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Abstract

A tropical encryption scheme is analyzed in this paper, which uses double
key exchange protocol (KEP). The key exchange protocol is divided into
two stages: The first stage of the key exchange uses matrix power function
in a tropical semiring; the obtained shared key at the first phase of the key
exchange serves as an input for the second phase. This paper proves that the
common secret key of the first key exchange phase can be obtained by solving
linear equations, and when the order of the matrix is 50, the time to solve the
shared key is less than 1 second. Finally, the common secret key of the second
phase can be obtained through KU attack and common secret key of the first
key exchange. So the protocol isn’t secure.
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tions, KU attack.

Journal of Cyber Security and Mobility, Vol. 12 2, 205–220.
doi: 10.13052/jcsm2245-1439.1224
© 2023 River Publishers



206 X. Jiang et al.

1 Introduction

Modern public key cryptosystems mainly rely on factorization problem [1]
and discrete logarithm problem [2, 3]. Shor [4] proposed a quantum algorithm
that can solve the above two problems in multiple times on a quantum
computer. Therefore, new cryptosystem in the future need to resist quantum
attacks. Many cryptologists have designed many different cryptosystems
based on different algebraic structures, such as matrix groups [5–8], braid
groups [9, 10], inner automorphism groups [11], and ring structures [12],
but these schemes have been cracked [13–16]. In 2007, Maze, Monico and
Rosenthal proposed the first kind of cryptosystem based on semigroups
and semirings [17], which was cracked by Steinwant et al. Atani [18] and
Durcheva [19] constructed cryptographic protocols based on semimodules
over semirings and idempotent semirings respectively.

Imre Simon discovered the well-known Tropical semiring [20]. The oper-
ations + and • in this structure are defined as min(or max) and addition.
In recent years, because of the multiplication of tropical semiring is common
addition, which greatly improves the computational efficiency, so it is exten-
sively used in various cryptographic schemes. Grigoriev and Shpilrain proved
that the problem of solving the systems of min-plus polynomial equations in
tropical algebra is NP-hard. And they suggested using tropical semiring to
design various key-exchange schemes [21, 22]. The higher powers of tropical
matrix shows some patterns, thus Kotov and Ushakov [23] proposed a fairly
successful attack on the protocols presented in [21]. In reference [22], the
first part of the key has partial order relationship, thus Rudy and Monico [24]
exploited simple binary search to break the protocol. (Other successful
attacks include [25, 26].) Any Muanalifah, Sergei Sergeev [27] proposed
three types of key exchange protocols by using Jones matrix and Line de
la Puentela Puente matrix. In addition, Huang, Li published a cryptosystem
using multiple exponentiation problem of tropical matrices [28]. Huang,
Li and Deng applied tropical circular matrices to construct cryptographic
protocols [29].

In this paper, we analyze a tropical encryption scheme based on double
key exchange proposed in [30]. Attackers can get the shared key in the
first stage of key exchange protocol by solving the tropical linear equations,
instead of solving difficult problems in [30]. Then, with the shared key
obtained in the first stage as input, the shared key in the second stage can
be obtained by KU attack [23].
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2 Preliminaries

In this section, we recall some fundamental concepts that are required for
understanding the paper.

Definition 2.1 [31] (Semiring) A semiring is a nonempty set R on which
operations of addition and multiplication have been defined to satisfy the
following conditions.

(1) (R,+) is a commutative monoid with identity element 0;
(2) (R, ·) is a monoid with identity element 1R;
(3) Multiplication distributes over addition from either side;
(4) 0r = 0 = r0 for all r ∈ R;
(5) 1R 6= 0.

If (R, ·) is commutative, then the semiring is called a commutative
semiring.

Definition 2.2 [20] (Tropical semiring) The nonnegative integer tropical
commutative semiring is the set W = N∪{∞}with two binary compositions
⊕ and ⊗ as follows:

x⊕ y = min(x, y), x⊗ y = x+ y

∞ and 0 satisfied the following equations:

x⊕∞ = x, x⊗∞ =∞, ∀x ∈W,

x⊕ 0 = 0, x⊗ 0 = x, ∀x ∈W

It can be easily seen that (W,⊕,⊗) is a commutative semiring with
addition identity∞ and multiplication identity 0.

