
Method of Increasing the Security of Smart
Parking System

Tetiana Hovorushchenko1, Olga Pavlova1,∗ and Mariia Kostiuk2

1Department of Computer Engineering & Information Systems, Khmelnytskyi
National University, Khmelnytskyi, Ukraine
2Department of Applied Mechanics, Khmelnytskyi National University,
Khmelnytskyi, Ukraine
E-mail: hovorushchenko@khmnu.edu.ua; pavlovao@khmnu.edu.ua;
maria@khnu.km.ua
∗Corresponding Author

Received 01 November 2022; Accepted 21 December 2022;
Publication 16 May 2023

Abstract

Currently, the urgent task is developing the methods and tools for increasing
Smart Parking software system security. The purpose of this study is conduct-
ing analysis of requirements for Smart Parking System software security in
order to find the bottlenecks and parts of the software that are most vulnerable
to external threats and develop the methods and tools for increasing their
security. The paper proposes the method of increasing Smart Parking soft-
ware system security based on integrating the middleware in Smart Parking
System software architecture. The proposed method takes into account all
the criteria for Smart Parking System software security, i.e. parameters of
safe access to the database, client program security, server security and API
security and provides a complex solution for increasing the safety of Smart
Parking software system. The proposed method differs from the known ones

Journal of Cyber Security and Mobility, Vol. 12 3, 297–314.
doi: 10.13052/jcsm2245-1439.123.3
© 2023 River Publishers



298 T. Hovorushchenko et al.

in that it allows taking into account all the criteria for increasing the Smart
Parking System software security in complex using security middleware.

Keywords: Smart Parking System security, external threats, client-server
architecture, API, middleware.

1 Introduction

At the current stage of information and computer technologies development,
special attention should be paid to security issues when developing software.
This is especially crucial for critical software and cyber-physical systems
software, as data loss or malfunctions can have unpredictable and sometimes
critical consequences. Smart Parking System, proposed in [1] is based on
client-server architecture and uses Convolutional Network image processing
method. The images are taken from CCTV camera on a parking-lot and pro-
cessed by the artificial neural network-based algorithm. Incorrect functioning
of the algorithm or errors in the recognition of images by an artificial neural
network can lead to an incorrect result providing. Since the client-server
architecture is particularly vulnerable to various types of external threats, it is
expedient to provide methods and algorithms for the protection and security
of the smart parking system at the early stages of the life cycle, i.e. at the
software architecture designing stage. It is crucial relevant since according
to [5], the cost of error correction increases with each stage of the life cycle.

Therefore, the aim of this work is to analyze the factors that affect the
security of smart parking system, the structure of which is presented in
Figure 1, and develop the methods and algorithms for protection of this
cyber-physical system.

2 State-of-the-Art

Multiple studies have been conducted to solve the problem of Smart Parking
System security using different methods and tools. The main criteria that
must be followed when developing a security system for smart parking
are hardware security, hardware-software connection security, and software
security from the standpoint of ensuring the Smart Parking software security
system, the following criteria can be identified:

• checking parameters of safe access to the database;
• client program security;



Method of Increasing the Security of Smart Parking System 299

Figure 1 Structure of smart parking system.

• server security;
• API security, if its use is provided by the architecture of the smart

parking software system.

Let’s conduct the state-of-the-art on known solutions and methods aimed
at increasing the security. In paper [6] a secure smart parking system using
blockchain technology is proposed, which uses cloaking technique to protect
the drivers’ location.

In [8] a solution is provided for preventing theft of vehicle from parking
using RFID and GSM technology. Energy saving methods based on edge
computing and IoT are proposed in [9].

In [10] an inclusive, long-term, effective, and well-performing smart
autonomous vehicle parking (SAVP) system is presented. The authors intro-
duce an integrated smart parking system that brings multiple parking service
providers together under a unified platform aiming to provide one-stop
parking information services to the commuters in a smart city.

The principal role of the research in paper [11] is to analyze smart parking
solutions from a technical perspective, underlining the systems and sensors
that are available, as documented in the literature. The review seeks to provide
comprehensive insights into the building of smart parking solutions. A holis-
tic survey of the current state of smart parking systems should incorporate the
classification of such systems as big vehicular detection technologies.

