PRG(S,',k)(mOdR)
w — w' + pr;
end for
return w’




474 N. P. Shetty et al.

cross-device federated learning. This procedure includes handling non-IID
data and imbalanced data loads [40]. FedBully uses secure aggregation,
which is not limited to differential privacy restrictions, E, g, and o as men-
tioned above, which allows more freedom in the sets of data FedBully can
handle. At the same time, secure aggregation allows for the dropping of users
during the aggregation step.

Now discussing real-world datasets, one must understand that a single
victim of cyberbullying will not contribute a significant number of samples
for their case. Therefore, it becomes crucial that such standards for the
training data be discussed. It must be understood that datasets may have bias,
and the number of samples per client may be drastically different. An additive
methodology is proposed alongside,

» Simulated non-IID for FedBully: In this methodology, the algorithm
asks contributors only to submit cases of cyberbullying, while the central
server simulates an equal number of entities trained on non-cyber bul-
lying samples. This allows us to create an artificial balance within the
dataset, allowing both sides to contribute only what is required. It also
reduces the load of pre-processing required for annotating client-side
data.

Practical non-1ID for FedBully is a supplementary proposal to FedBully
as it is capable of achieving similar results. Optimal values for local training
epochs, sample ratio, and learning rate were determined in the experiments.
The above methodology is implemented and fine-tuned, yielding optimal
parameters to be used during implementation.

4 Experiments

4.1 Implementation Details

FedBully, a sentence-embedding based classifier to detect cyberbullying,
incorporating the training procedure from federated averaging. The sentence
embeddings allow sentences to be embedded in a context-aware manner,
allowing any sequential classifiers to see cyberbullying easily.

Some of the sentence embedders that have been experimented with
include Sentence BERT (SBERT) [34], Universal Sentence Encoders —
DAN [35], and Universal Sentence Encoders - Transformers [35]. These
embedders show notable improvements for contextual and intent-based
classification of sentences, thereby increasing the performance of the text-
based classifiers. The features extracted from these embedders are then
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fed into different neural architectures, dense fully connected networks and
convolutional neural networks-based classifiers.

Optimization of parameters in the model is done with respect to the binary
crossentropy loss, i.e.,

CE = —yilog(f(s1)) — (1 — y1)log(1 — f(s1))

Where, y; is the intent class label, and s; is the predicted probability of
entry x being a positive case.

In the experiments, the training process is implemented using the fed-
erated averaging algorithm on a central server. The client devices were
simulated using multiple centrally orchestrated systems, which each sim-
ulated client devices training in parallel, independent of each other. For
experimentation, a cross-device setting was affected over a local-area net-
work, with one central node and 20 to 35 distributed systems. Between
different client instances, communication security was simulated using RSA
encryption [41]. Each client machine was equipped with 8GB RAM.

FedBully is implemented on TensorFlow. On client updates, gradient-
based training was optimized using the Adam optimizer [42], with an Ir =
0.001. The batch size is fixed to 32 for dense networks in the reported
experiments while using 16 for CNNs.

4.2 Dataset

The Cyberbullying-Datasets [43] is a public dataset of text data, carefully
articulated for cyberbullying detection. This aforementioned assemblage is
a aggregated from an ensemble to datasets from different sources task-
oriented to the detection of cyberbullying without manual supervision. The
dataset is a crowd source of data from various platforms, including “Kaggle”,
“Twitter”, “Wikipedia Talk pages”, and “YouTube”. The data contains text
with a binary label of whether it is a text which indicates bullying or not.
The data consists of a variation of cyberbullying sentiments like hate speech,
aggression, insults, and toxicity; however, this implementation aims to only
detect cyberbullying [43].

This dataset consists of 448,874 samples, of which there were 57,651 (of
which 30,536 were duplicates) positive cases and 391,223 negative cases.
Therefore, to stimulate balance and uniformity, under-sampling is employed
to balance data distribution. Thereby finally utilizing 27,115 positive samples
and 27,155 negative samples, making a total of 54,230 samples. 43,000
samples comprised the training set and the remaining 11,230 for validation.
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5 Result Analysis and Discussion

5.1 Baseline

For each sentence embedder, a fully connected layer with sigmoid activation
was employed to translate the feature vector into sentence classification
results. These networks were then trained and validated with K-fold-cross-
validation (K = 5). The model converged after 25 epochs; Figure 1 illustrates
the first sample’s training progression during cross-validation. The model
achieved 84.84% accuracy and 92.65% AUC. Other performance metrics
can be checked in Table 1. This illustration serves as a baseline for all the
following experiments.

