Additional Detection of Clones Using
Locally Sensitive Hashing

Nataliia I. Pravorska

Khmelnitsky National University, Ukraine
E-mail: pravorskana @khmnu.edu.ua

Received 28 October 2022; Accepted 26 January 2023;
Publication 16 May 2023

Abstract

Today, there are many methods for detecting blocks with repetitions and
redundancy in the program code. But mostly they turn out to be dependent
on the programming language in which the software is developed and try to
detect complex types of repeating blocks. Therefore, the goal of the research
was to develop a language-independent repetition detector and expand its
capabilities. In the development and operation of the language-independent
incremental repeater detector, it was decided to conduct experiments for
five open source systems for evaluation using the industrial detector SIG
(Software Improvement Group), including the use of a tool syntactic analysis.
But there was the question of extending the algorithm for additional detection
of duplication and redundancy in the code, which was proposed by Hammel,
and how improvements can be made to achieve independence from the
programming language. Particular attention was paid to the empirical results
presented in the original study, as their effectiveness is questionable. The
main parameters that were considered when creating the index for LIIRD
(Language-independent incremental repeat detector) and its expansion of
the LSH (locally sensitive hashing): measuring time, memory and creating
an incremental step. Based on the results of experiments conducted by the

Journal of Cyber Security and Mobility, Vol. 12_3, 367-388.
doi: 10.13052/jcsm2245-1439.123.6
© 2023 River Publishers

368 N. I Pravorska

authors of Hammel’s work, there was a motivation to develop an extended
approach. The idea of this approach is that according to the original study, the
operation of calculating the entire block index with repeats and redundancy
from scratch is very time consuming. Therefore, it is proposed to use LSH to
obtain an effective assessment of the similarity of software project files.

Keywords: Language-independent incremental repeat detector, locally sen-
sitive hashing, incremental approach, incremental step, experiment, hash seg-
ment, hash function, clone index, shingles, MinHashing, shingling, software
engineering.

1 Introduction

Today, there are many automated methods that help to detect blocks with
repetitions and redundancy in the program code. A negative feature of such
methods is excessive dependence on the programming language in which the
code is written. In an effort to improve code representation, such methods
are used by language parsers to find blocks of code with repetitions of more
complex types. Therefore, building or finding parsers will not be supported
for languages that are not very popular.

The language-independent incremental repeat detector that was devel-
oped is able to detect precisely specified types of clones, and the language-
independent approach of detecting blocks of code with repetitions and redun-
dancy allows to uniformly detect such constructs in different programming
languages.

During the development of a language-independent incremental repeat
detector, the problem arose of ways to expand the algorithm for additional
detection of repetitions and redundancy in the code, which was proposed by
Hummel et al. [1] and how improvements can be made to achieve program-
ming language independence. Particular attention was paid to the empirical
results presented in the original study, as their effectiveness is questionable.

To solve the given task, it became expedient to consider the extension of
LIIRD by the method better known as “Locally Sensitive Hashing” (LSH).
A significant reduction in the computational time required for the search
process [2] occurs using approximate schemes based on LSH. The basic
idea of locally-sensitive hashing is to use different hash functions to hash
basic data points multiple times. At the same time, it will be guaranteed that
similar elements have a greater chance to meet and end up in the same hash
segment, unlike heterogeneous elements [3]. Only then are the elements that

Additional Detection of Clones Using Locally Sensitive Hashing 369

have entered the hash segment, also known as candidate pairs, passed the
similarity check.

2 Priming the Expansion of the Expanded Approach

Based on the results of experiments conducted by the authors of Hammel’s
work [1], the motivation for developing an extended approach arose. During
one of the experiments, the Eclipse SDK (v3.3) (a platform for programming
and compiling applications in Java) is analyzed. The software project itself
has more than 42 million lines of code and more than 200,000 source code
files written in the Java programming language. The study measures the time
required to create the initial clone index and the time it takes to query and
update it. The results of the experiment are presented in Table 1.