The paper [12] proposes a parking management system that is geared
towards business entities. The proposed system will focus on privacy for the



300 T. Hovorushchenko et al.

different entities that use the system. The paper aims to improve on already
existing research on smart parking using blockchain. This paper proposes a
parking management system that will be based on JPMorgan Quorum.

The paper [13] aims to design a secure and smart parking monitoring
management system (SPMS) based on integration of WSN, RFID, and IoT.

Inspired by Blockchain and AI technology, the authors of [14] propose
a Blockchain-enabled Secure Framework for Energy-Efficient Smart Parking
in Sustainable City Environment.

The JMU Secure Smart Parking via the Cloud Environment is proposed
in [15]. Using a Radio-frequency identification scanner, our system is able
to count the number of vehicles entering and leaving each parking lot on
campus.

An intelligent parking system in city based on the 5th Generation Mobile
Communication Networks (5G) is proposed in [16]. 5G mobile communica-
tion technology has two important advantages of high transmission rate and
low transmission latency, so it can better satisfy the rapid development of the
Internet of Things (IoT).

This paper [19] presents a work-in-progress agenda that contributes to
new business solutions and state-of-the-art research impacts. The authors
reveal a multi-layered system of PSP-business model through interdisci-
plinary research blocks where original results are expected to be made at
each layer.

We conducted the analysis of the recent studies [6–19] and highlighted
the most frequently used methods for Smart Parking Security assurance.
They are: blockchain technology using [6, 7, 10, 14], applying of biometric
security mechanisms [7], radio frequency identification (RFID) and using of
wireless sensor network (WSN) [8, 13], based on cloud environment [15, 19],
5G Technology [16], General Regression Neural Networks (GRNN) [23],
fuzzy logic and uncertain data [24], multiple-valued logic [25]. But all these
studies are focused on solving one or two criteria of Smart Parking System
security and do not provide the solution of all the above mentioned criteria
in complex. Consequently, with the purpose of increasing Smart Parking
System security, it is necessary to conduct a software architecture analysis.
The purpose of such analysis is the selection of parts of the software that
are most vulnerable to external threats and providing the solution for Smart
Parking System software security assurance in terms of following all criteria
in complex.

Thus, the urgent task is the analysis of the requirements for Smart Parking
System software security in order to find the parts of the software that



Method of Increasing the Security of Smart Parking System 301

are most vulnerable to external threats and develop the methods and tools
for increasing their security. Given the above, the purpose of this study is
developing the methods of increasing the security of Smart Parking System,
taking into account bottlenecks in software system and parts that are most
vulnerable to external threats factors.

3 Client-Server Architecture and Possible Security Threat
Factors

Since the Smart Parking System shown in Figure 1 consists of two parts –
hardware part (cameras and all the and all physical devices necessary for
functioning) and software part (client and server subsystems), it is necessary
it is necessary to investigate possible factors that may affect the security
of this system. If the hardware can simply be checked for reliability and
performance, the software subsystem needs a deeper investigation. Taking
into account the fact that the system has both server part and client part, an
analysis of factors that affect the security of both parts of this cyber-physical
system was carried out. They are: security misconfiguration, client-side
injections (insecure authentification data, malwares), insufficient transport
layer protection (MITM attacks), insecure data storage (database), device
rooting/jailbreak, reverse engineering, sensitive data exposure (private data
breaches), inadequate logging and monitoring. The results of the analysis are
presented in a schematic form in Figure 2.

Figure 2 Possible security threats of smart parking system.



302 T. Hovorushchenko et al.

Figure 3 Architecture of smart parking software system.