5.2 FedBully - IID and Non-IID Data

For the experimentation on IID, multiple clients, K, were taken, each con-
taining an equal number of text samples, with an approximately 1:1 category
ratio. This methodology allowed model evaluation over the effect of various
hyperparameters. On the other hand, for non-IID data, the dataset is first
sorted according to its class and then divided into K number of clients in

Baseline Accuracy

0.85

0.84

0.80 —— SBERT_embedded
USE_DAN_embedded
—— USE_transformer_embedded

0 10 20 30 40 50
Epochs

Figure 1 Training progress of Baseline networks.

Table 1 Baseline results
Model Name Acc AUC  F1-Score
USE-DAN-Dense 83.77 91.67 83.74
USE-Transformer-Dense ~ 84.84  92.65 84.69
SBERT-Dense 83.87 91.93 83.53
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sequential order; however, to represent client-level imbalance, each client
receives z number of samples, which is uniformly chosen. Some key param-
eters to be noted are the K, m, E' and i) which are the total number of clients,
the sampling ratio, the number of local epochs, the learning rate respectively.
Without federated learning, the baseline model performance is reported in
Table 1.

Looking at the experimental results for fixed local epochs £ = 5 and
learning rate = 0.001, a general performance gain can be noted with the
decrease in client training size and increase in the number of clients, for all
possible networks, with a mean drop of 1.5% accuracy across different net-
works. At the same time, the effect of m becomes observable as it is gradually
increased from 0.5 to 1.0 ratio of the original number of clients, noting a mean
climb of 3.13% in accuracy for non-IID and 0.11% in AUC across different
networks. The above results can be viewed in detail for all the architectures
across different network types in Table 2 for the USE-Transformers network.

Type - lID; K- 300 Type - Non-lID; K - 300

— K:=300 m:=1.0 type:=Non-IID
~ K:=300 m:=0.5 type:=Non-IID

— — Ki=300 m:=0.75 type:=Non-IID
0.8 ;/' b 0.8
. | _ WQ

—— K:=300 m:=1.0 type:=IID
Ki=300 mi=0.5 type:=IiD
—— K:=300 m:=0.75 type:=IID

°
By

accuracy
accuracy

°
>
o
>

0 10 20 30 40 50 . o 10 20 30 40 50
epochs epochs

Figure 2 USE-Transformers learning progress (Accuracy) for variations on K and m, on
fixed K = 300.

Type - 1ID; K - 450 Type - Non-IID; K - 450

°
o

accuracy
accuracy

°
Y
°
Y

02 02
— K:=450 m:=1.0 type:=IID — K:=450 m:=1.0 type:=Non-IID

K:=450 m:=0.5 type:=IID K:=450 m:=0.5 type:=Non-IID

— K:=450 m:=0.75 type:=IID —— K:=450 m:=0.75 type:=Non-IID

00 00

4 10 20 30 40 50 0 10 20 30 40 50
epochs epochs

Figure 3 USE-Transformers learning progress (Accuracy) for variations on K and m, on
fixed K = 450.
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Type - 1ID; K - 600 Type - Non-IID; K - 600

0.8 0.8
0.6 0.6

0.2 0.2
— Ki=600 m:=1.0 type:=IID — Ki=600 m:=1.0 type:=Non-IiD

K:=600 m:=0.5 type:=IiD K:=600 m:=0.5 type:=Non-liD

— K:=600 m:=0.75 type:=IiD —— K:=600 m:=0.75 type:=Non-lID

0.0 0.0

0 10 20 30 40 50 0 10 20 30 40 50
epochs epochs

accuracy
accuracy

o
kY
o
a

Figure 4 USE-Transformers learning progress (Accuracy) for variations on K and m, on
fixed K = 600.

Table 2 USE-transformers analysis for fixed n = 0.001 and £ = 5

K m Acc: IID  Acc: non-IID
300 0.5 85.11 73.20
300 0.75 84.95 77.78
300 1.0 85.34 78.84
450 0.5 85.34 81.13
450 0.75 85.16 82.47
450 1.0 85.36 83.16
600 0.5 84.78 79.83
600 0.75 84.90 81.44
600 1.0 84.86 81.55

Table 3 USE-Transformers Analysis for fixed K = 450 and m = 1.0 with a mean taken
across learning rate (n)

