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Abstract

Cyber Intelligence (CI) is a sophisticated security solution that uses machine
learning models to protect networks against cyber-attack. Security concerns
to IoT devices are exacerbated because of their inherent weaknesses in
memory systems, physical and online interfaces, and network services. IoT
devices are vulnerable to attacks because of the communication channels.
That raises the risk of spoofing and Denial-of-Service (DoS) attacks on the
entire system, which is a severe problem. Since the IoT ecosystem does not
have encryption and access restrictions, cloud-based communications and
data storage have become increasingly popular. An IoT-based Cyber Threat
Intelligence System (IoT-CTIS) is designed in this article to detect malware
and security threads using a machine learning algorithm. Because hackers
are continuously attempting to get their hands on sensitive information, it
is important that IoT devices have strong authentication measures in place.
Multifactor authentication, digital certificates, and biometrics are just some
of the methods that may be used to verify the identity of an Internet of Things
device. All devices use Machine Learning (ML) assisted Logistic Regression
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(LR) techniques to address memory and Internet interface vulnerabilities.
System integrity concerns, such as spoofing and Denial of Service (DoS)
attacks, must be minimized using the Random Forest (RF) Algorithm. Default
passwords are often provided with IoT devices, and many users don’t bother
to change them, making it simple for cybercriminals to get access. In other
instances, people design insecure passwords that are easy to crack. The results
of the experiments show that the method outperforms other similar strategies
in terms of identification and wrong alarms. Checking your alarm system’s
functionality both locally and in terms of its connection to the monitoring
centre is why you do it. Make sure your alarm system is working properly by
checking it on a regular basis. It is recommended that you do system tests
at least once every three months. The experimental analysis of IoT-CTIS
outperforms the method in terms of accuracy (90%), precision (90%), F-
measure (88%), Re-call (90%), RMSE (15%), MSE (5%), TPR (89%), TNR
(8%), FRP (89%), FNR (8%), Security (93%), MCC (92%).

Keywords: Cyber threat, internet of things, machine learning, decision tree
classification.

1 Introduction to Security Threats and Malware Detection

To enable Internet of Things (IoT) services for end-users and enterprises,
the proliferation of IoT devices must consider the changing connections
among Space, Air, Ground, and Sea (SAGS) networks. IoT systems signif-
icantly impact lives by providing automatic solutions to businesses and end
customers. People can now incorporate and link physical objects, such as
drones, cars, and other related software, to the Web and operate them virtually
via cloud-based platforms. By enabling connectivity in more locations on
the planet, IoT has lately provided a complete representation of the natural
world [1]. Many cyber threat intelligence systems rely heavily on signature-
based detection of malware, which is easily evaded by attackers who modify
their malware to create new variants.

• Overconfidence in the system’s ability to detect threats or missed threats
due to a high false negative rate is two potential outcomes of using a
malware cyber threat intelligence system.

• Attackers may be able to exploit blind spots in malware cyber threat
intelligence systems due to their limited visibility into a subset of
networks and/or systems.
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• Some malware cyber threat intelligence systems may have an incom-
plete picture of attacker behaviour and tactics, leading to missed threats.

• It’s possible that some malware cyber threat intelligence systems don’t
have complete data because they don’t have access to all relevant data
sources, such as dark web forums or underground marketplaces.

• Some malware cyber threat intelligence systems may have bias in the
data they collect and analyse, giving an inaccurate picture of the threat
landscape.

Some malware cyber threat intelligence systems may not be well inte-
grated with other security systems like firewalls or intrusion detection
systems, reducing their ability to detect and respond to threats. IoT has helped
businesses and consumers in a wide range of ways, including increasing
application accessibility, strengthening performance levels, lowering costs,
and facilitating improved decision-making [2]. It is anticipated that 50 million
network users by 2025, with the full potential of the IoT reaching $15 trillion
by 2025 [3], because many firms have converted their businesses to integrate
IoT-SAGS technology.

Modern computer technology and the Internet have made life simpler
and more accessible for people. Nowadays, anything can be done online,
including social contact, financial transactions, tracking different aspects of
human physiology, etc. All of these advancements tempt criminals to conduct
crimes online instead of in the real world.