Since the client part is supposed to be developed in the form of a cross-
platform mobile application, which does not involve storing any private
information, such as a personal phone number, login and password, it may
seem that is less susceptible to attacks by hackers or information leaks.
However the possibility of risks related to system security on the client’s
side cannot be completely excluded. The server part of the software, on the
other hand, is very sensitive because it contains algorithms for recognizing
car images using an artificial neural network. Unauthorized access to the
database, program code or system files can lead to incorrect operation of
algorithms and, as a result, to the provision of incorrect information about
the occupancy or non-occupancy of a parking space to the client part. That is,
incorrect operation of the entire system as a whole. Also, since the connection
between the client and server parts is supposed to be implemented using an
application programming interface (API), additional bottlenecks appear in the
smart parking security system. The architecture of Smart Parking software
system is represented in Figure 3.

3.1 Client-side Security Risks

For greater user convenience and faster access to the system, it was decided
to develop the client part in the form of a cross-platform mobile application.
Over the last decade, the industry of mobile application development has
sufficiently increases but cybercrimes also have not stayed at their previous
stage. All this caused the fact that it is not possible to upload the mobile
application to Google Play Store or Apple App Store without checking the
security metrics and being confident that the application will not be accused
in information leaks or personal data fraud. But mobile application security is
more than just protecting them from malicious software and external threats.
First we need to define the main Open Web Application Security principles



Method of Increasing the Security of Smart Parking System 303

and their main safety threats to be able to analyze the security measures and
develop methods and tools to increase the level of their security [3].

• Improper platform usage

Not proper usage of smartphone functionality or unpredictable crashes while
using security control settings. This includes privacy settings, permissions,
incorrect use of Touch ID, FaceID, Keychain, etc.

• Data storage insecurity

A sufficient bottleneck that can be frequently found while cope with mobile
application security issues is a lack of a secure data storage system. Mobile
developers usually rely on client device storage for some private and internal
data. But if the hackers get the access to device or the device may be stolen
or lost, this data can be accessed and used for some malicious purposes. As a
result it leads to such cybercrimes as privacy policy violation and personal
data theft for the purpose of its malicious use.

• Insecure Client-Server Communication

During mobile application development, data communication occurs using
a client-server model. Therefore, when the data is transferred, it can be
intercepted by attackers via Internet. Malicious agents can also intercept
data during wire transfer. Transmitting data via unreliable communication
channels leads to privacy policy violation, personal data theft, fraud and
business reputation loss for the company.

• Risks of Insecure Authentification

Malicious agents or bots can obtain data during authentication and infiltrate
user’s account. This can lead to personal information leaks, theft of personal
data, and unauthorized access to internal data of user’s account.

• Insufficient Data Encryption

Malicious agents or advertising bots can have the access to data that was
not encrypted or protected properly. It can result to unauthorized access
to internal data of the application, data theft, users‘ personal information
leak etc.

• Insecure Authorization Risks

Malicious agents can intercept data during the authorization process and use
it for unauthorized access to the application. As a result it leads to personal
information leaks and loss of business reputation of the company.

• Poor Quality of the Application Code



304 T. Hovorushchenko et al.

Poor code quality can lead to program unpredictable crashes or multiple
errors occurance while using. Also it decreases application performance and
can cause excessive memory usage or slow loading of graphic elements in
user interface while operating.

• Risk of Code Forgery

Malicious agents, when obtaining access to the source code, can integrate
advertising or malicious scripts into it or replace parts of the code, which
can lead to the incorrect functioning of the program, loss of some functions
or replacement of certain functionality to use the application for malicious
purposes.

• Reversible engineering

Attackers may download a mobile application in order to redesign its func-
tions. That is, the same program can work completely differently in different
versions.

• Extraneous Functionality Risk

In this case attackers review the functions of the mobile application in order
to find bottlenecks and implement third-party code.

According to statistics given in Figure 4, insecure data storage and inse-
cure client-server communication are the most frequent reasons of mobile
application security risks.

The dependence of smart parking system security can be displayed as a
tuple of factors that affect the security of the client part:

Csec = <ef, re, ct, ccq, ia, ic, iac, icm, ids, ipu>, (1)

where:

ef – Extraneous Functionality,
re – Reverse Engineering,
ct – Code Tampering,
ccq – Client Code Quality,
ia – Insecure Authorization,
ic – Insufficient Cryptology,
iac – Insecure Authentification,
icm – Insecure Communication,
ids – Insecure Data Storage,
ipu – Improper Platform Usage



Method of Increasing the Security of Smart Parking System 305

Figure 4 Frequency of factors manifestation that affect the security of mobile applica-
tions [3].