Based on these measurements, it is easy to see that the time required to
create an index of repeats (clones) is quite large (7 hours and 4 minutes).
Despite the fact that the experiment was carried out on rather outdated
equipment, as of today, the time spent turned out to be quite significant.
The purpose of our study is to find out if it is possible to increase the
productivity of this step using LSH, and ultimately reduce the time required
to generate intermediate information. The idea behind this approach is that,
according to the original study [1], the operation of calculating the entire
cloning index (block index with repetitions and redundancy) from zero turns
out to be very time-consuming. Therefore, it is suggested to use LSH to
obtain an effective assessment of the similarity of software project files. Sub-
sequently, for those files in which duplicates are found, the index elements are
calculated on the fly and the detection operation is performed. When using
this approach, a compromise is required. While it seems intuitive that there
may be an improvement in detector performance when building the index,
there is a negative impact on the following aspects:

* Feedback (Recall). If the files turned out to be similar, only for them,
with a similar approach, the process of detecting repetitions in the
program code takes place. It follows that there will be skipped blocks
with repeated code. For example, if the files are very large, then most of

Table 1 Analytical measurements of Eclipse SDK (v3.3) [6]
Creating an index (full) 7 hours 4 min

Index query (per file) 0.21 sec. median
0.91 sec. average
Update index (per file) 0.85 sec. average

370 N. I Pravorska

them are different, but there are some identical pieces of code in them.
To reduce the likelihood of skipping repetitions and redundancy in the
code (although this possibility will not be completely excluded), it is
necessary to choose a low threshold of file similarity when comparing
them.

* Query performance (QueryPerformance). The time required to query
and detect blocks of code with repeats will increase with each new com-
mit, due to additional computational overhead. Such overhead occurs
when computing index entries on the fly for pairs of similar files.
However, if the index creation time will be significantly reduced, then
such behavior can be tolerated. There is an allocation of two main work
processes [4], similar to a clone detector. For reuse in versions, the initial
intermediate information is also created in the first process. However,
in this case, the information will differ from the cloning index of the
LIIRD. On the other hand, the second process is restarted for each
new version of the software system. When using LSH, files that have
been affected are moved into segments along with existing files that
are similar to each of them and above a previously defined similarity
threshold.

3 The Working Process of Creating a Similarity Index
Based on LSH

This process consists of a number of sub-steps, as well as the process of
creating the “Clone Index” mentioned in the paper [4]. Workflow substeps
will result in the creation of an initial state of intermediate information. As in
the LIIRD, the starting point is the same, that is, the same preprocessing steps
will be used. However, the remaining part of the process will have significant
differences. In this case, hashing blocks of code and storing them in the so-
called “Clone Index” for the purpose of grouping similar files in one place and
LSH will be used. The work [5] described the substeps of LSH, which will
be used. This is shingling and generation of signatures (minhash) for given
files, as well as grouping of similar ones. Below is a detailed description of
each of them. A high-level workflow is presented in Figure 1.

Just as in the case of the LIIRD, the set of constant intermediate
information will be called the index, which in Figure 1 is presented as
LSH Ds.!

'DS (Data Structures and Algorithms) — data structures and algorithms.

Additional Detection of Clones Using Locally Sensitive Hashing 371

Preliminary Normalization

Processing >\ fo Source Files Shingling [—> MinHashing

!

LSH

Figure 1 Sub-steps of the workflow of creating an index based on LSH.

Preliminary Normalization
ILss'mg >\ fo Source Files

Generation Pair LSHDS
Candidate ”| Updating

Clone Detection
for similar files

Figure 2 Sub-steps of the work process based on LSH.

3.1 Incremental Step-by-Step Workflow Based on LSH

The initiation of each incremental step, similar to the corresponding process
of the LIIRD approach, occurs when the code base of the basic software
project is updated to a new version. All normal preprocessing operations for
this process remain unchanged. Another part of the pipeline is different from
the LIIRD approach. More specifically, in the case of the detector, which
will be based on the basis of LSH, identification is first carried out for the
similarity of files in the existing codebase with the file that will be affected
by the commit. For this, the LSH will be used, and the index will be queried
based on the LSH. After that, each file falls into a hash segment with similar
files. Likewise, the same approach as in the LIIRD detector is used for similar
files. A hash value is generated and the same process is followed to detect
repetition and redundancy in the program code. In Figure 2 presents a high-
level overview, which is displayed by the substeps of this process. Commits
in this case have the form of a JSON configuration file.

