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Abstract

Wireless sensor networks (WSNs) are vulnerable to security attacks due to
the unbounded nature of the wireless medium, restricted node resources, and
cooperative routing. Standard cryptography and authentication mechanisms
help protect against external attacks, but a compromised node can easily
bypass them. This work aims to protect WSNs against internal attacks, which
are mostly launched from compromised nodes to disrupt the network’s oper-
ation and/or reduce its performance. The trust and reputation management
framework provides a routing cost function for selecting the best secure next
hop. Tuning the trust weights is essential to cope with the constant changes in
the network environment, such as the sensor nodes’ behaviours and locations.
To allow real-time operation, the proposed framework introduces an artificial
neural network (ANN) in each sensor node that automatically adjusts the
weights of the considered trust metrics according to the WSN state. A large
dataset is generated to train and test the ANN using a multitude of simulated
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cases. A prototype is developed and tested using the J-Sim simulator to
show the performance gain resulting from applying the adaptive trust model.
The experimental results showed that the adaptive model has robust per-
formance and has achieved an improved packet delivery ratio with reduced
power consumption and reduced average packet loss. The results showed that
when sensor nodes were static and malicious nodes were present, the average
accuracy was 99.6%, while when they were in motion, it was 88.1%.

Keywords: WSNs, trust and reputation management models, ATSR, ML,
ANN, backpropagation algorithm, routing cost function (RCF), and internal
attacks.

1 Introduction

WSNs are a cost-effective and viable solution for a variety of applica-
tions due to their distributed, low-cost, fault-tolerant, self-organizing, and
scalable nature [1–5]. Low-powered, small-sized sensor nodes can work
together efficiently to monitor and collect data from any environment and
send it to a destination [6, 7]. However, WSNs are constrained by energy,
processing, memory, topology, mobility, and lifetime [8]. While WSNs are
responsible for information sensing and aggregation in important application
areas such as big data, cloud computing, and the internet of things (IOTs),
they are vulnerable to malicious attacks due to their characteristics, such
as being deployed in open and harsh environments, using open mediums,
and having resource limitations [4]. So, they require a high level of secu-
rity to protect information and resources from threats and inappropriate
behaviour [9]. These attacks can be classified as internal or external [10, 11].
In any case, WSNs are vulnerable to a large set of internal attacks, such as
grey holes, black holes, sinkholes, replayed routing information, wormholes,
hello floods, acknowledgment spoofing, Sybil attacks, and so on [4, 12–17].
Even though WSNs need to establish a secure path for data from source
to destination, they have limited resources and communication bandwidth,
which makes it hard to defend against routing attacks [8, 18, 19]. Actually,
traditional security mechanisms are not suitable for WSNs due to higher com-
putational costs, high processing speeds, large memory, and communication
overheads. Furthermore, traditional security mechanisms cannot effectively
resolve internal or misbehaviour node attacks caused by captured sensor
nodes [2, 4, 14, 17, 20]. So, trust and reputation management systems
have been suggested to help WSNs detect abnormal activities and improve
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their security. They are effective for detecting malicious nodes and ensuring
security and can be used to solve security issues for routing protocols in
WSNs [2, 4, 11, 13, 14, 21, 22]. Although geographic routing algorithms that
combine trust and reputation information with location information are based
on the greedy perimeter stateless routing (GGPSR) [16, 23, 24], the ambient
trust sensor routing (ATSR) model takes a distance metric into account. The
ATSR model is a location-based and trust-aware routing protocol to support
scalability and mobility in WSNs [25–36]. So, the ATSR is a fully distributed
trust and reputation management system that relies on both direct and indirect
trust information to calculate a routing cost function (RCF). It uses a static
weighted sum approach, where direct historical interaction information and
indirect recommendation information are added together in a weighted way
to get the total trust value. Then, the total trust and the distance metric are
added together in a weighted way to get the RCF [25–36]. The traditional
ATSR model has used static weights, which are neither practical nor flexible
in a dynamic network environment. Thus, it is hard to be sure that the ATSR
trust evaluation is always correct. This means the model cannot keep up with
changes in the network environment, reducing performance measures. In the
present work, a novel integrated framework for the ATSR model based on
artificial neural networks (ANNs) is proposed to overcome the problems
mentioned above. An ANN is a type of supervised learning that aims to
mimic human thinking and resolve complicated problems automatically with-
out human intervention or reprogramming [40, 44, 46]. A trained ANN is
developed and employed to continuously provide a plausible estimation of the
weights used in computing the RCF based on the instantaneous network state
as measured by selected metrics. This makes the evaluation of the RCF both
intelligent and accurate. ANNs are a good choice for WSNs because of their
efficiency, robustness, parallelism, and noise tolerance, which are important
in these kinds of environments [12, 37].