E Acc: IID  Acc: non-IID

1 79.48 73.31
5 81.27 78.02
10 83.08 80.41

In consideration of the above results, it can be realized that the ideal num-
ber of clients, K lies between [400, 500], and the ideal m lies between [0.9,
1.0]. Based on this, the effect of hyperparameters, £ and 7, with fixed
K = 450 and m = 1.0, should be analyzed. Each of the architectures has
been evaluated over E = 1, 5, 10 local epochs and n = 0.1,0.01,0.001
and their performance is outlined in Tables 3 and 4 for USE-Transformers.
From these experiments, it becomes clear that the optimal values of E and n
are 10 and 0.001, respectively.
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Table 4 USE-Transformers Analysis for fixed K = 450 and m = 1.0 with a mean taken
across local epochs (E)

n Acc:IID  Acc: non-1ID
0.1 81.36 76.43
0.01 81.94 77.58
0.001 81.47 78.93

Table 5§ USE-Transformers Analysis for AUC metric variable K and m
K m AUC:1ID  AUC: non-1ID

600 1.0 88.11 85.72
600 0.75 88.29 85.36
600 0.5 87.88 85.54
450 1.0 90.37 87.91
450 0.75 90.46 87.25
450 05 90.18 87.54
300 1.0 92.06 89.28
300 0.75 88.63 88.77
300 0.5 91.73 89.4

Table 6 USE-Transformers Analysis for F1-Score metric variable K and m
K m F1-Score: [ID  F1-Score: non-I1ID

600 1.0 84.44 67.40
600 0.75 84.33 73.95
600 0.5 84.19 76.76
450 1.0 85.39 81.55
450 0.75 85.05 77

450 05 85.29 78.44
300 1.0 85.07 64.42
300 0.75 84.44 67.71
300 05 85.21 50.02

5.3 Evaluation Metrics

The methodology presented is also analyzed based on other standard metrics.
The paper includes an ablation study comparing the Fl-score, sensitivity,
specificity, precision, false-alarm, and AUC metrics. The metrics are pre-
sented in Tables 5, 6, 7, 8, 9, and 10.

Although AUC presents a metric to compare the performance of target
classifiers, it does not validate key aspects such as sensitivity, precision,
specificity, false alarm, and F1-Score. The paper demonstrates the above
metrics in Tables 5, 6, 7, 8, 9, and 10. These key metrics are computed based
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Table 7 USE-Transformers Analysis for False Alarm metric variable K and m
K m False-Alarm: [ID  False-Alarm: non-I1ID

600 1.0 0.1289 0.0358
600 0.75 0.1207 0.0547
600 0.5 0.1234 0.0696
450 1.0 0.1551 0.1165
450 0.75 0.1409 0.0684
450 0.5 0.1443 0.0764
300 1.0 0.1457 0.0109
300 0.75 0.1207 0.036
300 05 0.1434 0.0271

Table 8 USE-Transformers Analysis for Precision metric variable K and m

K m Precision: [ID  Precision: non-I1ID
600 1.0 86.48 93.63
600 0.75 87.12 91.88
600 0.5 86.87 90.54
450 1.0 84.73 86.84
450 0.75 85.7 90.72
450 0.5 85.5 90.09
300 1.0 85.34 96.88
300 0.75 87.15 93.65
300 0.5 85.55 94.74

Table 9 USE-Transformers Analysis for Sensitivity metric variable K and m

K m Precision: IID  Precision: non-1ID
600 1.0 86.48 93.63
600 0.75 87.12 91.88
600 0.5 86.87 90.54
450 1.0 84.73 86.84
450 0.75 85.7 90.72
450 0.5 85.5 90.09
300 1.0 85.34 96.88
300 0.75 87.15 93.65
300 0.5 85.55 94.74

on standard mathematical and statistical equations presented in 4, 5, 6, 7,
and 8.

The computed AUC value is presented in Table 5 displays impor-
tant characteristic differences between IID and non-IID data. Even with
high-performance results, non-uniformity and a noisy progression can be



FedBully: A Cross-Device Federated Approach 481

Table 10 USE-Transformers Analysis for Specificity metric variable K and m

K m Specificity: [ID  Specificity: non-1ID

600 1.0 87.11 96.42
600 0.75 87.93 94.53
600 0.5 87.66 93.04
450 1.0 84.49 88.35
450 0.75 85.91 93.16
450 05 85.57 92.36
300 1.0 85.43 98.91
300 0.75 87.93 96.4
300 05 85.66 97.29

observed for non-1ID data. This irregularity increases as there in an increment
in number of clients, K. Sampling ratio, m, displays a similar progression-
graph, supplementing the conclusion that an independent and identically
distribution data performs vastly better than non-IID.