Let Mn(W ) be the set of all n×n matrices over W. We can define⊕ and
⊗ as follows:

(A⊕B)ij = aij ⊕ bij , (A⊗B)ij =
n⊕

l=1

(ail ⊗ blj),

∀A = (aij), B = (bij) ∈Mn(W )

Definition 2.3 [30] (Tropical polynomial) An expression is called tropical
(min) polynomial as follows:

p(x) =

n⊕
i=1

ai ⊗ x⊗i
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If p(x) =
⊕n

i=1 ai ⊗ x⊗i is a polynomial and A ∈Mn(W ), then we can
also define p(A) in the following method:

p(A) =
n⊕

i=1

ai ⊗A⊗i.

It is clear that if p(x), q(x) are tropical polynomials, and A ∈
Mn(W ), then

p(A)⊗ q(A) = q(A)⊗ p(A)

Definition 2.4 [30] (Tropical matrix power function ) Let the entries of the
base matrix Q be chosen from a (semi)group G and the entries of the matrices
X and Y be chosen from the tropical semiring W. Then tropical matrix power
function is a mapping

FQ(X):Mat(W )×Mat(G)→ Mat(G)

(denoted:S = XQ) or a mapping

FQ(Y ):Mat(G)×Mat(W )→ Mat(G)

(denoted: P = QY ).
The elements of matrix S are computed according to the formula:

Sij =
n⊗

k=1

q⊗xik
kj =

n∑
k=1

qkj · xik, (1)

and elements of matrix P are computed according to the formula:

Pij =
n⊗

k=1

q
⊗ykj
ik =

n∑
k=1

qik · ykj (2)

It is worth noting that the operations after the second equal sign in (1) and
(2) are the operations on classicial algebra.

Definition 2.5 [29] (circulant matrix) If a matrix A has the following form,
a0 an−1 an−2 · · · a1
a1 a0 an−1 · · · a2
a2 a1 a0 · · · a3
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

,

then it is called a circulant matrix.
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Lemma 2.1 [30] If matrice X,Y and Z are circulant matrices, then matrices
S = XQ and P = QY are also circulant matrices.

Lemma 2.2 Let X,Y are circulant matrices, then X ⊗ Y = Y ⊗X .

3 Tropical Encryption Scheme

In this section, we describe the tropical encryption scheme based on double
key exchange proposed in [30]. Let W be a tropical semiring as above, S
is the set of circulant matrices over the W and N is the set of the natural
numbers. Alice and Bob publicly agree on circulant matrices Q1, Q2, where
Q1, Q2 ∈ S, and randomly choose matrix M whose entries form N (Q1, Q2,
M has the same order).

First key exchange protocol phase:

(1) Alice chooses two circulant matrices A1, A2 ∈ S (of the same order as
the matrices Q1, Q2, M) as her private keys. She computes her public
key KA = A1Q1 ⊗ A2Q2 ⊗M and sends it to Bob;

(2) Bob chooses two circulant matrices B1, B2 ∈ S (of the same order as
the matrices Q1, Q2, M) as his private keys. He computes his public key
KB = B1Q1 ⊗ B2Q2 ⊗M and sends it to Alice;

(3) Alice computes the common secret key: KAB = A1Q1 ⊗ A2Q2 ⊗KB;
(4) Bob computes the common secret key: KBA = B1Q1 ⊗ B2Q2 ⊗KA.

It is easy to prove that

KAB = A1Q1 ⊗ A2Q2 ⊗KB = A1Q1 ⊗ A2Q2 ⊗ B1Q1 ⊗ B2Q2 ⊗M

= B1Q1 ⊗ B2Q2 ⊗ A1Q1 ⊗ A2Q2 ⊗M = KBA,

then Alice and Bob finally obtain shared key KAB (or KBA).

Second key exchange protocol phase:
At this stage, the shared secret key KAB obtained is used as the input of the
second key exchange phase.

(1) Alice generates random tropical polynomials p1(x), p2(x), and com-
putes her public key
U = p1(M)⊗KAB ⊗ p2(M) and sends it to Bob.

(2) Bob generates random tropical polynomials q1(x), q2(x), and computes
his public key
V = q1(M)⊗KAB ⊗ q2(M) and sends it to Alice.
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(3) Alice computes common secret key: A = p1(M)⊗ V ⊗ p2(M);
(4) Bob computes common secret key: B = q1(M)⊗ U ⊗ q2(M);

It is easy to examine that Alice and Bob get common secret key,
that is, A = B.

A = p1(M)⊗ V ⊗ p2(M) = p1(M)⊗ q1(M)⊗KAB ⊗ q2(M)⊗ p2(M)

= q1(M)⊗ p1(M)⊗KAB ⊗ p2(M)⊗ q2(M)

= q1(M)⊗ U ⊗ q2(M) = B.