3.2 Approach Decomposition

Let’s consider the decision regarding each separate sub-step of implemen-
tation and division of LSH in the context of a given extension. For this

372 N. I Pravorska

Set of Shingles

:- 5P TECD: [z::e'j func(a):
i print(a) print(a),

i fooO > foo(),

i x = barQ X = barQ),

i return X

return X]

Figure 3 Converting a preprocessed file to a set of shingles.

extension, it is suggested to use a data set (datasketch) — which is pre-
sented by a third-party library, which includes a built-in implementation of
MinHash LSH.

3.3 Shingling

This approach is covered in [5]. Shingles is the process of converting the
original document into a set of shingles. In this case, the documents are the
source files of the project to be analyzed. After the pre-processing step, a
file is obtained which is transformed into a set of tiles under the action of
conversion. That is, each line of the file is a separate tile. Figure 3 presented
the result of this process, showing how the pre-processed file is converted into
a set of tiles corresponding to the corresponding lines of this file.4

3.4 MinHashing

MinHashing is the next step in the process of the general LSH algorithm.
That is, the purpose of this step is to eliminate the phenomenon of large sets of
tiles, due to which there is an increase in the time required for the calculations
of the similarity metric or the Jaccard coefficient. In this case, there is a need
to use k-hash functions. Under their influence, hashing takes place for each
individual file, each tile in a set of tiles. Next, the algorithm selects the lower
value of the hash function for each of the k hash functions, and thanks to this,
a signature is generated. Figure 4 presented the second substep of the process.

This transformation is combined with loss of information, due to the
transformation of sets into fixed-length signatures. That is why it is not
possible to use them to calculate the exact similarity. In [3], however, it
was demonstrated that it is possible to obtain accurate estimates even in
this case. It follows that the accuracy of the estimate depends on the length
of the signatures, that is, it depends on the number of used hash functions.

Additional Detection of Clones Using Locally Sensitive Hashing 373

K Hash Functions

Set of Shingles hash 1 | hash 2 | hash K
p——— daf Fun . 5
{ def func(a): [func(a): 54
print(a) print(a), 5 @
i fooO L fooQ), .
[x = barQ x = barQ,
i return x L
return x] @ L
h 1 4 3
Signature = 143..
(k-length)

Figure 4 Signature generation using MinHashing.

The higher the number of hash functions, the better the score, but the process
of calculating the score becomes more time-consuming.

You can actually set the estimation error coefficient by the following
formula:

1
error = —,
Vk
where k — is the number of hash functions, that is, for example, a 6.25%
probability of false-negative or false-positive activations for 256 hash func-
tions will be obtained. The datasketch configuration parameter can be used to
support changing the number of hash functions.

4 Locale-sensitive Hashing

Increasing the computation time required to compare each signature with any
other signature is the final step of the LSH approach. As already mentioned in
work [5], such a technique as banding is used (that is, banding — encirclement,
binding, unification). The technique consists in the fact that all hash values
for each tile from the set that make up the matrix are divided into b columns,
each of which in turn consists of » rows. This is followed by consideration
of document D1 to pair candidates with another document D2. At the same
time, it is necessary that each row of the defined range D1 coincides with each
row of the corresponding range in D2. If this happens, the documents will be
considered pairs of candidates and fall into the same hash segment. However,
you will have to choose the value for b and 7 yourself, in relation to the
configurable LSH implementation. At the same time, you should always pay
attention to how these values affect the similarity threshold. On the contrary,
datasketch works, allowing you to determine the desired threshold, thanks to
the automatic calculation of the correct values of these parameters.

374 N. I Pravorska

4.1 The Results of the Experiment

To visually confirm the operation of the LIIRD and the use of its extension
LSH, a demonstration of the results of the experiments is presented. All stud-
ies for the authenticity of the experiment were carried out on an experimental
machine with the following configuration (although somewhat outdated):
memory — 32 GB; processor — Intel Xeon E5-2650 v2 @2.6GHz. Despite
the fact that the experiment was carried out on rather outdated equipment, as
of today, the time spent turned out to be quite significant.

More specifically, to begin with, the results of experiments with the
proposed LIIR detector will be considered. Next, we will present the results
of experimental attempts to measure the effectiveness of the traditional SIG
approach, which was mentioned in [4, 5], for detecting blocks with repetitions
and redundancy in the program code. Comparison of the SAT (software
analysis test) approach with the additional repeat and redundancy detector
proposed in the study. And at the end, the results of the experiments are
provided, thanks to which the effectiveness of the expansion, which is based
on LSH, is studied. The obtained results are studied in comparison with the
results of experiments with LIIRD.

