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Abstract

This paper is devoted to the investigation of the applicability of the
Kolmogorov–Wiener filter to the prediction of heavy-tail processes. As is
known, telecommunication traffic in systems with data packet transfer is
considered to be a heavy-tail process. There are a lot of rather sophisticated
approaches to traffic prediction; however, in the rather simple case of sta-
tionary traffic sophisticated approaches may not be needed, and a simple
approach, such as the Kolmogorov–Wiener filter, may be applied. However,
as far as we know, this approach has not been considered in recent papers.
In our previous papers, we theoretically developed a method for obtaining
the filter weight function in the continuous case. The Kolmogorov–Wiener
filter may be applied only to stationary processes, but in some models
telecommunication traffic is treated as a stationary process, and thus the use
of the Kolmogorov–Wiener filter may be of practical interest. In this paper,
we generate stationary heavy-tail modeled data similar to fractional Gaussian
noise and investigate the applicability of the Kolmogorov–Wiener filter to
data prediction. Both non-smoothed and smoothed processes are investigated.

Journal of Cyber Security and Mobility, Vol. 12 3, 315–338.
doi: 10.13052/jcsm2245-1439.123.4
© 2023 River Publishers



316 V. Gorev et al.

It is shown that both the discrete and the continuous Kolmogorov–Wiener
filter may be used in a rather accurate short-term prediction of a heavy-
tail smoothed stationary random process. The paper results may be used for
stationary telecommunication traffic prediction in systems with packet data
transfer.

Keywords: Discrete Kolmogorov–Wiener filter, continuous Kolmogorov–
Wiener filter, heavy-tail process, telecommunication traffic prediction.

1 Introduction

Telecommunication traffic prediction is an important problem. For example,
it is important for the effective use of resource management, for network
planning, for cyber security (suspicious traffic identification), etc. [1, 2].

There are a variety of different approaches to traffic prediction reported
in the recent literature. For example, the following approaches are presented
in recent papers: the ARMA and the ARIMA approaches and their modifica-
tions [3, 4], the GARCH model and its improvements [5, 6], neural networks,
artificial intelligence and deep learning [7–10], hybrid methods [11–13],
the Holt-Winters approach [14], the gray Markov Verhulst model [15], the
wavelet transform [16], the Prophet approach [17], etc.

There are many different telecommunication traffic models, including
stationary ones, for example, such as the fractional Gaussian noise model,
the generalized fractional Gaussian noise model [18], the Gaussian frac-
tional sum-difference model (see [19] and references in [19]), the power-law
structure function model [20], etc. Nowadays telecommunication traffic in
systems with data packet transfer is treated as a heavy-tail random process; in
other words, the traffic correlation function is considered to have asymptotic
power-law decay, see, for example, [21].

Such a simple prediction algorithm as the Kolmogorov–Wiener filter
may be applied to the prediction of and noise cancellation in stationary
processes [22]. This filter is rather widely used in different fields of knowl-
edge, for example, in signal treatment [23], in econometrics [24], in image
treatment [25], in atmosphere investigation [26], in the investigation of
biological cellular sensing systems [27], etc. However, as far as we know,
this filter is not considered in recent papers devoted to telecommunica-
tion traffic. In our opinion, the use of such a filter for traffic prediction
in simple stationary cases may be of interest because of its simplicity,
especially in the discrete case. We know only few papers where this filter
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is applied to telecommunication traffic treatment, and they are not recent
ones. In paper [28], it is used for traffic noise cancellation. In paper [29],
the one-point-forward Kolmogorov–Wiener prediction of a noisy traffic is
investigated; in paper [30], the one-point forward and five-point-forward
Kolmogorov–Wiener prediction of a non-smoothed fractional Gaussian noise
traffic is investigated. In paper [30], it is indicated that the predicted signal
follows the original one, but with a smaller amplitude. In [30] only the
discrete Kolmogorov–Wiener filter was used, and non-smoothed processes
were considered. Papers [28–30] are devoted to a prediction on the basis of a
discrete filter.

In this paper. we deal with the prediction of a non-noisy heavy-tail
process. Our preliminary results are published in [31] where we used the
symmetric moving average approach in order to generate modeled data of
a heavy-tail fractional Gaussian noise process. In [31] we investigated the
discrete Kolmogorov–Wiener prediction for the corresponding non-smoothed
process and smoothed process obtained by a simple linear smoothing method.
In our papers [20, 32–34] it is shown that in the continuous case the
Galerkin method may be applied to finding the Kolmogorov–Wiener filter
weight function for the prediction of heavy-tail processes in different mod-
els. In [20, 32–34] we restricted ourselves only to the investigation of the
weight function rather than the prediction itself, so the investigation of the
corresponding prediction is one of the aims of the paper.