Recent and commercial research claims that cyberattacks affect the
worldwide economic vast amounts of money [4]. Malware is a standard tool
used by online criminals to start attacks. Some software known as malware
engages in unauthorized and suspicious actions on its victims’ computers.
The different varieties of malware include viruses, worms, Trojan horses,
rootkits, malware, etc. Malware variations can steal security data, Distributed
Denial of Service (DDoS) assaults, and cause havoc to computer networks.
The latest malware types camouflage themselves in the targeted computer
by encrypting data and stuffing it [5]. These novel varieties propagate by
using people’s trust as a vehicle for infection. For example, well-known
virus distribution techniques include opening email messages, downloading
false software, and accessing and file transfer from bogus websites. The
malware affects the performance of the IoT systems, and the possibility of
malware intrusion is higher in the IoT environment. So a better malware
detection and classification model is needed to enhance the effectiveness of
the entire IoT systems. One type of machine learning model used to identify
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malware is the malware detection model. These models can be educated on
data comprised of both safe and harmful program in order to pick up red flag
characteristics. Examples of popular malware detection models include:

• Signature-based models, on the other hand, rely on predefined signatures
or hash values of known malware to make that determination.

• Based on anomalies, these models look for unusual activity in software
that could be malicious.

• These models, which are grounded in heuristics, rely on a predetermined
set of rules to detect suspicious code.

• These models detect malware by analysing the data for tell-tale patterns
and features using a variety of machine learning algorithms, such as
decision trees, random forests, and neural networks.

It’s worth noting that while these models can be very useful for detecting
malware, they can also give false positives and might not be able to identify
completely new forms of malware.

The research must find spyware as soon as it penetrates the computer
networks to defend them. The process of evaluating a suspicious file to deter-
mine its maliciousness or benign nature is known as detecting attacks [6].
The classification of malware goes one step further. Describe the class or
branch of malware used to classify the file once it was found malicious.

Cyber Threat Intelligence (CTI) is situational information about a risk
that encompasses both low- and high-level indications such as Internet
Protocols (IP), hashes, networking artifacts, and tactics, methods, and pro-
cesses [7]. It has recently developed into an essential component of rou-
tine security operations, assisting organizations in prioritizing threats and
quickly identifying, mitigating, or containing attacks. Nearly 60% of firms are
already utilizing CTI, and 25% have intentions to soon include it in existing
security management, as per a current survey [8]. It continues by stating
that nearly 45% of these businesses have teams specifically tasked with
implementing and maintaining CTI. Most prior research has concentrated
on statistical and traditional Machine Learning (ML) for creating efficient
Threat Intelligence (TI) models [9, 11]. Their approaches were problematic
as a threat due to their excessive complexity, poor accuracy rate, and lack of
generalization abilities.

The main contributions of this article are listed below:

• An IoT-based Cyber Threat Intelligence System (IoT-CTIS) is designed
to detect malware and security threats using machine learning in IoT
devices.
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• A three-layer architecture is designed to enhance the. Security and
reduce the computation complexity.

• CTI model is designed to extract and identify security threats and
malware. The software results ensure the highest performance of the
proposed model.

The remainder of the research is arranged as follows: Section 2 indi-
cates the security threats and malware background. The proposed IoT-based
Cyber Threat Intelligence System (IoT-CTIS) is designed, and algorithms are
derived in Section 3. Section 4 analyses the performance of the proposed
system, and the findings are contrasted with each other. Section 5 indicates
the conclusion and future study of the research.

2 Background to the Malware Detection Models

The research takes time to identify and classify malware. In these stages,
a variety of methods and techniques are employed. The malware must first
be evaluated with appropriate technologies to be found. A tool data was
recorded, and either manually or mechanically, features were retrieved. Data
gathering techniques are employed to obtain important characteristics at
this stage [12]. The retrieved features are then chosen based on a set of
standards. Finally, to distinguish between malicious and benign variables,
principal components are trained using Learning models or rule-based trans-
fer learning [13]. A categorization is created by identifying the types and
classifications of ransomware [14].