3.2 API Security Risks

Application Programming Interface (API) is a type of software that connects
to the functionality of the application and saves developers time. Often with
the help of an API, a functionality created by other developers or a frequently
used functionality is connected or a client-server connection is performed.
This helps developers save time and not develop from scratch features that
are already in the public domain. When it comes to connecting several parts
of software system together, it is really helpful [17]. However there are also
security risks in using APIs. There are two primary reasons why security
issues should be taken into account while using API.

• A simple way to obtain access to internal information of the appli-
cation – via APIs stored data, including user’s private information
(login, password etc.) can be accessed for the purpose of unauthorized
distribution or malicious activity.



306 T. Hovorushchenko et al.

• A simple way for attackers to bypass security measures, even if the fire-
wall is enabled. Therefore, a well-thought-out security strategy should
not be neglected.

There is a significant difference in security measures for traditional web-
based applications and API-based web applications. This difference is in
their architecture and how they are built. Previously, securing web applica-
tions only required protecting HTTP and HTTPS ports. Current applications,
which use multiple APIs and different protocols, need be thought of com-
prehensive protection of all parts of the application, taking into account all its
bottlenecks. This is especially important when the API expands its functional-
ity, making security more difficult to manage. Also, when the API is replaced,
previously developed security measures must be reviewed and reconfigured
manually. The difference in the structure of API–based applications makes
them sensitive to external threats [4]:

• Non-secure generation of API key

APIs are usually secured using a JSON Web Token or API key. This allows
you to protect the API and, in case of detection of unusual or suspicious
behavior, close access to the API keys.

• DDoS attacks

Protection against DDoS attacks is mainly built on the principle of deflecting
requests from suspicious actors. This becomes more difficult since in API-
based applications each traffic looks suspicious.

• Faulty server controls

Server is responsible for the communications between the application and
user behind the mobile phone screen. The main reason for server vulnera-
bility is that sometimes developers do not take proper security measures and
protection of server connections seriously enough when working with APIs.

• Data Breaches

According to the studies worldwide data breaches and leaks usually occur
when insufficient logging takes place.

• Not handling authorization

Unlike authentication, the authorization process in each application has its
own logic and this may often be a bottleneck for attackers. If the authorization
process is not sufficiently thought out and protected, hackers can log in to the
system and access data using the iterative ID selection method [4].



Method of Increasing the Security of Smart Parking System 307

Figure 5 Frequency of factors manifestation that affect the security of application program-
ming interface (API) [4].

According to statistics, the main and the most frequent factors are data
breaches, accidental exposure of data, deprecated APIs, Denial of Service,
unknown or shadow APIs and account takeover. The frequency of above
mentioned factors manifestation that affects the security of Application
Programming Interface (API) is shown in Figure 5.

The dependence of smart parking system security can be displayed as a
tuple of factors that affect the security of Application Programming Interface:

APIsec = <dbr, aed, depapi, dos, unsapi, ato>, (2)

where:

dbr – Data Breaches,
aed – Accidental Exposure of Data,
depapi – API thought to be deprecated are still running,
dos – Denial of Service,
unsapi – Unknown or Shadow API,
ato – Account Takeover.

4 Results and Discussion

Considering the factors that affect individual parts of the smart parking
software system, it was decided to take into account ones that most often



308 T. Hovorushchenko et al.

Figure 6 Smart parking software architecture using security middleware.

affect the security of the system and involve its different parts from different
angles (for example, data access, client-server communication, bottlenecks
when using the API) and arrive at a solution that will help take them into
account in the complex.

The proposed solution is middleware for additional verification of
requests from the client to the server. It is an efficient tool for performing
operations or calculations inside a “request-response” connection in a client-
server model of interaction. It should be used when it is necessary to perform
a certain operation or check the reliability of the request not directly on
a server for security reasons. That is, the middleware provides additional
server protection from suspicious or malicious requests by intercepting and
checking them. And only if the request is safe, it is sent to the server for
further processing.