The aim of this paper is to investigate the Kolmogorov–Wiener prediction
for modeled heavy-tail data for different smoothing algorithms and to inves-
tigate both discrete and continuous approaches to the Kolmogorov–Wiener
prediction of a heavy-tail process.

The scientific novelty of the paper is as follows.

1. It is shown that the Kolmogorov–Wiener filter (both discrete and con-
tinuous) may be used in a rather accurate short-term prediction of a
heavy-tail smoothed stationary random process, which may be useful
for traffic prediction in stable stationary systems and for the prediction
of noisy processes after the truncation of the random component.

2. The modeled data for two heavy-tail processes (with Hurst exponents
H = 0.8 and H = 0.6) are investigated. It is shown that the Kolmogorov–
Wiener filter prediction gives better results for the smoothed process
with the higher Hurst exponent.

It should be stressed that the aim of the paper is to illustrate the fact that
the Kolmogorov–Wiener filter may be used in the prediction of stationary



318 V. Gorev et al.

smoothed heavy-tail processes rather than to compare the Kolmogorov–
Wiener prediction with other prediction techniques reported in the literature.
The simplicity of the Kolmogorov–Wiener filter in comparison, for example,
with neural networks may be its advantage, and a detailed comparison may
be the subject of another paper.

The paper is organized as follows. In Section 1, the introduction is given;
in Section 2, a description of the Kolmogorov–Wiener filter in the discrete
and the continuous case is made and the heavy-tail data generated in [31] are
described. In Sections 3 and 4, the prediction is investigated in the discrete
and the continuous case, respectively. In Section 5, a discussion is given, and
in Section 6, conclusions are made.

2 Kolmogorov–Wiener Filter and Generation of Modeled
Heavy-tail Data

In this paper, we investigate only the prediction (without noise cancellation)
based on the Kolmogorov–Wiener filter; the process is considered to be
non-noisy. Let us first consider the discrete case. Let us have a stationary
process xt to be predicted. Let us make a z-point-forward prediction on the
basis of T +1 previous points. The Kolmogorov–Wiener filter output yt is as
follows [22]:

yt =
T∑
i=0

hixt−i (1)

where the weight coefficients hi, i = 0, T may be obtained in matrix form:

h0

h1

h2
...

hT


=



Rx(0) Rx(1) Rx(2) · · · Rx(T )

Rx(1) Rx(0) Rx(1) · · · Rx(T − 1)

Rx(2) Rx(1) Rx(0) · · · Rx(T − 2)

...
...

...
. . .

...

Rx(T ) Rx(T − 1) Rx(T − 2) · · · Rx(0)



−1

·



Rx(z)

Rx(z + 1)

Rx(z + 2)

...

Rx(z + T )


, (2)
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Rx(t) is the correlation function of the process xt. The value yt is the
predicted value of xt+z .

In the continuous case, let us have a stationary process x(t). The predic-
tion for x(t+ z) is made on the basis of the values x(t), t ∈ [0, T ]. Then the
filter output y(t), which is the prediction for x(t + z), may be calculated as
follows:

y(t) =

∫ T

0
h(τ)x(t− τ)dτ (3)

where the filter weight function h(t) is the solution of the Wiener–Hopf
integral equation [22]∫ T

0
h(τ)Rx(t− τ)dτ = Rx(t+ z). (4)

In [20, 32–34], we showed that the Galerkin method may be used in order
to obtain an approximate solution for h(τ). The idea of the method is as
follows. The approximate solution in the approximation of n functions is
sought in the form

h(τ) =
n−1∑
s=0

gsSs(τ) (5)

where S0(τ), S1(τ), . . . is a complete orthogonal function system.
The coefficients gs may be expressed in matrix form

g0

g1
...

gn−1

 =


G00 G01 · · · G0,n−1

G10 G11 · · · G1,n−1

...
...

. . .
...

Gn−1,0 Gn−1,1 · · · Gn−1,n−1


−1

·


B0

B1

...