Encryption phase:

(1) Bob computes the ciphertext C = B ⊕ T , where ⊕ is bitwise sum
modulo 2 of all entries of matrices B and T, T is plaintext encoded
in binary form and has the same order of previously selected matrices
Q1, Q2, M, and sends C to Alice.

Decryption phase:

(1) Alice decrypts C using her decryption key A as follows:

A⊕ C = A⊕B ⊕ T = A⊕A⊕ T = T

(A = B,A⊕A = 0)

4 An Attack on Tropical Encryption Scheme

We can clearly see that the security of the encryption scheme completely
depends on key matrices in the key exchange protocol. Firstly, we discuss the
first key exchange protocol.

Theorem 4.1 Let Q1, Q2,M,KA,KB be as above. Suppose circulant matrix
X satisfying condition: X ⊗ M = KA, then shared key KAB can be
calculated.

Proof: Now suppose circulant matrix X satisfying X ⊗M = KA, then

X ⊗KB = X ⊗ B1Q1 ⊗ B2Q2 ⊗M.

It is also known from Lemma 2.1 and Lemma 2.2 that

B1Q1 ⊗ B2Q2 ⊗X = X ⊗ B1Q1 ⊗ B2Q2, so
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X ⊗KB = X ⊗ B1Q1 ⊗ B2Q2 ⊗M = B1Q1 ⊗ B2Q2 ⊗X ⊗M

= B1Q1 ⊗ B2Q2 ⊗KA = KAB �

From Theorem 4.1, an attacker can break the first stage of key exchange
protocol, which only needs to solve tropical linear equations. However, it
is easy to solve the tropical linear equations, so the attacker can obtain the
shared key in the short time. It is easily seen that when select n × n of
matrices, solutions can be found in O(n3) time,refer to monograph [32, 33]
for more details. Next, we use this method to attack the example in the
references [30, section 4].

Example 4.1 Suppose

Q1 =

 7 13 22
22 7 13
13 22 7

, Q2 =

 5 16 25
25 5 16
16 25 5

, M =

 8 2 15
28 14 13
3 7 19

.

(1) Alice selects two circulant matrices A1, A2 as her private keys:

A1 =

 6 30 20
20 6 30
30 20 6

, A2 =

10 12 27
27 10 12
12 27 10


(2) Alice’s public key:

KA = A1Q1 ⊗ A2Q2 ⊗M

=


6 30 20
20 6 30
30 20 6

 7 13 22
22 7 13
13 22 7

⊗

10 12 27
27 10 12
12 27 10



 5 16 25
25 5 16
16 25 5

⊗
 8 2 15
28 14 13
3 7 19


=

1305 1239 1444
1444 1305 1239
1239 1444 1305

⊗
 8 2 15
28 14 13
3 7 19


=

1267 1253 1252
1242 1246 1258
1247 1241 1254





212 X. Jiang et al.

(3) Bob selects two circulant matrices B1, B2 as her private keys:

B1 =

 2 10 21
21 2 10
10 21 2

, B2 =

15 24 17
17 10 24
24 17 10


(4) Bob’s public key:

KB = B1Q1 ⊗ B2Q2 ⊗M

=

1106 1165 1268
1268 1106 1165
1165 1268 1106

⊗
 8 2 15
28 14 13
3 7 19


=

1114 1108 1121
1134 1120 1119
1109 1113 1125

;

(5) Shared key:

KAB = A1Q1 ⊗ A2Q2 ⊗KB

=

1305 1239 1444
1444 1305 1239
1239 1444 1305

⊗
1114 1108 1121
1134 1120 1119
1109 1113 1125


=

2373 2359 2358
2348 2352 2364
2353 2347 2360

;

KBA = B1Q1 ⊗ B2Q2 ⊗KA

=

1106 1165 1268
1268 1106 1165
1165 1268 1106

⊗
1267 1253 1252
1242 1246 1258
1247 1241 1254


=

2373 2359 2358
2348 2352 2364
2353 2347 2360


Attack: Suppose

X =

a c b
b a c
c b a

,
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then

X ⊗M =

a c b
b a c
c b a

⊗
 8 2 15
28 14 13
3 7 19


=

min(a+ 8, c+ 28, b+ 3) min(a+ 2, c+ 14, b+ 7)
min(b+ 8, a+ 28, c+ 3) min(b+ 2, a+ 14, c+ 7)
min(c+ 8, b+ 28, a+ 3) min(c+ 2, b+ 14, a+ 7)

min(a+ 15, c+ 13, b+ 19)
min(b+ 15, a+ 13, c+ 19)
min(c+ 15, b+ 13, a+ 19)