Therefore, we have improved the architecture of Smart Parking Software
System given in Figure 2 by adding a security middleware to the server
section of the software. The proposed architecture of the software system
for smart parking, including middleware, is presented in Figure 6. With such
architecture, it is much easier to determine whether the request was really sent
from our client application and check whether it is not malicious and does not
contain suspicious code. Also, this middleware will reduce the application’s
operating time, in case the request is not appropriate, because its result is
already known, since the call to the Google Cloud API is not instantaneous.

Let’s consider examples of the operation of the proposed smart parking
software architecture using Security Middleware. For better understanding
and clarity, let us consider the algorithm proposed in Figure 7.

According to Figure 7 the request is sent to the server from the mobile
client application. However, the request may not always be secure. To check
this, we verify the request using an integrated middleware. This will allow
us to verify that the request really came from our client application, and not



Method of Increasing the Security of Smart Parking System 309

Figure 7 Algorithm for verifying the security of the request using security middleware.

from some third-party resource, and that the request is safe. Also, the use
of middleware will reduce the application’s operating time, if the request is
not appropriate or its result is already known. Since the call to the Google
Cloud Vision API is not instantaneous, we may use this time for verifying the
security of the obtained request. If the request is secure, it is sent for further
processing, namely checking the parking space selected by the user for
occupancy. If the request is identified as potentially malicious or extraneous,
it is neutralized in the first case, and the response from the server to such a
request is ignored.

5 Conclusions

Currently, the actual task is developing the methods and means for increasing
Smart Parking software system security.

The purpose of this study is conducting analysis of requirements for
Smart Parking System software security in order to find the parts of the
software that are most vulnerable to external threats and develop the methods
and tools for increasing their security.



310 T. Hovorushchenko et al.

The paper proposes the method of increasing Smart Parking software
system security based on integrating the middleware in Smart Parking System
software architecture. The proposed method takes into account all the criteria
for Smart Parking System software security, i.e. parameters of safe access
to the database, client program security, server security and API security
and provides a complex solution for increasing the security of Smart Park-
ing software system. While using security middleware, it is much easier
to determine whether the request was really sent from the native Smart
Parking client application and check whether it is not malicious and does
not contain suspicious code. In addition, security middleware will reduce
the application’s operating time, in case the request is not appropriate or
malicious.

The main directions for authors’ further research are: development and
realization of the security middleware; integration of the developed middle-
ware into server part of Smart Parking System; conducting the experiments
and providing numerical evaluation of its efficiency.

References

[1] P. Radiuk, O. Pavlova, H. El Bouhissi, V. Avsiyevych, V. Kovalenko.
Convolutional Neural Network for Parking Slots Detection. CEUR
Workshop Proceedings, 2022, 3156, pp. 284–293.

[2] T. Hovorushchenko, A. Boyarchuk, O. Pavlova, K. Bobrovnikova.
Agent-Oriented Information Technology for Assessing the Initial Stages
of the Software Life Cycle. ICTERI Workshops, 2019. pp. 617–632.

[3] Understanding OWASP Mobile Top 10 Risks with Real-world Cases.
URL: https://appinventiv.com/blog/owasp-mobile-top-10-real-world-c
ases/amp (last accessed October 21, 2022).

[4] The top API security risks and how to mitigate them. URL: https://ap
pinventiv.com/blog/how-to-mitigate-api-security-risks/ (last accessed
October 21, 2022).

[5] I. Lopatto, T. Hovorushchenko, P. Popov, O. Pavlova. Intelligent Multi-
Agent System for Improving the Quality of Software by Taking into
Account the Information of the Subject Area at All Stages of its
Development. Proceedings of the 11th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications, IDAACS 2021, 2021, 1, pp. 548–551.