Bn−1

 (6)

where

Gij =

∫ T

0

∫ T

0
Si(τ)Sj(t)Rx(t− τ)dtdτ, Bi =

∫ T

0
Si(t)Rx(t+ z)dt.

(7)

For example, the following systems of functions Ss(τ) may be chosen:
orthogonal polynomial systems (the Chebyshev polynomials of the first and
of the second kind), trigonometric functions, which form a trigonometric
Fourier series, and the Walsh functions.
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In this paper, we deal with the modeled heavy-tail fractional Gaussian
noise data Xi generated in [31] on the basis of the symmetric moving average
approach using the following formulas:

Xi =

q∑
j=−q

a|j|Vi+j+q, a0 =

√
2− 2H

1.5−H
γ0,

aj =
a0
2
((j + 1)H+0.5 + (j − 1)H+0.5 − 2jH+0.5) (8)

where H is the Hurst parameter and γ0 is the variance of the process Xi;
Vi is a stationary white noise with a variance equal to 1 and an average value
equal to 0. The following parameters are used [31]: q = 3 · 105, γ0 = 1 · 105
points of the process Xi are generated. The average value of the process Xi

is close to zero, and, obviously, the traffic should be a non-negative process,
so the modeled traffic data are as follows:

xi = Xi +min(X) + 10−3, (9)

a small value 10−3 is added in order to avoid an infinite mean absolute
percentage error. In this paper, we generate data for a process with Hurst
exponent H = 0.8 and for a process with Hurst exponent H = 0.6.

3 Investigation of the Prediction in the Discrete Case

3.1 Investigation of the Case of a Non-smoothed Process

A centralized process should be constructed first:

xci = xi − ⟨x⟩ (10)

where ⟨x⟩ is the average value of the process xi. The corresponding
correlation function is calculated as

Rx(t) =
1

105 − τ

105−τ∑
i=1

xcixci+τ . (11)

Let us investigate the prediction of a non-smoothed process. Let us make
a z-point-forward prediction on the basis of T + 1 previous points. The
filter weight coefficients hi, i = 0, T are calculated on the basis of (2)
and (11). At the first iteration, we take the first T + 1 points (points with
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numbers from 1 to T + 1) and on their basis we calculate the prediction
for xcT+2, xcT+3, . . . , xcT+z+1. At the second iteration, we take the points
with numbers from 2 to T + 2 and on their basis we calculate the prediction
for xcj , j = T + 3, T + z + 2. And so on throughout the whole array.
At iteration number i, we calculate the predicted values according to (1)
as follows:

xc′k = xck+i, k = 0, T ; x̂cj+z =

j∑
k=0

hkxc
′
j−k, j = T − z + 1, T .

(12)

Here the upper bound of summation in (12) is changed in comparison
with expression (1) in order to avoid dealing with indices beyond the filter
input data. Such a change does not have any significant effect on the result
because only the cases T ≫ z are investigated. In what follows, a similar
change is made. In (12) and in what follows, the designation â means the
predicted value of a. Thus, the predicted modeled traffic values are

x̂j = x̂cj + ⟨x⟩ (13)

and the corresponding mean absolute percentage error (MAPE) and mean
average error (MAE) at the ith iteration are as follows:

MAPEi =
1

z

T+z+i∑
j=T+1+i

∣∣∣∣xj − x̂j
xj

∣∣∣∣ · 100%,

MAEi =
1

z

T+z+i∑
j=T+1+i

|xj − x̂j |. (14)

The number of iterations is equal to 105 − T − z; the average prediction
errors over the whole array are calculated:

MAPE =
1

105 − T − z

105−T−z∑
i=1

MAPEi,

MAE =
1

105 − T − z

105−T−z∑
i=1

MAEi. (15)
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Table 1 Non-smoothed process MAPE (%)
H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

T = 100 24.7 25.3 25.4 25.7 25.9 25.5 25.6 25.6 25.6 25.6

T = 1000 24.5 25.0 25.1 25.3 25.6 25.3 25.4 25.4 25.5 25.5

Table 2 Non-smoothed process MAE
H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

T = 100 0.697 0.710 0.717 0.723 0.727 0.792 0.793 0.794 0.794 0.794

T = 1000 0.694 0.707 0.714 0.719 0.723 0.788 0.789 0.790 0.790 0.790

Figure 1 Comparison of the actual and the predicted values of the non-smoothed process
for T = 100 and z = 1; H = 0.8.