The performance of the system is measured with the following parame-
ters. In this study, there are two outputs, whether a tweet is an act of cyber-
bullying or not. Based on this we employ traditional classification metrics
computing standardized errors like true-positive, true-negative, false-positive,
and false-negative. We expand on these metrics below.

The performance of the system is measured with the following and their
extensions.

* True Positive (TP): When the tweet is labelled as an act of cyberbully-
ing and the neural network also recognizes it as the same.

* True Negative (TN): When the tweet is not an act of cyberbullying, and
the neural network also calculates it as the same.

* False Positive (FP): When a tweet was labelled as not a case of
cyberbullying, but the neural network classifies it as one.

* False Negative (FN): When a tweet was labelled as cyberbullying, but
the neural network predicts it as normal.

We incorporate the metrics, sensitivity, specificity, precision, F1-Score,
and FalseAlarm. False alarm rate represents the proportion of false positives
predicted by a classifier to the total number of negative labels.

We present these metric evaluations in the Tables 5, 6, 7, 8, 9, and 10.
A confusion matrix is provided through the Figures 5, 6, 7 for the IID data
setup. And a follow up is also displayed by the means of Figures 8, 9, and 10
for the non-IID data setup.
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Type - 1ID; K- 450; m - 1.0

True Negative False Positive -0.35
42.2%

Label

g False Negative True Positive
= 7.0% 43.0% 0.15
0.10
0 1
Predicted Label

Figure 5 USE-Transformers confusion matrix for K = 450, m = 1.0, and IID-data.

Type - 1ID; K - 450; m - 0.75

Label

True Negative False Positive 035
43.0% 7.0%

3 False Negative True Positive
= 7.8% 2.2% L 0.15
0.10
[) 1
Predicted Label

Figure 6 USE-Transformers confusion matrix for K = 450, m = 0.75, and IID-data.

Table 11 shows the difference in communicated data between protocol
0 and protocol 4 of secure aggregation, thereby supporting the claim for
proposing protocol 4.

5.4 Simulated Non-lID for FedBully

This methodology allows the slightest effort to be put in by contributing
entities. Since the central server only requires clients to send models trained
on positive samples, they do not have to do manual annotation or labelling.
Simultaneously, the central server’s dataset imbalance can be avoided by
generating an equal number of simulated clients trained in negative sample
cases. This allows for lesser client-side effort and lowers computation and
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Type - ID; K- 450; m - 0.5

Label

True Negative False Positive -0.35
% 1.2%

True

True Positive
42.5%

1
Predicted Label

Figure 7 USE-Transformers confusion matrix for K = 450, m = 0.5, and IID-data.

Type - Non-IID; K - 450; m - 1.0

True Negative

Label

True

False Negative True Positive
11.6% 38.4%

[) 1

Predicted Label

Figure 8 USE-Transformers confusion matrix for K = 450, m = 1.0, and non-IID-data.

communication costs as overall expenses are halved due to training on only
a single set of labels. However, this methodology does have the drawback
of reducing performance compared to the IID data setting. If simulated
accurately, the training results and simulations will give results coherent to
the non-IID setting, which was supported by the experiments.

5.5 Security Evaluation

The use of protocols 0 and 4 allows one to evaluate the security provided by
secure aggregation. No clients can view any other client’s subset information,
allowing each client to be independently simulated. This means, whatever be
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Type - Non-liD; K - 450; m - 0.75

True Negative
o

Label

True

False Negative 0.15
16.6%

0 1
Predicted Label

Figure 9 USE-Transformers confusion matrix for K = 450, m = 0.75, and non-IID-data.

Type - Non-1iD; K - 450; m - 0.5

Label

True Negative
o

True

Predicted Label

Figure 10 USE-Transformers confusion matrix for K = 450, m = 0.5, and non-IID-data.

Table 11 Communication-Complexity and Analysis between protocols

Model Name Protocol-0  Protocol-1
USE-Transformer 38kB 13kB
USE-DAN 38kB 13kB
SBERT 43kB 17kB

the value of sampling ratio t, client-data is secure against each other. As for a
malicious central server, the setting ¢ > n /2 guarantees that the sum learned
by the server contains the values of at least ¢ > n/2 clients, and the protocol
can deal with up to n/2 — 1 dropouts.
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5.6 Privacy Analysis

The inclusion of federated learning, a privacy-enabled machine learning
framework, allows the proposed methodology to quantify privacy leakage.
The paper discusses two metrics used for further evaluations.