[6] W. A. Amiri, M. Baza, K. Banawan, M. Mahmoud, W. Alasmary and
K. Akkaya. Towards Secure Smart Parking System Using Blockchain

https://appinventiv.com/blog/owasp-mobile-top-10-real-world-cases/amp
https://appinventiv.com/blog/owasp-mobile-top-10-real-world-cases/amp
https://appinventiv.com/blog/how-to-mitigate-api-security-risks/
https://appinventiv.com/blog/how-to-mitigate-api-security-risks/


Method of Increasing the Security of Smart Parking System 311

Technology, 2020 IEEE 17th Annual Consumer Communications &
Networking Conference (CCNC), 2020, pp. 1–2, doi: 10.1109/CCNC
46108.2020.9045674.

[7] A. Waheed and P.V. Krishna. Comparing Biometric and Blockchain
Security Mechanisms in Smart Parking System, 2020 International
Conference on Inventive Computation Technologies (ICICT), 2020,
pp. 634–638, doi: 10.1109/ICICT48043.2020.9112483.

[8] L. Kumar, M. H. Khan and M. S. Umar. Smart parking system using
RFID and GSM technology. 2017 International Conference on Multi-
media, Signal Processing and Communication Technologies (IMPACT),
2017, pp. 180–184, doi: 10.1109/MSPCT.2017.8364000.

[9] CP. Lee, FTJ. Leng, RAA. Habeeb, MAA. Amanullah, M. Rehman.
Edge computing-enabled secure and energy-efficient smart parking:
A review, Microprocessors and Microsystems, Volume 93, 2022.

[10] S. Ahmed, Soaibuzzaman, M. S. Rahman and M. S. Rahaman.
A Blockchain-Based Architecture for Integrated Smart Parking Systems.
2019 IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops), 2019, pp. 177–182, doi:
10.1109/PERCOMW.2019.8730772.

[11] C. Biyik, Z. Allam, G. Pieri, G. Moroni, M. O’Fraifer, M. O’Connell,
S. Olariu, M. Khalid. Smart Parking Systems: Reviewing the Literature,
Architecture and Ways Forward. Smart Cities. 2021; 4(2), pp. 623–642.

[12] G.B. Imbugwa, M. Mazzara. (2021). Towards a Secure Smart Parking
Solution for Business Entities. Advanced Information Networking and
Applications. AINA 2021. Lecture Notes in Networks and Systems,
vol. 227. Springer, pp. 469–478.

[13] O. Abdulkader, A. M. Bamhdi, V. Thayananthan, K. Jambi and M.
Alrasheedi. A novel and secure smart parking management system
(SPMS) based on integration of WSN, RFID, and IoT, 2018 15th
Learning and Technology Conference (L&T), 2018, pp. 102–106, doi:
10.1109/LT.2018.8368492.

[14] SK. Singh, Y. Pan, J. Hyuk Park. Blockchain-enabled Secure Framework
for Energy-Efficient Smart Parking in Sustainable City Environment,
Sustainable Cities and Society, Volume 76, 2022.

[15] M. Garcia, P. Rose, R. Sung and S. El-Tawab. Secure Smart Parking
at James Madison University via the Cloud Environment (SPACE).
2016 IEEE Systems and Information Engineering Design Symposium
(SIEDS), 2016, pp. 271–276, doi: 10.1109/SIEDS.2016.7489313.

10.1109/CCNC46108.2020.9045674
10.1109/CCNC46108.2020.9045674
10.1109/ICICT48043.2020.9112483
10.1109/MSPCT.2017.8364000
10.1109/PERCOMW.2019.8730772
10.1109/LT.2018.8368492
10.1109/SIEDS.2016.7489313


312 T. Hovorushchenko et al.

[16] A. Anwar, Ijaz-ul-Haq, N. Saeed and P. Saadati. Smart Parking: Novel
Framework of Secure Smart Parking Solution using 5G Technol-
ogy. 2021 IEEE International Smart Cities Conference (ISC2), 2021,
pp. 1–4, doi: 10.1109/ISC253183.2021.9562776.

[17] T. Hovorushchenko, O. Pavlova, V. Avsiyevych. Method of Assessing
the Impact of External Factors on Geopositioning System Operation
Using Android GPS API. 2021 International Scientific and Techni-
cal Conference on Computer Sciences and Information Technologies
(CSIT), 2021, 1, pp. 295–298.