In essence, we have explored a methodology to automatically calculate
trust, reputation, and distance metrics for sensor nodes in the ATSR model.
We have improved the traditional ATSR model by using a backpropagation
artificial neural network (ATSR-ANN) to predict the RCF of sensor nodes
and choose a neighbour with the highest RCF as the best secure next-hop for
packet forwarding.

A prototype is developed and tested using the J-Sim simulator to show the
performance gain resulting from applying the adaptive trust model as com-
pared with the traditional trust model that uses fixed trust weights. The exper-
imental results showed that the adaptive model has robust performance
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and has achieved an improved packet delivery ratio with reduced power
consumption and reduced average packet loss, especially when the sensor
nodes are in motion.

The remainder of this paper is structured as follows: Section 2 surveys
the related work. Section 3 briefly describes the original static ATSR model,
showing its merits and limitations, while Section 4 specifies the work objec-
tive and the problem statement. Section 5 gives the development steps to
design and train an ANN for dynamically setting the trust weights of the
ATSR model for WSNs. Simulations and results are given in Section 6, and
Section 7 concludes the paper.

2 Related Works

Smart trust and reputation management models are briefly mentioned in this
section. Ideas from these models were found useful in designing the enhanced
ATSR model.

• The research [38] has proposed a novel machine-learning misbehaviour
detection methodology in vehicular ad hoc networks (VANET). The
suggested model consists of four main phases: data acquisition, data
sharing, analysis, and decision-making. In order to efficiently iden-
tify the misbehaviour data, new features are derived that represent
the misbehaviour, environment, and communication state. An effective
misbehaviour classifier is trained based on historical data that includes
both attacker and normal traffic data by using ANN methods, which
include the feed-forward and backpropagation algorithms. The results
showed that the detection rate for all vehicles was 99%, while the false
positive rate was 0.23%. F-Measure suggests that the proposed model is
effective, with an average F-measure of 98%.

• The authors of this paper [39] have implemented a proposed algorithm
for a routing protocol based on ANNs, with their approach focused on
improving clustering performances. Their solution was based on the
ANNs tool and the LEACH routing protocol. They have introduced
the criterion of the consumed energy for the process of electing the
cluster head (CH), where the sensor node with the highest level of
energy is selected to be the cluster head. The results showed that their
LEACHNN performed better than LEACH, saving energy and extending
the network’s life. The network’s performance was around 11% in terms
of power consumption.
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• A method to apply ANNs to solve the trust problem in ad-hoc networks
was developed in [40]. This research aims to demonstrate that ANNs can
be used to evaluate trust in ad-hoc networks, specifically for detecting
untrusted nodes and estimating trust levels. The packet delivery ratio
(PDR) is used as a metric of the trust value. Simulation experiments
showed that an ANN can perform a regression analysis by estimating the
PDR value of every node in a given network. The used ANN is trained
to give two possible types of outputs for every node. The first type is
a binary value to indicate whether a given node is trusted. The second
type is a continuous number between 0 and 1, representing the node’s
predicted trust value. A series of simulation experiments were done to
evaluate the performance of the proposed method. The classification
problem had an average accuracy of 98%, and the regression problem
had an accuracy of 94%.

• A novel dynamic trust model is proposed in [41] as one type of decision
support approach, using a radial basis function artificial neural network
to decide the trust level and mitigate the number of unreliable down-
loads. The recommended trust model is applied broadly to help peers
download from reliable providers. The results showed that the RBF
neural network model was 92% accurate.