The examples are analyzed by Sikorski et al. to understand the character-
istics and behaviors of the virus [15]. Spyware assessment is a critical step in
the process. That is because malware is detected during the analytical process,
and several questions, like how it is structured, how it spreads, and how much
harm it has already done to the victims’ computers, can be addressed. There
are two categories of malware classification: static and dynamic model. Basic
unit testing of malware is the first step, while complex dynamic analysis
comes last [16]. Both manual and automated analysis is possible. While
automatic classification demands significant data science coding abilities, the
manual study includes subject expertise.

The use of computer understanding and big analytics to address the
identified problems was the focus of many articles in the scientific community
devoted to CTI. Kantarcioglu et al. [17] emphasize the importance of big data
as a challenge for cyber security. According to Thuraisingham et al. [18],
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computer security’s troubles are broadly categorized as invasion mitigation
and prevention, data truthfulness, policy-based communication, and risk-
oriented safety metrics. They claim that the prospect of computer security lies
in adopting a data-driven methodology. The report covers every category’s
current, highly advanced, and potential directions.

According to Harel et al. [19], the business has been preparing itself for
the fight versus a proliferation of attackers by automating processes, collabo-
rating with others, and implementing expert machines. The authors explicitly
address guided and unstructured learning and provide examples of its usage
in behavior analysis and outlier detection to identify a user’s potential risk.
The researcher describes a data-driven method to CTI in which they attempt
to build a model for anticipating future attacks using the vulnerabilities
exploitation information discovered on Twitter [20]. Another similar piece of
research in this area is shown in [21], which advances the prediction models,
notably by being diligent with the training sample.

Darabian et al. demonstrated an enhanced threat-hunting strategy for
IoT computer viruses using a combination of extreme ML algorithms [22].
It performed reasonably well compared to other deep neural network models,
like the stacking Long Short Term Memory (LSTM) and Convolutional Neu-
ral Network (CNN). No testing utilizing performance measures proved the
effectiveness of the authors’ claim that it sped up the learning and detecting
processes.

Similarly, the work in [23] suggested using ensemble techniques with a
threat-hunting model to identify Windows, Android, and IoT ransomware.
Its fundamental concept involved using a different classification classifier
depending on standard machine learning for every extracted features, that
changed into the original space. Each learned system was viewed as a
membership value determining how closely a pattern fit into a given class.
Additionally, a weighted assignment was utilized to assess the significance
of every classification system on a given feature. The suggested model
showed strong performance and effectiveness, F-measure, and higher accu-
racy. As these ensemble systems usually have poor interoperability, it can be
challenging to draw meaningful conclusions.

Many works have been done on outlier detection using ML algorithms,
supervised and unsupervised methods, and various fields. By identifying
their examples throughout the learning phase, machine learning can obtain
high efficiency in traffic classification using Bayesian Neural Networks with
or without input from the application. Balagani et al. [24] used the k-
means method for unlabeled data to increase classification precision for
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outlier detection. Additionally, a classifier that learns incrementally is the
best choice for acquiring the necessary information for continuous or flow
data. Classifying a huge dataset presents challenges for the authors [25].
Because they create high accuracy, sensitivities, and specificity, they con-
structed three classification algorithms for binary categorization of internet
information (normal or virus). They feel that this is applicable to be utilized
in anomalous detection systems. The different classifiers majorly used for
malware classifications are Support Vector Machine (SVM) [27], CNN [28],
Decision Tree (DT) [29], Linear Discrimination Analysis (LDA) [30], and
Naı̈ve Bayes (NB) [31].

Cyber threat intelligence (CTI) technology is an evidence-based defen-
sive architecture that allows for the proactive response to sophisticated cyber
threats via the monitoring and sharing of security-related information across
sectors. Misguided security rules might have a major impact on how well CTI
systems work [32]. Numerous recent and ongoing difficulties associated with
cyber threats are discussed, and the most recent case study is analysed. Last
but not least, we’ve presented a novel system on Collaborative Cyber Threat
Information Exchange (CCTI), highlighting the ability of a larger community
to help identify problems through a computer essence centred on artificial
intelligence and block chain.