[18] A. Waheed, P. V. Krishna, J. Gitanjali, B. Sadoun, M. Obaidat. Learning
automata and reservation based secure smart parking system: Methodol-
ogy and simulation analysis, Simulation Modelling Practice and Theory,
Volume 106, 2021.

[19] Y. Atif, J. Ding, MA. Jeusfeld, Internet of Things Approach to Cloud-
based Smart Car Parking, Procedia Computer Science, Volume 98, 2016.

[20] I.M. Hakim, M. Christover, A.M. Jaya Marindra. Implementation of
an image processing based smart parking system using Haar-Cascade
method. 2019 IEEE 9th Symposium on Computer Applications Indus-
trial Electronics (ISCAIE-2019). pp. 222–227. IEEE Inc., Penang,
Malaysia, 27–28 April 2019. DOI: 10.1109/ISCAIE.2019.8743906.

[21] G. Manjula, G.G. Rajulu, Anand, J.T. Thirukrishna. Implementation
of smart parking application using IoT and machine learning algo-
rithms. Computer Networks and Inventive Communication Technolo-
gies. Springer Singapore, Singapore, 2022. pp. 247–257 doi: 10.1007/
978-981-16-3728-5 18.

[22] D. Vakula, Y.K. Kolli. Low cost smart parking system for smart cities.
2017 International Conference on Intelligent Sustainable Systems, 2017.
DOI: 10.1109/ISS1.2017.8389415.

[23] R. Tkachenko, I. Izonin, I. Dronyuk, M. Logoyda, P. Tkachenko.
Recovery of missing sensor data with grnn-based cascade scheme.
International Journal of Sensors, Wireless Communications and Control,
2021, 11(5), pp. 531–541.

[24] Zaitseva E., Levashenko V., Construction of a reliability structure func-
tion based onuncertain data, IEEE Transactions on Reliability, vol. 65,
no. 4, 2016, pp. 1710–1723.

[25] Zaitseva E., Levashenko V., Reliability analysis of multi-state sys-
tem with application of multiple-valued logic, International Journal of
Quality and Reliability Management, vol. 34, no. 6, 2017, pp. 862–878.

10.1109/ISC253183.2021.9562776
10.1109/ISCAIE.2019.8743906
10.1007/978-981-16-3728-5_18
10.1007/978-981-16-3728-5_18
10.1109/ISS1.2017.8389415


Method of Increasing the Security of Smart Parking System 313

Biographies

Tetiana Hovorushchenko received the master’s degree in Computer Engi-
neering Department from Khmelnytskyi National University in 2017 and the
doctor of sciences degree in Engineering Science in 2018. She is currently
working as a Head of the Department of Computer Engineering and Infor-
mation Systems, Faculty of Information Technology, Khmelnytskyi National
University. Her research areas: quality and safety assurance of software,
smart city technologies.

Olga Pavlova received the master’s degree in Computer Engineering and
System Programming Department from Khmelnytskyi National University
in 2017 and the philosophy of doctorate degree in Computer Science from
Khmelnytskyi National University in 2021. She is currently working as a
Senior Lecturer at the Department of Computer Engineering and Information
Systems, Faculty of Information Technology, Khmelnytskyi National Uni-
versity. Her research areas include quality and safety assurance of software,
smart city technologies, machine learning and augmented reality.



314 T. Hovorushchenko et al.

Mariia Kostiuk received the master’s degree in Applied Mechanics and Sys-
tems of Computer-Aided Design of Processes from Khmelnytskyi National
University in 2019 and currently is a postgraduate student in Applied
Mechanics at Khmelnytskyi National University. She is currently work-
ing as a junior researcher at the research department of the Khmelnytskyi
National University. Her research areas include industrial IoT, application
programming interfaces for hardware and computer-integrated technologies.


	Introduction
	State-of-the-Art
	Client-Server Architecture and Possible Security Threat Factors
	Client-side Security Risks
	API Security Risks

	Results and Discussion
	Conclusions