• An enhanced trust model that uses a radial base artificial neural network
(RBANN) is proposed in [37] to predict the future behaviour of each
node. The prediction is based on the node’s weighted direct and indirect
behaviours and provides a trust model that aids in the detection and
elimination of malicious nodes within a WSN.

3 The Original Static ATSR Model

The ATSR is a routing model for WSNs that combines a fully distributed trust
and reputation management model with a location-based routing approach to
protect against routing attacks [28]. The following briefly describes the ATSR
algorithm, showing its merits and limitations.

3.1 ATSR Operation

The ATSR algorithm can detect malicious nodes and react by avoiding using
them in routing. It uses a static (fixed) weighted sum approach to compute
the RCF for each of its neighbour nodes based on location coordinates,
trust, reputation, and remaining energy. The ATSR model uses a watchdog
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mechanism to periodically monitor neighbouring nodes’ activities to collect
observations (direct information) and calculates node trust and reputation
metrics using a beta distribution [29].

3.2 Direct Trust Quantification

In the ATSR model, each sensor node monitors the behaviour of its one-hop
neighbours regarding specific behavioural aspects. Table 1 lists the ATSR
trust and reputation metrics that a sensor node uses to compute the direct
trust (DT) values for its neighbours. These metrics are used to detect a sensor

Table 1 The list of the inputs (trust and reputation metrics) that apply to the ANN
NO. Trust Metric Metric Description
1 Packet forwarding To detect a sensor node that refuses to forward or selectively

forward packets (black-hole, gray-hole, denial of service, and
selfish behaviour) [26–28].

2 Network
layer-ACK

To check the successful end-to-end forwarding of packets to
detect colluding attackers. That means verifying all kinds of
drops for the full path [26–28].

3 Packet precision
(integrity)

To verify whether a packet was forwarded without unexpected
modifications (to detect all types of modification) [26–28].

4 Authentication A sensor node’s ability to support authentication. If it does the
value is 1, and if it does not the value is 0 [26–28].

5 Confidentiality The ability to encrypt. The value is 1 if a sensor node supports
confidentiality, and 0 if it does not [26–28].

6 Reputation
responses

To identify selfish nodes and test the implementation sincerity
of the reputation protocol [26–28].

7 Reputation
validation

A reputation value is obtained from a third sensor node
(observed by a third party). This could be a bad-mouthing
attack or a false-praise attack [26–28].

8 Remaining energy
(Battery lifetime)

A measure of the battery lifetime to avoid a sensor node with a
high trust value dying out early and load balancing, such as a
traffic analysis attack [26–28].

9 Data Link
Layer–ACK

The hop-to-hop ACK between neighbours in the data link layer
is used to detect sensor nodes trying to stop or delete data link
ACKs so that packets have to be resent (new metric).

10 Confidence Factor The confidence factor is a threshold in reputation validation
and is also used to balance direct and indirect trust to reach the
total trust value in the traditional ATSR model [26–28].

11 Distance Metric
(Dmin/dj)

The ratio of the Euclidean distance from the nearest neighbour
to the destination (Dmin) over the Euclidean distance between
neighbour j and the destination (dj). The shortest distance to
the destination maximizes the distance metric value [26–28].
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node’s desire for collaboration in terms of reputation exchange and routing.
The aim of each trust metric is to detect and avoid one or more routing
attacks. The remaining energy metric is obtained by periodically exchanging
BEACON messages and is part of the trust model [25–36]. The ATSR model
uses the remaining energy metric to do load balancing in the network to
prevent a sensor node with a high trust value from dying out too soon.

• Equation (1) shows the trust value for the remaining energy metric,
where Vinitial and Vnow represent levels of remaining energy reported
by the first and last packets received from a neighbour.

TRE =
vnow
vinitial

(1)

• Both the confidentiality and authentication metrics are set to 1 if a sensor
node supports a high-security system, otherwise, they are both set to 0.

• For the other five metrics, Equation (2) gives the trust value for each
metric m (denoted as Ti,j

m) at sensor node i regarding the neighbour node
j, where: Si,j

m is the number of successful metric m events that a node
i has measured for a node j, and Fi,j

m is the number of failed metric m
events that a node i has measured for node j.