The results for the non-smoothed process are given in Tables 1 and 2.
The results in Tables 1 and 2 are rounded off to 3 significant digits.

The average value is ⟨x⟩ = 3.88 for H = 0.8 and ⟨x⟩ = 4.25 for H = 0.6.
In the case T = 100, z = 1, H = 0.8 a graphical comparison of the actual
and the predicted modeled traffic values is given in Figure 1 (the solid line is
the actual process, and the dotted line is the predicted one). In fact, a picture
similar to the results of paper [30] is obtained: the predicted signal is in some
sense similar to the original one, but with a smaller amplitude. Thus, the
prediction illustrates the process tendency, but particular values may not be
in good agreement.
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3.2 Investigation of the Case of a Smoothed Process

Let us investigate the case of a heavy-tail process smoothed by the simple
linear smoothing algorithm:

X̃i =
1

2l + 1

l∑
j=−l

Xi+j . (16)

In [31], it is shown that the process X̃i is also a heavy-tail one. Then the
modeled traffic data xi are as follows:

xi = X̃i +min(X̃) + 10−3, (17)

and the prediction algorithm based on formulas (10)–(15) is the same.
The results for the smoothed process at different values of l are given in
Tables 3–6. Its average values are given in Table 7. As can be seen, the
prediction results are much better in the case of a smoothed process. It can
also be seen that the prediction error increases with increasing z and such
an increase may be significant, especially for l = 1. Therefore, one can
conclude that the Kolmogorov–Wiener filter may be applied only to a short-
term prediction of a heavy-tail process. As can be seen, the results for
T = 1000 are slightly better than for T = 100, but the difference is not
significant. It should also be stressed that the prediction results for the case
where H = 0.8 are better than those for the case where H = 0.6.

Table 3 MAPE (%) for a process smoothed on the basis of (16), T = 100

H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

l = 1 9.11 15.1 20.3 20.9 21.4 13.3 20.1 25.6 25.7 25.7
l = 2 6.26 10.2 13.8 17.2 21.2 8.86 13.3 16.9 20.1 23.5
l = 3 4.85 7.86 10.4 13.2 15.9 7.55 11.3 13.9 16.4 18.8
l = 4 3.92 6.13 8.07 10.0 12.0 6.49 9.66 11.9 14.1 16.1
l = 5 3.37 5.30 6.97 8.64 10.3 5.71 8.25 10.4 12.3 14.1

Table 4 MAE for a process smoothed on the basis of (16) , T = 100

H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

l = 1 0.234 0.365 0.480 0.493 0.501 0.267 0.387 0.481 0.482 0.482
l = 2 0.142 0.221 0.291 0.356 0.418 0.162 0.235 0.292 0.341 0.384
l = 3 0.103 0.160 0.210 0.257 0.302 0.116 0.170 0.210 0.246 0.277
l = 4 0.0810 0.125 0.165 0.202 0.238 0.0916 0.133 0.165 0.193 0.218
l = 5 0.0665 0.103 0.137 0.168 0.197 0.0759 0.110 0.136 0.160 0.180
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Table 5 MAPE (%) for a process smoothed on the basis of (16), T = 1000

H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

l = 1 9.00 14.9 20.2 20.9 21.3 13.1 19.9 25.4 25.5 25.5
l = 2 6.14 9.96 13.6 16.9 21.0 8.74 13.1 16.7 19.9 23.4
l = 3 4.78 7.72 10.2 13.0 15.7 7.41 11.1 13.7 16.2 18.6
l = 4 3.84 5.95 7.80 9.69 11.7 6.38 9.48 11.7 13.8 15.8
l = 5 3.28 5.11 6.64 8.25 9.92 5.59 8.03 10.1 12.0 13.7

Table 6 MAE for a process smoothed on the basis of (16), T = 1000

H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

l = 1 0.232 0.362 0.477 0.490 0.498 0.264 0.384 0.478 0.479 0.480
l = 2 0.140 0.218 0.287 0.353 0.416 0.160 0.231 0.289 0.338 0.382
l = 3 0.101 0.156 0.206 0.253 0.298 0.114 0.166 0.206 0.242 0.274
l = 4 0.0790 0.122 0.160 0.197 0.232 0.0900 0.130 0.161 0.189 0.214
l = 5 0.0650 0.100 0.131 0.161 0.190 0.0742 0.107 0.132 0.155 0.175

Table 7 Average values ⟨x⟩ for the smoothed process (17)
l ⟨x⟩, H = 0.8 ⟨x⟩, H = 0.6

1 2.98 2.45
2 2.52 2.06
3 2.34 1.77
4 2.31 1.61
5 2.22 1.48

The results in Tables 3–7 are rounded off to 3 significant digits. In the
case z = 1, l = 3, T = 100, H = 0.8 a graphical comparison of the actual
and the predicted modeled traffic values is given in Figure 2 (the solid line is
the actual process, and the dotted line is the predicted one).