The following tropical linear equations can be obtained from

X ⊗M = KA;

min(a+ 8, c+ 28, b+ 3) = 1267

min(a+ 2, c+ 14, b+ 7) = 1253

min(a+ 15, c+ 13, b+ 19) = 1252

min(b+ 8, a+ 28, c+ 3) = 1242

min(b+ 2, a+ 14, c+ 7) = 1246

min(b+ 15, a+ 13, c+ 19) = 1258

min(c+ 8, b+ 28, a+ 3) = 1247

min(c+ 2, b+ 14, a+ 7) = 1241

min(c+ 15, b+ 13, a+ 19) = 1254

⇒



min(a− 1259, c− 1239, b− 1264) = 0

min(a− 1251, c− 1239, b− 1246) = 0

min(a− 1237, c− 1239, b− 1233) = 0

min(b− 1234, a− 1214, c− 1239) = 0

min(b− 1244, a− 1232, c− 1239) = 0

min(b− 1243, a− 1245, c− 1239) = 0

min(c− 1239, b− 1219, a− 1244) = 0

min(c− 1239, b− 1227, a− 1234) = 0

min(c− 1239, b− 1241, a− 1235) = 0
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⇒



a = −min(−1259,−1251,−1237,−1214,−1232,
−1245,−1244,−1234,−1235) = 1259

b = −min(−1264,−1246,−1233,−1234,−1244,
−1243,−1219,−1227,−1241) = 1264

c = 1239

Compute shared key:

X ⊗KB =

1259 1239 1264
1264 1259 1239
1239 1264 1259

⊗
1114 1108 1121
1134 1120 1119
1109 1113 1125



=

2373 2359 2358
2348 2325 2364
2325 2347 2360


The attacker in the second phase of the key exchange protocol can use

attack method in [23]. Now, let’s describe this attack.
Let matrices X and Y satisfy the following conditions:

X =

D⊕
i=0

xi ⊗M⊗i, Y =

D⊕
j=0

yj ⊗M⊗j , X ⊗KAB ⊗ Y = U

with unknown coefficients xi, yj . Therefore, to break the protocol, we need
to find x0, . . . , xD, y0, . . . , yD such that ⊕D

i,j=0xi ⊗ yj ⊗ V ij = U , where

V ij = M⊗i ⊗ KAB ⊗ M⊗j . Then, mini,j(xi + yj + T ij
kl ) = 0 for each

k, l ∈ [1, n]. Where T ij = V ij − U . Next, compute

mij = min
k,l

T ij
kl , Pij = {(k, l) : T ij

kl = mij}.

In the end, attackers find a cover C ⊆ {P00, . . . , PDD} of the set
{1, 2, . . . ,n} × {1, 2, . . . ,n}, and satisfy{

xi + yj = −mij , Pij ∈ C
xi + yj ≥ −mij , otherwise

is solvable. Refer to the literature [23] for more details about this attack.
The range for entries of matrices is [0, 1010]. Table 1 provides the time

required to solve X under different orders of the matrix. When the order of the
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Table 1 Average time to solve X

Order of Matrices Range for Entries of Matrices Time to Solve X (sec)

20 [0, 1010] 0.001111388

30 [0, 1010] 0.003949738

40 [0, 1010] 0.010951591

50 [0, 1010] 0.021650982

matrix is 50, solving the linear equations needs O(503) times, but the attacker
only need one solution. It can be clearly seen from Table 1 that obtaining a
solution does not exceed 1 second, so the attacker can obtain the shared key
in the first phase in a relatively short time. (Experimental platform: Intel(R)
Core (TM) i3-1115G4@ 3.00GHz).

5 Conclusion

This paper analyzes the security of tropical encryption scheme based on dou-
ble key exchange [30] and describes an attack, and the method mainly obtains
the shared key of communication parties by solving the linear equations on
the tropical semiring. This paper proves that attacker only needs to solve the
linear equations to obtain the shared key in the first phase of key exchange
protocol, and does not need to solve the difficult problem described in [30].
Table 1 shows that when the order of the matrix is 50, the attacker can obtain
the shared key in the second phase in less than 1 second. Then, the shared key
in the second stage can be obtained by adopting the KU attack [23]. Thus, the
encryption scheme proposed in [30] is cracked.

Future works worth studying include the following:

(1) Try to select other types of matrices to design key exchange protocols
based on the difficult problems in literature [30].

(2) Try to study the double-key cryptosystem more deeply.
(3) Combine existing attack methods to analyze other cryptographic

systems.
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