Ti,j
m =

Si,jm

Si,jm + Fi,j
m

(2)

• Equation (3) uses a weighted sum of the computed trust values to get
the overall direct trust value for each neighbour, where Wm is the
importance (weight) of the trust metric m.

DTi,j =

8∑
m=1

(Wm∗Ti,j
m) (3)

The main problem with the ATSR model is that the weights Wm are
set manually for each scenario. This means that the weights have to be
changed every time the network environment changes.

3.3 Indirect Trust Quantification

Equation (4) uses a weighted approach to compute the indirect trust value
ITi,j passed from a neighbor node j to node i, where:

• Nm is neighbouring nodes to node i.
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• n is the number of neighbouring nodes that provided reputation
responses to sensor node i (the ATSR model uses n = 4 to reduce
overhead).

• DT Nm,j is the IT of sensor node j which is provided by nodes Nm.
• W(DTi,Nm) is a weighting factor reflecting a node’s i DT value of

nodes Nm.

ITi,j =

n∑
m=1

W(DTi, Nm) ∗DTNm,j (4)

3.4 Total Trust Quantification

In Equation (5), the total trust (TT) for a neighbour j is calculated as the
sum of the direct and indirect trust values for that neighbour. The direct and
indirect trust values are balanced by a confidence factor Ci,j.

TTi,j = Ci,j ∗DTi,j + (1− Ci,j) ∗ ITi,j (5)

The confidence factor Ci,j of node i considering a neighbour node j is
calculated based on Equation (6), where:

• Ni,j is the number of interactions between nodes i and j.
• M is a fixed integer. The ATSR model uses a value of M = 1.

Ci,j =
Ni,j

Ni,j +M
(6)

3.5 Distance Routing Metric Quantification

The distance metric Di,j
m of each neighbor to the destination is calculated by

using the Equation (7), where:

• dj is the Euclidean distance between neighbour j and the destination.
• Dmin is the Euclidean distance from the nearest neighbour to the

destination.

Di,j
m =

Dmin

dj
(7)

3.6 Routing Cost Function Quantification

Equation (8) computes the RCF between node i and its neighbour node j,
where Wd and Wt represent the significance of distance and trust criteria.
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The RCF value is in the range of 0 to 1, and the neighbour having the highest
RCF value would be selected for routing.

RCF i,j = Wd ∗Di,j
m +Wt ∗ TT i,j (8)

4 Work Objective and Problem Statement

The current work investigates the possibility of enhancing the traditional
ATSR model to improve routing security in WSNs. Instead of the frequent
manual adjustment of the protocol’s static weights, we aim to find an auto-
matic way to continually adjust the weights to suit the dynamic network
environment and, hence, be more confident that the ATSR trust evaluation
is always computed using the proper weights. Consequently, the enhanced
ATSR model would keep up with changes in the network environment,
hoping to improve the performance measures of the model compared with
the traditional ATSR model that uses fixed weights.

Section 5 proposes a smart method to continuously adjust the trust
weights in real-time based on the instantaneous values of several important
WSN metrics using an ANN.

5 Realtime ATSR Model for WSNs

The ATSR algorithm has been using a static weighted sum approach, which
is neither practical nor flexible. To solve this problem, the present work has
examined and evaluated the use of an ANN to give appropriate real-time
settings of the trust weights according to the WSN’s environmental changes.
ANNs are suitable for real-time operation due to their parallelism, efficiency,
robustness, fault tolerance, and noise tolerance.

5.1 ATSR Model with Embedded ANN

A common scenario in a WSN environment is that a sensor node wants to
transmit data packets to a destination node, but there is a risk of packets drop-
ping due to compromised malicious nodes. By including an ANN in real-time
trust computations, a routing node can avoid the attacker and pass the packets
through trusted paths to reach their destinations safely. An ANN is embedded
in each sensor node in the WSN to increase the probability of avoiding
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malicious nodes without dropping packets. It is trained by providing exam-
ples to help the sensor node select a trusted next-hop neighbour. The ANN
knowledge is obtained by supervised learning using the backpropagation
algorithm [3, 5, 18, 41, 42, 45, 47].