As can be seen, the graphs in Figure 2 are indeed in good agreement.
Now let us consider a process smoothed in the basis of exponential

average smoothing:

X ′
t =

1− λ

1− λt

t−1∑
k=0

λkXt−k, λ = 0.9. (18)

Then the modeled traffic data xi are as follows:

xi = X ′
i +min(X ′) + 10−3, (19)
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Figure 2 Comparison of the actual and the predicted values for a process smoothed on the
basis of (16) for T = 100, z = 1, l = 3; H = 0.8.

Figure 3 Correlation function of the centralized process obtained on the basis of (19) and
its power-law least-squares fit; H = 0.8.

and the prediction algorithm based on formulas (10)–(15) is the same.
Let us show that the corresponding process is a heavy-tail one (its correlation
function exhibits a power-law asymptotic decay). The correlation function of
the corresponding centralized process with H = 0.8 (the solid line) and its
least-mean-squares estimate for the first 500 points (the dotted line) are given
in Figure 3.

As for the process with H = 0.6, the corresponding proof is simi-
lar. As can be seen, the correlation function indeed exhibits a power-law
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Table 8 MAPE (%) for a process smoothed on the basis of (18)
H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

T = 100 4.03 6.09 7.84 9.20 10.4 8.21 11.7 13.9 15.7 17.2
T = 1000 4.02 6.07 7.79 9.14 10.4 8.17 11.6 13.8 15.6 17.1

Table 9 MAE for a process smoothed on the basis of (18)
H = 0.8 H = 0.6

z = 1 z = 2 z = 3 z = 4 z = 5 z = 1 z = 2 z = 3 z = 4 z = 5

T = 102 0.0697 0.104 0.131 0.153 0.173 0.0792 0.110 0.131 0.147 0.159
T = 103 0.0694 0.103 0.130 0.153 0.172 0.0788 0.109 0.130 0.146 0.158

Figure 4 Comparison of the actual and the predicted values for a process smoothed on the
basis of (18) for T = 100, z = 1; H = 0.8.

asymptotic decay. The results for the MAPE and the MAE are shown in
Tables 8 and 9.

The results in Tables 8 and 9 are rounded off to 3 significant digits.
The average value of the process is 1.91 for H = 0.8 and 1.10 for H = 0.6.
As can be seen, a short-term Kolmogorov–Wiener prediction works well for
the process under consideration, and the prediction in the case where H = 0.8
is better than that for the case where H = 0.6. The graphs for the actual and
predicted values are given in Figure 4 for the process with H = 0.8.

In Figure 4, the solid line shows the actual values of the modeled traffic,
and the dotted line shows the predicted values. It should also be stressed that
for values of λ smaller than that in (18) the corresponding prediction leads to
higher errors.
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4 Investigation of the Applicability of a Continuous Filter

This section is devoted to the investigation of the applicability of a continuous
filter to traffic prediction. Of course, the actual traffic is discrete, and the
use of a discrete filter is more exact, but the open question is to what extent
the continuous Kolmogorov–Wiener filter is applicable to the corresponding
prediction. In the continuous case, the filter weight function is the solution of
the integral Equation (4), and thus a continuous process correlation function
is needed. The least-squares estimate of the process correlation function may
be used in this case.

First of all, let us consider the case where H = 0.8. Let us suppose that a
large amount of data is given during a rather short time interval, for example,
105 data points are taken for a time period equal to 100 seconds, see Figure 5.
In such a case, the process may be treated as continuous (however, of course,
such a “continuousness” is rather artificial).