5.6.1 Number of times each sample is revisited

The experiments demonstrated above and scrutinized and analyzed to return
the number of times each sample is revisited during the learning progression
of a given neural network. This numeric value can then be used as a theoret-
ical measure for possible privacy leakage. Each time a network learns over
given data, it carries critical information, which may allow reconstruction
of this input data [44, 69]. Keeping m = 1.0, the proposed methodology
is evaluated against varying K values. We display the computed results in
Table 12.

IID data demonstrates that the number of times each sample is revisited
during training may be directly correlated to the number of clients active for
communication in the learning step [68]. On the other hand, non-IID data
does not follow any strict relation, and therefore its noisy learning curve does
not allow one to draw any specific conclusions.

5.6.2 Sampling ratio inclusive computation of number of times
each sample is revisited

Although the number of times each sample is evaluated provides a quantifi-
able measure of privacy for federated learning models, it does not take into
account dropouts during communication which is an important aspect of the
proposed methodology. Therefore, an evaluation study is purposed for this
specific task, where the observations taking into account the sampling ratio
are included in Table 13.

Taking into account the sampling ratio of inclusion of a particular data-
sample at the aggregation step, a uniform increase can still be observed with
an increase in K [44, 70]. Another observation is the increase in the number
of reiterations required to return best-performance results.

Table 12 Number of times each sample is evaluated, with K variable
K IID Non-IID
300 85 165
450 140 100
600 250 235
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Table 13  Sampling ration inclusive computation of number of times each sample is revisited,
with m variable (IID-Data)

m 300 450 600
1.0 8 140 250
075 125 117 133
0.5 127 153 146

Table 14 Comparision of Proposed Approach algorithms against existing methods

Existing Research Accuracy AUC  Fl1-Score
[45] 0.76 - -
[46] 0.88 - -
[47] 0.48 - -
[48] 0.76 - -
[49] - - 0.73
[50] - - 0.81
[51] - - 0.91
[52] - - 0.64
(53] - 0.83 -
[54] - 0.83 0.75
[55] - 0.8 0.68
[56] - 0.9 0.91
[57] - 0.91 0.91
[58] - 0.89 -
[59] - 0.92 -
[60] - 0.68 -
[61] - 0.81 -
[62] - - 0.37
[63] - - 0.83
[64] - - 0.84
USE-DAN-Dense 0.84 0.92 0.84
SBERT-Dense 0.84 0.92 0.84

USE-Transformer-Dense 0.85 0.93 0.85

5.7 Comparison with Existing Methods

Table 14 compares the proposed approach algorithms to other signifi-
cant research efforts in the same area, exhibiting the proposed approach’s
enhanced performance in terms of accuracy, AUC, and F1 Scores. Cyberbul-
lying is a pervasive issue that has adverse effects on individuals and society
as a whole. Prior methodologies in detecting cyberbullying have shown some
success, but they are often limited by factors. We highlight this limitation and
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clearly distinguish the improvement FedBully brings. The proposed method-
ology addresses these limitations and outperforms a significant number of
previous literature in cyberbullying detection.

6 Conclusion

FedBully is a novel implementation combining security principles with
machine learning to detect cyberbullying. It removes the requirement of a
centralized training system and also allows for rapid and progressive learn-
ing over a distributed setting. Using secure aggregation will enable us to
ensure client data privacy and promotes the protection of sensitive data.
Unlike previous work, this paper addresses a cross-device federated set-
ting for intent classification. At the same time, FedBully is lightweight
yet efficient, allowing training on restricted resource platforms, such as
mobile phones/low-resource devices, and others. FedBully employs sentence
encoders, which give significant results for cyberbullying detection, however
unlike other implementations FedBully, secures client-data privacy. Extensive
experiments show that data independence has decisive significance in model
performance; simultaneously, the model proves robust towards change in
local epochs and m (sampling ratio). To address practical implementation
and dataset imbalance, the paper proposes two methodologies, weighted
aggregation for FedBully and simulated non-IID for FedBully, which aim
to improve accuracy and reduction in manual pre-processing, respectively.
Future development could work upon these two methodologies to efficiently
solve the same.

Cyberbullying can heavily impact people suffering under it. A robust,
quick, and efficient methodology that can be crowd-sourced would prove
to be an efficient solution to detect the same automatically. Such automatic
detection may allow faster and accurate reporting of cyberbullying cases,
allowing administrative authorities to take effect immediately. Federated
learning and secure aggregation offer an efficient solution to this social issue,
and execution of such methodology can benefit its people undergoing it.
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