The training and test datasets are generated by conducting simulations
using different scenarios with static ATSR trust weights. After completing
the training phase, the trained ANN model is tested using the test dataset.
A sigmoid activation function is used to give the ANN’s output as a con-
tinuous number between 0 and 1 [49, 50], representing the predicted RCF
value. To select the most trusted neighbour to send a packet to, each sensor
node in the routing process monitors each of its neighbours and feeds the
trust metrics of each neighbour into the trained ANN model to get the RCF
output for that neighbour. Then, the sensor node chooses a neighbour with
the highest RCF value as the best secure next-hop to send the packet to its
destination. This process is repeated at every node in the path until the packet
reaches its destination.

5.2 Design of the ANN

The number of hidden layers in an ANN and the number of neurons in each
hidden layer should depend on the complexity of the problem. For ANN
applications in WSNs, resource limitations force the designer to use a small
number of trainable parameters [51]. The proposed integrated ATSR-ANN
model uses three layers: an input layer with 11 neurons, a hidden layer with
two neurons, and an output layer with one neuron, as shown in Figure 1.
The training, testing, and evaluation of the model are carried out in three
steps.

1. Many simulation scenarios were used to simulate a lot of cases for the
traditional ATSR model. The results of the simulation were then used to
generate training and testing datasets.

2. The generated datasets were used to train and test the proposed ANN in
Figure 1.

3. A comparison between the traditional ATSR model and the ATSR-ANN
model is made to assess the improved performance.

5.3 Generating the Dataset

The J-Sim simulator was used to run a traditional ATSR model and generate
two datasets to train and test an ANN. Many different scenarios were used
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Figure 1 The ANN architecture.

Figure 2 Spreadsheet snapshot for a part of the generated dataset.

to simulate a WSN network with different types of malicious nodes. In each
scenario, the trust static weights were adjusted to fit the attack being consid-
ered. Every simulation experiment produced a dataset made up of 11 input
metrics and the calculated RCF. These samples were saved in a CSV during
the simulation runtime. This created a large dataset that mimics almost every
possible case of bad behaviour. The datasets are put together in a 55,000-row
CSV file. Each row consists of 12 columns, 11 metrics, and the computed
RCF output. The metrics are used as inputs to the ANN, and the RCF value is
the target for the supervised learning process. Figure 2 shows a spreadsheet
snapshot of a part of the obtained CSV file contents.
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5.4 The ANN Training Process

A copy of the trained ANN would be embedded in every sensor node to guide
the developed ATSR-ANN model in automatically computing RCF values
for its neighbours, allowing it to predict trusted and malicious nodes without
human intervention.

The backpropagation algorithm is used to train an ANN in a supervised
mode by updating the network weights many times iteratively to get an
accurate prediction of the target RCF. Each iteration involves two phases:
forward calculation and error backpropagation [13, 43, 52]. Algorithm 1
shows the training steps. The learning rate (λ) is a critical hyperparameter in
the training process that controls the speed of learning. There is no optimum

Algorithm 1 Training the ANN
Input:

1. The generated dataset that simulates almost all possible scenarios of malicious
behavior. It consists of 50000 training patterns stored as rows in a CSV file. Each
row contains 11 input metrics and one output value of the target RCF.

2. The ANN structure with 11 neurons in the input layer, two neurons in the hidden
layer, and one neuron in the output layer.

Output: The weights and biases of the trained ANN model.
Begin

Set the initial weights and biases of the ANN with small random numbers;
Epochs = 5000;
Learning rate(λ) = 0.0001;
iterations = 0;
while (iterations < Epochs) do

SumOfErrors = 0;
for every row p in the training pattern do

Apply the 11 metrics of row p to the input layer;
Apply the forward propagation computation stage to calculate the predicted RCF

output;
Compute the error cost function: Errp = 0.5 * (the desired target output – predicted

output)2;
Apply the Backpropagation stage to minimize the error calculated and update the

weights;
SumOfErrors + = Errp;

end for;
iterations + = 1;
end while;

Save the weights and biases of the trained ANN model;
End
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value of λ, but a suitable value can be found by trying simulation experiments
using different values. Large values of λ increase the rate of weight updating,
leading to faster results. This allows the model to learn faster, but at the cost
of arriving at a suboptimal final set of ANN weights. while small values slow
it down and avoid sudden changes. So, a small value of λ may allow the
model to learn a more optimal or even globally optimal set of weights, but it
may take significantly longer to train [49, 50]. Several simulation experiments
were done and a value of λ = 0.0001 is found to provide the largest ANN
accuracy without long training time.