4.2 Measurement of LIIRD Indicators

Table 2 contains the exact measurements that were used for the evaluation
experiments of the proposed LIIRD. Five open source systems were selected
for the study.

The table shows that compared to the initial estimates obtained with the
CLOC? tool (this tool is capable of counting blank lines, comment lines, and

Table 2 Dimensions of LIIRD

Standard
Previous Number of Index Average Deviation of
Measurements Lines (LOCs) Creation Step the
Number of Read in Time Time Incremental
Project LOCs Commits Processed (sec) (sec) Step (sec)
Rippled 312.011 208.100 42 3.75 0.85 1.31
Kooboo 670.265 681.143 50 16.28 0.03 0.04
Tensorflow 3.194.893 3,814.652 45 65.89 4.29 3.32
OpenJDK-14 12.045.316 3,377.211 46 48.53 4.72 5.07
LinuxKernel 23.229.768 23.603.823 45 321.21 N/A N/A

*Description and access to the tool at Github: https:/github.com/AlDanial/cloc.

https://github.com/AlDanial/cloc

Additional Detection of Clones Using Locally Sensitive Hashing 375

physical lines of source code in many programming languages), the LOC
(Lines Of Code) for each project will range in within the margin of error of
approximately 2.7%. Exceptions are Tensorflow and OpenJDK, for which a
significant portion of the total code base is apparently made up of excluded
directories and file extensions. Moreover, almost all of the fifty commits
that were analyzed for each codebase were processed. A reminder here is
that all omitted commits refer to commits that only affect files ignored by
the implementation of the approach proposed in the study in the first place
(e.g., text files).

The next two columns provide an overview of the average time that has
passed since the index was created and the incremental steps (steps with
increments) of the workflows to implement the LIIRD. The last column
highlights the standard deviation for the incremental step time measurement.

The experimental software proposed in the study successfully completed
the analysis of four software systems, but for Linux systems, it could not be
done due to its complexity and size, so the table substitutes the term N/A
instead of the values.

5 Creating an Index for LIIRD
5.1 Time Measurement for LIIRD
The indicators obtained when measuring the time for the index creation

process by the LIIR detector proposed in the study are presented in Figure 5.

LIRD Creating am Index - Time Spent

321.21

g

Time Spent (sec)

8

4853
50
16.28
375
0 [

Rippled Kooboo Tensorflow OpenJDK-14 Linux Kerne!
Software Projects

Figure 5 LIIRD — Time of execution of the index creation process.

376 N. I Pravorska

The total time required to generate the index required by the LIIRD, as can
be seen, will range from a few seconds for small systems (such as Rippled)
to about five minutes for large systems (such as the Linux kernel), bearing in
mind, that the time required for this step depends on the size of the software
system. This is expected because the calculation time will be required more
and it depends on the repetition indices (source code clones), which in
systems with a lot of source files and LOC are quite large. However, the
overall index creation time will fluctuate at a fairly low level. It is taken into
account that such a time took exactly more, about five minutes for such a large
system as the Linux kernel, which consists of more than 20 million LOCs.
A comparison can be made with Table 1, which presents the data obtained in
the course of Hammel’s work [1]. As can be seen, the approach using MNIDP
spends less time to create the index.

5.2 Memory Measurement for LIIRD

For the analysis of the five software systems used in this study, the amount of
memory (Table 3) required for the proposed LIIR detector is used.

The figures presented are still largely in line with the memory require-
ments of the first systems, despite the fact that measurements were taken
throughout the entire analysis (including index creation and incremental
steps) of the proposed systems. Short-term spikes in memory usage, as will
be highlighted in the implementation of the incremental step for LIIRD
(Figure 6), were mostly caused by taking additional steps in a few seconds.
It follows that when considering the overall memory usage that is required
for a specific detector implementation, their appearance does not matter.
Figure 6 shows the memory usage required by the LIIRD approach during
each analysis. As you can see, even taking into account modern memory
standards, the indicators for the first four systems are quite insignificant.
However, memory usage rises to higher levels when dealing with a larger
Linux kernel system.