Let us investigate the applicability of a continuous filter by the example
of a process smoothed on the basis of (18). Let us consider the case where
the filter input data are given for the previous T = 1 second and the forecast
for a future interval equal to z = 10−3 seconds (analog of a discrete one-
point-forward prediction on the basis of the previous 1001 points). First
the corresponding centralized process xc(t) is built, and the continuous
correlation function of the process is taken as the least-squares estimate, see
Figure 6 where the black line is the actual correlation function and the gray

Figure 5 “Continuous” smoothed modeled traffic data obtained on the basis of exponential
average smoothing; H = 0.8.
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Figure 6 Comparison of the actual correlation function and its least squares (20); H = 0.8.

line is the least-squares estimate (20)

Rx(t) = a · (|t|+ 10−3)−b, |t| ∈ [0, 1], a = 0.0206, b = 0.415. (20)

The coefficients a and b appearing in (20) are rounded off to 3 significant
digits; however, their exact values are used in the calculations. The term 10−3

is added to the denominator in (20) in order to take into account the fact
that the process variance is finite. The evenness of the correlation function
is also taken into account. The filter weight function h(τ) is calculated on
the basis of (5)–(7) where the functions Ss(τ) are the Walsh functions in the
Walsh numeration (see the description of these functions in [32]). At the first
iteration, we take the time interval t ∈ [0, T ], and on its basis we calculate the
prediction for xc(T + z). At the second iteration, we take the time interval
t ∈ [z, T + z], and on its basis we calculate the prediction for xc(T + 2z).
And so on throughout the whole array. At iteration number i, we calculate the
predicted values according to (3) as follows, see (21).

x̂c(T + iz) =

∫ T

0
h(τ)xc(T + (i− 1) · z − τ)dτ

≈
T−10−3∑

j=0,10−3,2·10−3,...

h(j) · xc(T + (i− 1) · z − j) · 10−3,

(21)
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Table 10 MAPE (%) and MAE for the case under consideration in the continuous approxi-
mation for the correlation function (20); H = 0.8

n MAPE, % MAE
32 15.4 0.243
64 13.6 0.213
128 9.71 0.155
256 7.94 0.126

here, the integral is evaluated by the method of rectangles. Approximations
of different numbers of Walsh functions are used. The results for the average
values of the MAPE and the MAE are given in Table 10. In Table 10, n is
the number of Walsh functions in (5) and the results are rounded off to 3
significant digits. As can be seen, the more Walsh functions are taken, the
more accurate the prediction is.

This approach may be enhanced on the basis of the idea that the power-
law behavior is an asymptotic behavior for long times, but for short times the
function (20) does not describe the correlation function well. Thus, for short
times another estimate may be made, for example, the polynomial one, and
the improved least-squares fit may be as follows:

Rx(t) =

{
a1|t|3 + b1|t|2 + c1|t|+ d1, |t| ∈ [0, 0.1]

a · (|t|+ 10−3)−b, |t| ∈ (0.1, 1]
,

a1 = −369, b1 = 79.0, c1 = −5.89, d1 = 0.220. (22)

The coefficients a1, b1, c1, and d1 appearing in (22) are rounded off to
3 significant digits; however, their exact values are used in the calculations.
The coefficients a and b are taken from (20).

Of course, the function (22) has some drawbacks: it is not continuous at
the points |t| = 0.1 and its coefficients a and b may be refined on the basis of
the idea that the corresponding least-squares fit can be made for |t| ∈ (0.1, 1],
not for |t| ∈ [0, 1]. However, as can be seen in what follows, the function
(22) leads to reliable results, see Table 11. A graphical comparison is given
in Figure 7.

In the case where H = 0.6, a similar procedure may be realized, and the
corresponding correlation function is as follows:

Rx(t) =

{
a1|t|4 + b1|t|3 + c1|t|2 + d1|t|+ e1, |t| ∈ [0, 0.1]

a · (|t|+ 10−3)−b, |t| ∈ (0.1, 1]
,
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Figure 7 Comparison of the actual modeled traffic and the predicted one obtained on the
basis of the continuous filter and the correlation function (22) in the approximation of 256
Walsh functions; H = 0.8.

Table 11 MAPE (%) and MAE for the case under consideration in the continuous approxi-
mation for the correlation functions (22) and (23) for H = 0.8 and H = 0.6, respectively

H = 0.8 H = 0.6

n MAPE, % MAE MAPE, % MAE
32 14.9 0.240 20.9 0.188
64 11.3 0.185 17.4 0.160
128 7.94 0.135 13.7 0.129
256 5.81 0.0986 10.8 0.104

a1 = 6027, b1 = −1486, c1 = 130.5, d1 = −4.923, e1 = 0.07340,

a = 8.089 · 10−4, b = 0.7130, (23)

The coefficients in (23) are rounded off to 4 significant digits; however,
their exact values are used in the calculations.