Industry 4.0, the fourth stage of the industrial and manufacturing rev-
olution, is distinguished from previous revolutions by its provision of
Internet-connected smart systems, such as automated factories, organisations,
development on demand, and ’just-in-time’ development. Cyber-physical
systems (CPSs), the Internet of Things (IoT), and the cloud and fog com-
puting paradigms are all part of the integration that defines Industry 4.0,
which aims to create intelligent machines, buildings, and communities [33].
Data from and to sensors and actuators, as well as other network traffic, fall
under this category. The suggested threat intelligence method utilises beta
mixture-hidden Markov models (MHMMs) to unearth unusual actions taken
against both physical and networked systems. The CPS dataset of sensors
and actuators, as well as the network traffic statistics, are used to assess the
system. In comparison to five similar mechanisms, the suggested method
performs better, indicating its potential as a practical approach to deploying
Industry 4.0 in the real world.

• There are some cyber threats that cannot be detected by CPS because
they fall outside the data collection parameters.

• As a result, it is possible that CPS will miss sophisticated attacks that
employ cutting-edge methods like zero-day exploits.
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• The possibility exists that encrypted network traffic will evade CPS’s
threat detection capabilities.

• Internal threats may go undetected by CPS.
• On a standalone system, CPS might not be able to spot suspicious

activity.
• If a threat is constantly adapting, CPS might not be able to detect it.
• Unfortunately, CPS may miss some forms of malicious activity when

monitoring in real time.

Interacting physical and computational elements form the basis of Cyber-
Physical Systems (CPS). Control systems, medical devices, and industrial
automation are a few of the many places you can find CPS. In spite of this,
these systems encounter a number of obstacles, including:

• Cyber-Physical Systems are difficult to design and manage because of
their complexity, as they consist of many interconnected parts.

• CPS is susceptible to cyber-attacks that can compromise their operation
and integrity.

• There are strict real-time performance requirements that must be met by
CPS in order for them to function properly.

• Compatibility with other systems or Interoperability is essential for CPS
because it mandates the sharing of data and information with other
systems.

• Maintaining proper operation under any and all conditions necessitates
that CPS be both reliable and fault-tolerant.

• The confidentiality of individual information is a top priority for CPS.

These obstacles should be discussed in the introduction and literature
section of CPS research manuscripts to set the stage for the work being
presented.

Even though evasion attempts can fool the supervised neural detection
method, which is extremely good at detecting viruses, misclassification can
result. In an adversarial assault, attackers only change a small number of
specified bytes in malware programs to get past the detection technique.
The relevant contributions are made in the suggested malware categorization
model to lessen the impact of evasion assaults.

3 Proposed IoT-Based Cyber Threat Intelligence System

The research explains the solution and execution for malware identification
and classification in this section. This section is further segmented into two
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subcategories; the first describes the procedure and design considerations in
learning and creating the prototype, and the second describes the manufactur-
ing that utilizes this prototype to extract pertinent information and data before
stashing and distributing it. Since the critical emphasis is on the Natural
Language Processing (NLP) based teaching of a prototype for retrieving CTI
from written data, this segment is further divided into two subcategories.

3.1 CTI Extraction

By analysing human language data, computers can have more natural con-
versations with people and increase the efficiency of other language-based
processes. Natural language processing (NLP) enables computers to do things
like read text, understand voice, evaluate tone, and prioritise information.
Extraction of high-level CTI signals from unorganized data was a vital goal
of the study. To that purpose, it employed the Known Entity Identification
Natural Language Processor approach. An essential part of identification is
the process of removing names from text. The goal of the research was to
identify critical Cyber Threat Intelligence (CTI) signals in a sea of unstruc-
tured data. The purpose was to detect and investigate potential security issues
from vast amounts of unstructured data like text and logs.

The study used a Natural Language Processing (NLP) technique called
Known Entity Identification to get the job done. Natural language processing,
or NLP, is a subset of AI that focuses on how computers and people can
communicate with one another using only language. NLP was used in this
investigation to sort through the chaos of the data and pull out the useful CTI
signals.

Known Entity Identification NLP sought to locate and extract relevant
details from unstructured data, such as names, addresses, and dates. From
there, this data was fed into a CTI signal generator for producing high-level
signals for use in identifying and responding to security threats.