Table 3 LIIRD — memory indicators

Project Memory (MB)
Rippled 129
Kooboo 348
Tensorflow 1791
OpenJDK-14 1712

LinuxKernel 12500

Additional Detection of Clones Using Locally Sensitive Hashing 377

LIRD - Memory Measurements

14000

12500
12000

10000

g 8000
z
=3
E 6000
=
4000
2000 1791 1712
- - - -
0 — L]
Rippled Kooboo Tensorflow OpenJDK-14 Linux Kernel
Software Projects
Figure 6 LIIRD — Cumulative memory requirements.
LIRD Incremental Step - Time Spent
12
10
~
S 8
<
=
g
as
Q
g
&

S

452
499
2
085
0.03
0 <=

Rippled Kooboo Tensorflow OpenJDK-14
Software Projects

Linux Kernel

Figure 7 LIIRD - average execution time for an incremental step.

5.3 An Incremental Step for LIIRD

Changes in the time spent for the incremental step of the implementation of
the LIIRD are presented in Figure 7. This process is started every time there
are code changes in the form of a commit. The results obtained for Rippled,

Tensorflow and OpenJDK systems give an idea that such a process does not
take more than a few seconds on average.

378 N. I Pravorska

Regarding the unusual deviation during the experiments for Kooboo, such
low figures justify themselves in cases where the process of detecting blocks
with repetitions and redundancy is not started at all. This happens if the files
affected by the commit are not cloned and destroyed. This causes the most
time-consuming parts of the detection process to fail. Finally, due to the size
of the Linux kernel, the proposed setup could not cope with the memory load
of this process.

Note that this occurred not because of the memory requirements for the
incremental step per se, but because of the version control checking sub-
process running in the application developed in the study. Because for large
codebases, such a process would require a significant amount of memory,
more than what was available on the experimental setup machine at the
time. More generally, a large number of different factors affect the execution
time required for an incremental step. Elements that can affect the results
are understood as: the number of files that are included in the commit; type
of changes (creation, update, deletion, renaming); length of analyzed files;
similarity threshold in the case of LSH.

Additional experiments were conducted to gain a complete picture of the
interaction of all these factors.

It is important to note that the overall performance of this step is more
efficient compared to the index creation process. This is clearly visible in
Figures 5 and 6 when comparing them. This is significant given that the
process is performed every time new changes are made to the code.

5.4 Evaluation of LIIRD vs SIG

The results of our study analyzing the performance of the general SAT
analysis (this tool is used by the SIG to perform quality analysis of a software
project and measure various indicators such as its maintainability — and
compare it to the approach proposed in the study) together with a sub-process
built into the same tool and designed to detect blocks of repetition and
redundancy in the program code are presented in Table 4.

More specifically, the SAT SIG tool was used in the analysis of the data
set for the proposed study, which consists of five open source projects.

Given that SAT is a complex tool that includes many basic operations
unrelated to duplicate code detection, it was decided to isolate the relevant
parts and measure the fraction of total elapsed time. This fraction is directly
related to the detection of blocks with repetitions and redundancy in the
program code.

Additional Detection of Clones Using Locally Sensitive Hashing 379

Table 4 SAT parameters and total detection time of LIIRD

Total SAT Clone Creation of the LIIRD Index
Project Analysis Time Detection Time and the Time of the Incremental Step
Rippled 4 min. 5.63 sec. 4.6 sec.
Kooboo 22 min. 397 sec. 16.31 sec.
Tensorflow 8 hours 30 min. 177.1 sec. 91.29 sec.
OpenJDK-14 N/A N/A 56.34 sec.
LinuxKernel N/A N/A >321.21 sec.

As already mentioned in point 4.2, the experimental software used in the
study successfully completed the analysis of three software systems, but for
the OpenJDK and Linux systems, it was not possible to do this due to their
complexity and size, so the term N/A is substituted in the table instead of the
values.

However, it can be observed that even if the time required to detect
blocks of code with repetitions and redundancy is only a small fraction of
the total analysis time, SAT will require a significantly larger amount of time
to perform the analysis. It is especially visible that for Tensorflow the total
analysis time was more than 8 hours. This number indicates a limitation of the
number of checks that could be made to five. Regarding the time indicators
for detecting clones, they vary from a few seconds to a couple of minutes for
large and more complicated systems. It is necessary to pay attention to the fact
that the time of detection of blocks with repetitions and redundancy depends
not only on the size of the packet, in the context of SAT. Additional factors
that affect these measurements are: the complexity of the code itself, the
programming language in which the system is written. Accordingly, and to
reduce the time of detecting blocks with code clones for Tensorflow compared
to the smaller Kooboo system.