The results in Table 11 are rounded off to 3 significant digits. As can
be seen, the accuracy increases with the number of Walsh functions and the
corresponding results are better than those indicated in Table 10. In Figure 7,
the solid line is the actual modeled traffic and the dotted line is the predicted
one. As can be seen, the prediction is rather accurate, and thus the continuous
Kolmogorov–Wiener filter may be applied to the prediction of a heavy-tail
process smoothed on the basis of (18). It should also be stressed that the
corresponding prediction is better in the case where H = 0.8 than in the case
where H = 0.6.
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5 Discussion

This paper is an extension of the results presented at the IntelItSis 2022
Conference [31]. It is devoted to the investigation of the applicability of the
Kolmogorov–Wiener filter to the prediction of a stationary heavy-tail random
process similar to fractional Gaussian noise. The calculations presented in the
paper were made on the basis of the Wolfram Mathematica package using a
PC with processor Intel(R) Core(TM) i5-9400 CPU @ 2.90 GHz.

Modeled traffic data (105 points) are generated on the basis of the sym-
metric moving average approach. The data are generated for two processes:
for a process with Hurst exponent equal to 0.8 and for a process with Hurst
exponent equal to 0.6. First the applicability of the Kolmogorov–Wiener filter
to non-smoothed traffic is considered. The MAPE and MAE are rather high
in this case, the predicted process behavior is rather similar to the actual
one, but the amplitude of the predicted process is less than the actual one.
In fact, these results are in agreement with the results of paper [30]. Then
two cases of a smoothed process are investigated: a process smoothed on the
basis of a linear smoothing algorithm and a process smoothed on the basis
of exponential average smoothing. It is shown that the discrete Kolmogorov–
Wiener filter gives good results for a short-term prediction of both smoothed
processes considered. It is also shown that the prediction in the case where
H = 0.8 is more accurate than that in the case where H = 0.6. It should
be stressed that in [31] only the results for T = 100, z = 1 and H = 0.8
are given, a graphical comparison of the predicted and the actual processes is
absent, and the case of exponential average smoothing is not investigated.

The applicability of the continuous Kolmogorov–Wiener filter to heavy-
tail process prediction is also investigated in the case of a process smoothed
on the basis of exponential average smoothing. For simplicity, we restrict our-
selves only to this case; the aim is to show that the continuous Kolmogorov–
Wiener filter is applicable in principle. To the best of our knowledge, this
particular applicability of a continuous filter has not been considered before.
Of course, the process “continuousness“ considered here is rather artificial;
however, it is interesting to compare the results of the more exact discrete
filter and the continuous filter in order to answer the question if the continuous
filter is applicable at all. It is shown that the average MAPE of the continuous
filter “one-point-forward” prediction is only about 2–3% higher than in the
case of the discrete filter. Moreover, a further enhancement of the correlation
functions (22) and (23) or a further increase in the number of Walsh functions
may lead to even more accurate results. Hence, the continuous Kolmogorov–
Wiener filter is also applicable to the prediction of heavy-tail processes in the
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case under consideration. Moreover, the continuous filter may really be useful
in the case where a short-term prediction should be made on the basis of a
very long pre-history; however, this is not needed for the process considered
(the results for 101 and 1001 previous points are almost identical, and thus a
very long pre-history is not needed).

Nowadays traffic in telecommunication systems with data packet transfer
is considered to be a heavy-tail process, and thus the results of the paper may
be used in telecommunication traffic prediction. It should also be stressed
that the paper results may be useful not only for traffic prediction, but also
for process prediction in other fields of knowledge, for example, in electrical
engineering, see [35].

6 Conclusions

It is shown that both discrete and continuous Kolmogorov–Wiener filter
may give a rather exact short-term prediction of smoothed heavy-tail pro-
cesses. This property may be used for traffic prediction in stable stationary
systems. Moreover, this property may be useful in the prediction of noisy
processes after the truncation of the random component. This investigation
may be of interest because of the simplicity of the Kolmogorov–Wiener filter
in comparison with sophisticated modern prediction techniques. A compar-
ison of the results of the Kolmogorov–Wiener filter prediction with other
prediction methods and the practical application of the Kolmogorov–Wiener
filter to real traffic data may be a plan for the future.
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