Extraction of high-level CTI signals from unstructured data relied heavily
on the application of the Known Entity Identification NLP approach. To
generate CTI signals for threat detection and response, natural language
processing was used to sift through unstructured data and find relevant
information.

The default object classifications in most NLP packages have been trained
to identify classes as diverse as names, places, and organizations. NLP is so
domain-specific that a method created for one area will almost certainly not
work in another. No proof-of-concepts employed in this area have used and
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produced a sequence pre-trained model exclusively for CTI. As a result of
contextualising the training with practise exercises and real-world situations,
the organisation is able to shift its attention from learning the processes
involved to learning how those processes might benefit the business. It aids in
the execution of the business process in whole or in part. Phishing is a kind
of online fraud in which a computer pretends to be a person in order to steal
sensitive information. Natural language processing (NLP) may be used to
decode the bot or spam language used in the email. The underlying structure
of the email itself may be analysed for clues about spammers and the contents
they send. The training model provides a framework for this procedure and
is input into the primary structure for additional processing. When applied to
data in a particular field, the training model serves as a template for analysis
e.g. natural language processing, image classification, etc. Machine learning
algorithms are typically used as the main framework, as they can learn the
underlying patterns and relationships in the data and then use that knowledge
to make predictions or decisions when processing new data.

The statement “Natural Language Processor is so domain-specific that a
method created for one area will almost certainly not work in another” implies
that the methods and algorithms that are successful in processing text data in
one domain such as social media may not be successful in processing text
data in another domain e.g. scientific papers. This is due to the fact that there
can be significant differences in language and setting between disciplines.

There are many potential applications for NLP in the security industry,
including text classification and sentiment analysis to spot vulnerabilities,
report summarization, and alert generation using natural language.

The three-tier architecture of the suggested IoT-CTIS system is designed
and plotted in Figure 1. The IoT-CTIS system has three layers: the IoT layer,
the Edge layer, and the Cloud layer. The input is classified into training
and testing samples, and the machine learning model is used to classify
normal and malicious samples. The necessary pieces are accessed from the
cloud layer. One of the IoT layers, the Perception Layer, controls all of the
intelligent nodes in the network. The Connectivity/Transport Layer facilitates
information exchange between the cloud and connected devices, as well as
between the cloud and the various gateways and networks. The hardware
of your IoT devices, the embedded OS that controls the device’s activities,
and the device firmware that contains the software and instructions are all
part of the edge layer of your IoT workload. Cloud layer that is either
uniformly dispersed or intermittently scattered. The goal is a trained (fit)
model that reliably extrapolates to novel, unanticipated inputs. To measure



Malware Cyber Threat Intelligence System for IoT Using ML 63

Figure 1 The three-tier architecture of the suggested IoT-CTIS system.

the fitted model’s accuracy in categorizing new data, use “new” instances
from the withheld datasets (validation and test datasets) to evaluate the model.
An operation performed on data ahead of its main processing or subsequent
analysis. Feature extraction is the procedure of converting raw data into a
set of numerical features that can be processed without losing any of the
information contained in the original data set. This term can be applied to
any first or preparatory processing stage when multiple steps are required
to prepare data for the user. When compared to using machine learning on
unprocessed data, the outcomes are far more favourable.

Layered data collection and exchange is enabled by the Internet of Things
(IoT), a network of physical devices such as sensors, cameras, and smart
appliances. The edge layer sits between IoT gadgets and the cloud, where data
is processed and analysed. The cloud infrastructure is a system of distributed
servers used for scalable data storage and processing.

The input data e.g. network traffic, system logs collected from the IoT
devices can be split into training and testing samples in the context of machine
learning for security. The machine learning model is trained using the training
samples, and its efficacy is then assessed using the testing samples.

There is a correlation between the training and test samples and the
classification of the samples safe vs. harmful. To determine whether or not
new data the testing samples is benign or malicious, the machine learning
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model applies the patterns and relationships it has learned from the training
samples.