When repeatedly starting the clone detection process, individual measure-
ments, which at first glance may seem quite small, quickly accumulate. The
influence of the measured time, when the process of detecting repetitions and
redundancy in the program code is repeated often, can be well understood
from the presented diagrams in Figure 8.

In particular, the Tensorflow system was used as a parameter to demon-
strate how the time required to detect clones will increase as the number of
commits increases. As indicated, while the difference for a single commit
does not appear to be large, the results look different for a large number
of commits, such as 100 or 500. In the latter case, the entire analysis, for
example, using a traditional SIG tool, would require approximately 1387

380 N. I Pravorska

Tensorflow - Cumulative Time Spent

@®LIRD @ SIG

1000

100

Time Spent (minutes) (log)

Number of Commits

Figure 8 Cumulative comparison of the SIG detector with the LIIRD.

Table 5 Measurement of expansion based on LIIRD and LSH
Index Creation Average Incremental Standard Deviation of

Time (sec) Step Time (sec) Incremental Step (sec)
Project LIIRD LSH LIIRD LSH LIIRD LSH
Rippled 3.75 10.42 0.85 0.82 1.31 1.35
Kooboo 16.28 37.82 0.03 0.25 0.04 0.04
Tensorflow 87 192.8 4.29 1.57 3.32 2.13
OpenJDK-14 51.62 139.87 4.72 4.26 5.07 6.34
LinuxKernel 321.21 954.56 N/A 4.38 N/A 10.23

minutes — around 11 p.m. On the other hand, it only takes about 37 minutes
to perform the same procedure using a step-by-step approach.

5.5 Measurement of Expansion Based on LSH

In order to evaluate the implementation proposed in the study based on LSH,
it is necessary to compare it with the results of experiments with the LIIR
detector. To perform an individual comparison between them, individual
measurements are made for two workflows for each of the two approaches
presented in Tables 5 and 6. It should be noted that for this type of research,
the same experimental procedures were used as those presented for measuring
time, memory and an incremental step for LIIRD (see above). This means that
the same number of LOCs and the same number of commits were processed
for each of the systems.

Additional Detection of Clones Using Locally Sensitive Hashing 381

Table 6 Measurement of expansion based on LIIRD and LSH

Memory (MB)
Project LIIRD LSH
Rippled 129 60
Kooboo 348 122
Tensorflow 1791 524

OpenJDK-14 1712 429
LinuxKernel 12500 2600

Creating Index - Time Spent

WLIRD = Based of LSH
1000

Time Spent (sec)

321.21

8 65.89 48.53
0 ==

Rippled Kooboo Tensorflow OpenJDK-14 Linux Kernel
Software Projects

Figure 9 Execution time of the index creation process for two implementations.

As mentioned earlier, N/A values are provided to the LinuxKernel system,
due to the inability to detect them using LSH.

6 Creating an Index for the LSH
6.1 Time Measurement for LSH

The resulting large time difference between the two implementations relates
to the time required to create the index. It can be seen from Figure 9, that for
all software systems in our information fund, the LIIRD approach is almost
three times faster compared to the expansion based on LSH.

Reminder — 64 hash functions were used for the MinHashing process
when implemented based on LSH. The number of hash functions was chosen
so low precisely to create a threshold for how long it takes for this extension

382 N. I Pravorska

LIIRD vs LSH - Memory Measurements

WLIRD ®Basedof LSH
14000

12500
12000

10000

8000

Memory (MB)

6000

2000 1791 1712
2 . . ‘ -
0 e = E— |

Rippled Kooboo Tensorflow OpenJDK-14 Linux Kernel
Software Projects

Figure 10 Memory requirements for two implementations.

to build an index, as this number results in a similarity error rate of 12,5%.
Additional time costs, which subsequently lead to an increase in the time of
creating an based on LSH implementation index, arise precisely because of an
increase in the number of hash functions, and thus, a decrease in the number
of errors.