5.5 The ANN Testing Process

The trained ANN is tested alone before embedding in the traditional ATSR.
The testing dataset consists of 5000 new samples that were not used in the
training phase. The trained ANN uses the regression method, which involves
predicting a continuous number between 0 and 1, representing the predicted
RCF value. The ANN accuracy is computed using the mean absolute error as
shown in Figure 3, and the trained ANN achieved a percentage accuracy of
99.60%. After supervised training in the offline mode, all the ANN weights
and biases are saved as a trained model, which is included in the routing
software of every sensor node.

Consequently, each sensor node will be able to collect eleven-trust metrics
for every neighbour node and use its trained ANN copy to predict the RCF
values online. Figure 4 gives the pseudocode for selecting the most trusted
next hop node, and Figure 5 depicts the real-time computation of the RCF.

Begin 
N = number of samples of the testing dataset; 
AccumelatedError = 0; 
for i = 1 to N do 
{ 

RelaiveErrori = abs (Target_RCFi – Predicted_RCFi) / Target_RCFi; 
AccumelatedError += RelaiveErrori; 

}; 
PercentageAccuracy = 100 * (1 - AccumelatedError / N); 
 

End 

Figure 3 Pseudocode for computing the ANN accuracy.
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Begin 
       Ni = number of neighbor nodes of sensor node i ; 
       For all neighbor nodes X = 1  to  Ni do  
       { 
          Collect the 11 trust metrics Mix for node X; 
          Appy Mix to the input of the ANN to get the     corresponding output RCFix ; 
        }; 
Select the neighbor node with the highest RCF value to be the most trusted next-hop; 
 
End 

Figure 4 Pseudocode for selecting the most trusted next-hop node.

Figure 5 Realtime computation of the routing cost function (RCF).

5.6 Operation of the Integrated ATSR-ANN Model

In the integrated ATSR-ANN model, each sensor node in the WSN loads a
copy of the trained ANN and uses it to predict the RCF values of its one-
hop neighbours. Each neighbour collects 11 metrics (as given in Table 1)
that represent the online values of the specific behavioural aspects of the
considered neighbour. The ANN uses only the calculations of the feedforward
propagation phase to predict the neighbour’s RCF, so even if offline training
is slow, the trained ANN can quickly compute its RCF output. Algorithm 2
shows the steps to send a packet from a source to a destination node through
a trusted path using the integrated ATSR-ANN model. To prevent infinite
looping, a “hop count” field should be included in every transmitted packet
and decremented at each routing node. This field should be initialized to a
large value, and the packet must be dropped if the hop count falls to zero.
This is not shown in Algorithm 2 for simplicity.
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Algorithm 2 The integrated model operation for transmitting through a trusted path
Input:

1. Source node S;
2. Destination node D;

Output: The trusted path;
Begin

CurrentNode = S;
TrustedPath = [S]; // list of nodes
Repeat
for (all neighbors of CurrentNode) do

Collect the 11 trust metrics of the current neighbor;
Apply the forward propagation computation stage to calculate the predicted RCF

output;
end for;
// the best next-hop for sending packets to the destination would have the highest RCF
value.
NextHop = the neighbor that has the highest RCF value;
Transmit the packet to the selected NextHop node;
CurrentNode = NextHop;
TrustedPath = TrustedPath + NextHop; // append to the list
Until NextHop = D;