Both pre-processing and feature extraction play crucial roles in any
NLP system. In order to facilitate further processing, the raw data must be
cleaned and formatted in the pre-processing stage. Activities like tokeniza-
tion, lemmatization, and stop-word removal fall under this category. In the
feature extraction phase, we pull actionable information from the cleaned and
prepared data. That’s why we need to do things like part-of-speech tagging,
named entity recognition, and emotional analysis.

The proposed framework uses a three-tier setup, with the natural language
processor located in the middle layer. The information gleaned from the first
two layers’ raw data is the domain of the third layer. The natural language
processing system at this level would be in charge of the aforementioned
pre-processing and feature extraction.

3.1.1 Collecting CTI data
It gathered several CTI documents from reputable security bloggers and
danger findings from 4 sources, including FireEye, Kaspersky Safety Lab,
and a compiled list of results from a Git repository that contained relevant
data about cyber-attacks as applicant records for the test dataset. The selection
of these source materials was based on several factors, including (i) how
frequently they post case files, (ii) how thoroughly they are recognized to
investigate dangers, and (iii) their standing in the data security sector as a
result of their well-known investigative and defensive techniques.

3.1.2 Annotating CTI data
It gives an NLP model’s supervised file containing continuous text labeled
with the categories that need to be recognized to begin to spot the necessary
phrases. It developed a web-based User Interface (UI) to construct such a
database, making the manual annotating process simpler. It created a list
of words that it wanted the models to be capable of understanding. To
achieve this, it considered the extensive vocabulary and condensed the critical
building pieces of victim targeted, resources, behavior, and desired effect to
provide a robust dataset that contains:

• Actor: The hacking group responsible for a specific attack, such as the
Carbanak cyber gang, etc.

• Targeted industry – The sector was the focus of the attack, such as the
army, police, or financial organizations.
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• Targeted position – The attack’s precise geographical target, such as
South Asia, Turkey, the US, etc., is analyzed.

• Intended impact – The attacker desired outcomes, such as information
theft, monetary reward, or cyber espionage.

• Technique: The advanced methods the assailant uses, such as spear
phishing messages, social control, watering holes, etc.

• The tool employed: The mechanisms that the assailant used, such as a
backdoor, a reversed shell, a Mimi Katz, etc.

• Targeted implementation – The attackers hope to compromise programs,
such as Microsoft Word, PowerShell, etc.

Other low-level indications, such as Internet Protocol (IP) addresses,
passwords, domains, registry entries, files, and flaws, were added to the
collection and were processed using regexes because they often follow a
similar pattern. The annotation is created from the UI by choosing a set of
words and assigning the appropriate label to it. The backend server ensures
that the annotation document is prepared to be included in the test dataset
when saved. It initially checks the entering text for Unicode letters and filters
them out. Sentences are tokenized as the process’ following phase, which
yields a list of all the phrases in the text. Each term is tokenized by looping
over the phrases so that each word is an individual token.

IP numbers and indications were tokenized correctly; the developers had
to modify the tokenizer. The tokenized phrases are then Parts of Speech
(POS) tagged; this means that the tags are applied according to the Part of
Speech that each symbol in the sentence represents, such as NN for nouns,
VB for verbs, etc. A label associated with each tokenized word indicates to
the system if or not it wants to be recognized. In natural language processing,
tokenization is often used as a preliminary step (NLP). Tokenization involves
separating a text into its component words and phrases. You can then use
these tokens in feature extraction or any number of other natural language
processing operations.

The text can be obtained from various sources, such as documents, web-
sites, or databases. To implement tokenization, it is sufficient to iteratively
split the phrases into tokens.

The three-tier design proposed in this framework may or may not be
implemented, depending on the chosen framework. To process and analyze
the text, natural language processing is frequently used in the middle tier. To
be sure how the Natural Language Processor is implemented in the proposed
framework, more details are needed.
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3.1.3 Training the CTI model
Stanford NLP is among the most well-known NLP resources, but it features a
potent and tried-and-true LR Classifier. It employed a well-known approach
for pattern classification called Conditional Random Fields (CRF). CRF is
frequently used in NLP since they make accuracy while considering the
context. To put it another way, straight chain CRF forecasts the labelling for
a test while considering the Labelling for nearby samples. That is crucial
in NLP since the Labelling for one example might influence the label for
another. It gives the classifier the annotation trained model and uses the LR
Classification method to learn it. The output system’s NLP budgets help the
generated model and use it to retrieve the CTI keywords.