6.2 Memory Measurement for LSH

The memory requirements of the based on LSH expansion, which are con-
structed together with the preliminary measurements carried out in the study
for the LIIRD approach, are presented in Figure 10. During the research, it
was found that the memory usage levels of the LIIRD approach are two to
three times higher than those of the based on LSH approach. Especially in
the case of the Linux kernel, there is a significant difference between the
two approaches: approximately five times more memory will be required to
complete LIIRD detection.

6.3 Incremental Step when Using LSH

Corresponding measurements regarding the execution of an incremental step
for two implementations are presented in Figure 11. At first glance, the
relevant data obtained look rather confusing. All because worse performance

Additional Detection of Clones Using Locally Sensitive Hashing 383

Incremental Step - Time Spent
WLIIRD wBased of LSH

)]

Time Spent (sec)

SN —

~

, N 003 _of°

Rippled Kooboo Tensorflow OpenJDK-14 Linux Kernel
Software Projects

Figure 11 The execution time of the incremental steps process for two implementations.

was expected for all analyzed projects, compared to the LIIRD approach than
the proposed based on LSH provisioning, taking into account the additional
step of calculating the repeat index entries (clones) and redundancy on the fly.
However, upon further investigation, it became clear that in many cases
the chosen similarity threshold of 20% was not low enough to identify a large
number of files for similarity and was the reason why this was not reflected
in our visualization. And as a result, many detections were missed, which led
to a decrease in time, in the diagram presented of Figure 11. Upon further
investigation into the reasons for such a large disparity between provisions,
it turned out that the MinHash part of the overall LSH scheme is quite
computationally heavy. In fact, approximately 37% of the time (Figure 12)
when creating the index was spent on the MinHashing substep, that is, it
follows from the raw data obtained by isolated measurements of the time of
the index creation step for the implementation of LSH using the Tensorflow
system. The remainder (namely 63%) was split between shingling and the
process of banding (shown as LSH), with the former taking the most time.

6.4 Hash Function Variables

In work [5] it was mentioned that 64 hash functions for the MinHashing pro-
cess were used to perform the tasks of our research with an implementation
based on LSH. Also, since MinHashing is one of the most time-consuming

384 N. I Pravorska

Allocation of Time when Creating The LSH Index

Shingling @ MinHashing @ LSH

Figure 12 Sub-dimensions of creating an index for implementation based on LSH.

Time Spent on various # Hash Functions

@ Index Creation Time @ Incremental Step Time

100

50 ._____._,,/———0"”/.

Time Spent (sec) (log)
",

Hash Functions

Figure 13 Execution time value for different number of hash functions in MinHashing
process.

parts of the LSH implementation, it would be interesting to investigate how
changing the number of hash functions will affect the incremental step and
total index creation time.

The consequences of increasing the number of hash functions, corre-
spondingly reducing the number of errors, the time required to create the
corresponding index, and the time for processing the incremental step are
presented in Figure 13. More specifically, the Kooboo software project was
used and index creation times were measured for 64, 128, 256, and 512 hash

Additional Detection of Clones Using Locally Sensitive Hashing 385

functions, which in turn would correspond to error rates of 12.5%, 8.8%,
6.25%, and 4.4% respectively.

From the diagram, it turns out that the important role, when processing
two work processes, the required time depends on the number of hash
functions. In particular, the index creation time practically doubled when
comparing the measurement data of the lowest threshold of 64 and the highest
of 514 hash functions. This behavior is consistent with measurements of the
incremental step of the process, where an increase of a similar magnitude was
observed

7 Conclusions

The results of the experiments conducted for the LIIRD and those presented
in Hammel’s work [1] do not fully agree. A significant difference was
observed in the measures of time to create the index and the incremental
step of the workflow. Of course, there were expectations that under the
influence of the three main factors during the measurements, there will be
minor deviations.

These factors were:

Experimental device. Unlike the hardware used in Hammel’s original
study [1], the hardware used in our experiments was much faster.

Normalization. Exclusion in the study of the proposed implementation of
the stage of tokenization of the original detector, to take into account inde-
pendence from the programming language, leads to the removal of additional
overhead costs necessary for this process.

Storage in memory. Memory persistence was used in contrast to the original
study where the measurements were of an implementation that stored inter-
mediate information in a database. Taking into account the factors mentioned
above, it was expected that the time required to create an index would be
reduced.