End

6 Simulations and Results

A sample WSN is simulated using the J-Sim simulator [53, 54] to evaluate
the performance of the integrated ATSR-ANN model. The simulated network
topology consists of 100 benign sensor nodes (n0 to n99) placed at fixed
locations, forming a 10 × 10 grid, and communicating using the IEEE
802.15.4 standard. The packet delivery ratio (PDR) is used to evaluate the
model’s performance. Numerous experiments for various scenarios are done
by adding various types of malicious nodes to the benign WSN to conduct
grey-hole and black-hole attacks. The malicious nodes were added to the
network at random, thus increasing the total number of sensor nodes in the
simulation. All neighbours are given an initial full trust value of 1, which
means that initially all sensor nodes in the network can be trusted. During
the simulation period, the role of the developed ATSR-ANN model in each
sensor node is to monitor the behaviour of its neighbours and correspondingly
readjust the trust values of the neighbours. Benign neighbours will continue
to have full trust, whereas malicious neighbours would be detected, and their
trust values would be accordingly reduced. In this way, less trusted nodes
would be identified and avoided in the routing process.
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6.1 Case Studies

In the simulated WSN, a random waypoint mobility model [53, 54] is used to
move sensor nodes continuously at random except for the destination, which
is stationary. Different speeds are tested for two scenarios.

(a) A benign scenario for a 100-node network without any malicious nodes.
(b) An attacking scenario with added 15 malicious nodes that are randomly.

placed in the benign network, being 10 gray-hole, and 5 black-hole attackers.
The packet delivery ratio (PDR) is considered the essential performance
measure and is computed as follows:

PDR = (total number of packets received)/

(total number of packets sent) ∗ 100.

Figure 6 shows the PDR measure for both scenarios at different nodes’
speeds. It is noted that PDR decreases in both scenarios when the speed of
sensor nodes increases. This happens because a packet may be lost when
the selected next-hop node moves outside the transmitting range of the send-
ing node before receiving the packet. Additionally, malicious nodes further
reduce the PDR ratio.

Figure 7 shows the remaining battery energy for the network at different
sensor nodes’ speeds for both the benign and the attacking scenarios. It shows

Figure 6 Packet delivery ratio for both scenarios when sensor nodes move at different
speeds.
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Figure 7 The total remaining energy for both scenarios when sensor nodes move at different
speeds.

that the total energy consumption increases with speed. Whereas, in the
attacked WSN, sensor nodes use trusted paths that are typically longer than
the shortest paths, leading to increased energy consumption. On the other
hand, in the benign WSN, the energy consumption is lower because the sensor
nodes use the shortest routes with a smaller number of hops.

6.2 Assessing the ATSR-ANN Model

The traditional ATSR model and the ATSR-ANN model were simulated and
compared to get a quantitative measure of performance improvement. In all
simulation experiments, the ATSR-ANN model showed a great improvement
in performance, especially when sensor nodes were moving.

Figure 8 compares the developed ATSR-ANN model with the traditional
ATSR model with respect to the PDR measure for the benign WSN scenario.
Similarly, Figure 9 compares the same performance measure for both mod-
els in the attacking scenario. Tables 2(a) and 2(b) compare the remaining
energy as a percentage of initial battery energy for both benign and attacking
scenarios, with a slight improvement in the ATSR-ANN model.

The obtained PDR depends on the presence of attackers and the speed
sensor nodes. When the speed of sensors increases, the PDR decreases.
Because when a routing node transmits a packet to a selected trusted next hop,
there is a chance that the next hop will move outside the transmitting range
before completing the transmission, increasing the average packet loss. Upon
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Figure 8 Comparison between both models in terms of packet delivery ratio in the benign
WSN.

Figure 9 Comparison between both models in terms of packet delivery ratio in the attacked
WSN.

analysing the results shown in the benign scenario of Figure 8, especially
when sensor nodes are stationary (Speed = 0), there is no packet loss in
both models (PDR = 100%). This is due to the fact that all sensor nodes
are considered trusted and only the distance criterion is applied. This leads
to selecting the shortest route with the lowest number of hops. It should be
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Table 2(a) Total remaining energy in the benign WSN
Speed (m/s) 0 0.4 0.7 1
Traditional ATSR Model 81.58 78.15 77.61 75.85
ATSR-ANN Model 82.33 80.05 79.38 77.32

Table 2(b) Total remaining energy in the attacked WSN
Speed (m/s) 0 0.4 0.7 1
Traditional ATSR Model 79.53 76.74 73.18 71.60
ATSR-ANN Model 80.82 78.84 76.16 74.92

noted that, in cases of higher moving node speeds, packet loss occurs when
selected next-hop nodes move outside the transmitting range before packet
transmission is completed.