Although the expectation is supported by the findings, the difference is
much larger than these factors can justify. Specifically, the time required to
create an index for a project consisting of approximately 40 million lines
of code (LOC) was 7 hours and 4 minutes, according to initial research.
However, when conducting our experiment, this indicator was already a
little more than 5 minutes for LIIRD and about 15 minutes for the based
on LSH approach, in relation to the Linux Kernel with half the size. These

386 N. I Pravorska

measurements indicate processing time differences of about a factor of 42
and 14, respectively, assuming that Hummel’s approach scales linearly. Based
on this observation, it can be said that any further attempts to improve the
creation of the index will be quite difficult, since it is happening much faster
than expected.

Regarding the additional step, the results obtained from the experiment
carried out in the work provide new insights compared to the original study.
More specifically, the obtained measurements allow us to conclude that the
size of the system affects the total time of the incremental step. At first,
this is not logical, since the query and update of the hash index should
result in similar constant time measurements. However, collisions may occur,
which lead to additional overhead in the overall calculation in large systems
where the index is filled with a very large number of records. In addition,
individual measurements are affected by several factors, such as the number
of files in the commit, the length of those files, and the type of changes they
make. Finally, the initial study simulates commits by randomly deleting and
re-adding source files. Because our study used actual commits, the results
provide a better understanding of incremental step workflow behavior.

Based on the research, it has been found that using a language-
independent repeat detector is appropriate for detecting certain types of
blocks with repetitions and redundant code, but improvements due to the use
of LCH will be quite difficult.

References

[1] Benjamin Hummel, ElmarJuergens, Lars Heinemann, and Michael Con-
radt. Indexbased code clone detection: incrementtal, distributed, scal-
able. In 2010 IEEE International Conference on Software Maintenance,
pages 1-9. IEEE, 2010.

[2] Indyk Piotr, MotwaniRajeev. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 604—613,
1998.

[3] LeskovecJure, RajaramanAnand, UllmanJeffrey David. Mining of Mas-
sive Datasets. Cambridge University Press, USA, 2nd edition, 2014.
ISBN 1107077230.

[4] Pravorska N.I., Barmak O.V., Medzatiy D.M., Shestakevych T.V.
The process of detecting blocks with repetitions and redundancy when

Additional Detection of Clones Using Locally Sensitive Hashing 387

using a language-independent incremental detector. KHNU Bulletin,
Technical Sciences series, Ne3, 2021, pp. 39-45.

[5] Pravorska N.I., Bedratyuk L.P, Forkun Y.V. Yashina O.M. Language-
independent detector for detection and elimination of repetitions and
redundancies of the program code. Measuring and computing equipment
in technological processes. — Khmelnytskyi, 2021. Ne1, pp. 56-61.

[6] ZhouWei, Huliankun, WangSong. Enhanced locality-sensitive hash-
ing for fingerprint forensics over large multi-sensor databases. IEEE
Transactions on Big Data, 2017.

Biography

“/"\".

Nataliia 1. Pravorska has the degree of Candidate of Pedagogical Sciences
2005, PhD in Pedagogy (theory and methods of informatics (computer
science)) 2011, MS of Software Engineering 2021. She is a associate pro-
fessor of the Department of Software Engineering at Khmelnytskyi National
University (2004-). Research interests: C++ and Java programming, object-
oriented programming, development of software products based on mathe-
matical models, Internet of Things. Educational activity. Teaches disciplines:
Applied information systems, Software design, Object-oriented program-
ming, Basics of team software development, Java programming technologies,
Software systems development methodologies and technologies.

	Introduction
	Priming the Expansion of the Expanded Approach
	The Working Process of Creating a Similarity Index Based on LSH
	Incremental Step-by-Step Workflow Based on LSH
	Approach Decomposition
	Shingling
	MinHashing

	Locale-sensitive Hashing
	The Results of the Experiment
	Measurement of LIIRD Indicators

	Creating an Index for LIIRD
	Time Measurement for LIIRD
	Memory Measurement for LIIRD
	An Incremental Step for LIIRD
	Evaluation of LIIRD vs SIG
	Measurement of Expansion Based on LSH

	Creating an Index for the LSH
	Time Measurement for LSH
	Memory Measurement for LSH
	Incremental Step when Using LSH
	Hash Function Variables

	Conclusions