On the other hand, in the attacking scenario of Figure 9, there is an
obvious drop in PDR due to the attacks. However, there are two interesting
cases:

• When sensor nodes move at a speed of 1 m/s, the PDR value for the
traditional ATSR model is found to be 34.4%. On the other hand, for the
ATSR-ANN model under the same conditions, PDR is 88.1%. Such a
great improvement in the packet delivery ratio is a remarkable result of
using secure routing paths.

• when sensor nodes are stationary (speed = 0) and there are malicious
nodes in the network, resulting in slight packet loss in both models.
The reason is that Initially, every sensor node assumes all neighbours
are trusted, and they are given a full trust value of 1. Then, after a
few interactions, a sensor node can differentiate between benign and
malicious neighbours at the cost of losing some packets. This is because
a malicious neighbour will drop some of the packets they receive
before the sending sensor node can identify the malicious nature of this
neighbour and avoid routing further packets to it.

ATSR-ANN mode is an artificial neural network technique that can gen-
eralize training data to deal with different situations. Actually, the decision-
making logic in the ATSR-ANN model is based on data rather than on
predefined static rules. Sensor nodes continuously monitor the trust and
reputation metrics of their neighbour nodes, allowing them to adapt to new
situations easily and avoid routing to less trusted nodes. This explains why
the ATSR-ANN model showed a significant performance improvement when
the WSN was under malicious attack and its environment was continuously
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changing. Such changes include the changeable behaviour of the malicious
sensor nodes, their interaction patterns, and location changes. So, the tradi-
tional ATSR model cannot keep up with dynamic changes in the network
environment, resulting in a reduced packet delivery ratio.

7 Conclusion

The present work aims to enhance the routing security in wireless sensor
networks (WSNs) against internal attacks, which are mostly launched from
compromised nodes. Such nodes would inject malicious behaviour into
apparently authentic sensor nodes to disrupt the network’s operation and/or
reduce its performance.

To this end, an adaptive ambient trust sensor routing (ATSR-ANN)
model has been developed by integrating the traditional ATSR model with
an artificial neural network (ANN) to provide a real-time capability for
avoiding routing through malicious nodes. The problem with the traditional
ATSR model is that it uses manually adjusted static parameters to identify
malicious nodes. This means that it cannot adapt to changes in the WSN
environment, especially the misbehaviour of malicious nodes. Alternatively,
the developed adaptive integrated ATSR-ANN model has a context-aware
characteristic thanks to the integrated ANN. The integrated model builds
trust and reputation values based on a well-trained ANN rather than on
predefined static rules. Sensor nodes are continuously monitoring the trust
and reputation metrics of their neighbour nodes, and hence they can adapt to
new situations easily and avoid routing to less trusted nodes. A simple ANN
having a single hidden layer with two neurons was used. The input layer
contains 11 neurons that accept the monitored trust and reputation metrics,
and the output layer contains a single neuron that provides a predicted trust
value in the range [0 to 1]. Backpropagation was applied to train and test
the ANN using a dataset generated by simulations. The J-Sim simulator
was used to simulate the traditional ATSR model and generate a sufficiently
large dataset. Many different scenarios were done to simulate a sample WSN
network with different types of malicious nodes. In each simulation scenario,
the trust weights were carefully adjusted to suit the considered attack. With a
very large number of different scenarios, we managed to build a large dataset
that mimics almost all possible scenarios of malicious behaviour. Simulation
experiments have been done to compare the performance of the integrated
model with that of the traditional ATSR model. The obtained results showed
an increased packet delivery ratio and reduced node power consumption
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compared with the traditional ATSR model. This indicates an overall increase
in the number of packets successfully delivered to their destinations. As the
results showed, when sensor nodes were static and malicious nodes were
present, the average accuracy was 99.6%, while when they were in motion,
it was 88.1%. The main point in the developed ATSR-ANN model is that
the trained ANN allows each sensor node that participates in the routing to
find secure, trusted paths to send packets from any source sensor node to any
destination node while avoiding compromised malicious nodes.
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