3.2 Production System

The architecture divides the manufacturing systems into three major ele-
ments: the NLP, the quality rating, and the manufacturing component.

3.2.1 The natural language processor element
Based on the framework, this element understands the text information and
extracts CTI from the document. Additionally, it includes a section for regex-
parsing the CTI, which removes using unique regex rules for IPs, passwords,
etc. After normalizing the data into the format, it is stored for later processing.

3.2.2 Quality ranking element
This element deduplicates the content to eliminate duplications and combines
the material for one particular attack and/or operation once it has isolated
and normalized the information. It is in charge of ranking the resources,
which is crucial from the client’s standpoint. The objective of the quality
ranking system is to provide a consolidated and unified perspective on the
attack or operation by identifying and combining attacks or operations that
are similar. If a user is researching a specific attack, like a Distributed Denial
of Service (DDoS) attack, the quality ranking system will look for, merge,
and deduplicate all relevant data. Important details from the perspective of
the client include the name of the attack, the start and end dates of the attack,
the attack vector(s), target(s), and the amount of damage caused.

The goal of incident response strategy is to limit damage, speed up
repairs, and lessen the likelihood of repeated cyberattacks. Planning for
security breaches and the subsequent recovery is the primary emphasis of
incident response protocols. Predicated on the signal-to-noise proportion that
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it quantified by calculating the total phrases and how many of those phrases
are marked as phrases, it allows users to see which references are producing
the most recent data and how excellent the value of the original dataset is.
It labels the information and submits it to Elasticsearch to be searched for
quick retrieval.

3.2.3 Production component
The transmission of CTI data is the responsibility of the production element.
It includes a publisher-subscriber system that could be manufactured into any
defending or investigator process and benefit from the timely and valuable
intelligence in addition to exposing an Application Programming Interface
(API) that allows organizations to insert the data and use it as needed.

3.3 Machine Learning-Based CTI

The suggested system is built on machine learning approaches. It is intended
to extract features of the patterns of significant risks, identify malicious activ-
ities of IoT communication, and determine the kinds from SAGS systems.
Network management records all traffic going to IoT nodes, analyses it,
and turns it into observations. Every observation offers valuable information
about the characteristics and statistics of the connectivity, which would aid
in assault detection. But since humans typically put these pieces together to
make patterns, many subtle ways are overlooked.

In representing the first layer of architecture, It adds IoT modules as the
initial element. This module explores knowledge about the show’s activities
and possible threats. It is challenging to analyze and check up on huge
traffic information to separate threads or regular forms since attacker traffic is
blended with usual flow of data. It mixes network information automatically
to produce a new depiction that features more insightful and practical network
structures.

The ML-based threat identification is expressed in Figure 2. The CTI
model is used to detect deep pattern extraction and attack identification. The
cloud server, edge controller, and application IoT devices are interconnected.
When it comes to cyber protection, the CTI Cyber Threat Intelligence model
is used to spot subtle trends and spot attacks. Which specific CTI model is
used determines the specific method used for pattern extraction. A network
is formed in the architecture described by connecting the cloud server, edge
controller, and application IoT devices. A cloud server is a remote computer
that stores and manages information and program that can be accessed over
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Figure 2 ML-based threat identification model.

the internet. The edge controller is the system or device at the network’s
periphery that coordinates and processes information sent and received
between the cloud server and IoT gadgets. Application Internet of Things
(IoT) devices are connected electronic gadgets that can be remotely accessed
and managed. This is a very high-level description of the components, and
the actual implementation and role of each component may differ depending
on the network architecture in use. Fuzzy Based Algorithm Model is imple-
mented for pattern extraction. Remaining are added The modules are created
using generated machine learning that has the benefit of learning obscure and
undiscovered connections without the requirement of class knowledge (i.e.,
attack or standard). Extracting broad patterns can seem like a wide range of
data sources, which is very helpful for evaluating heterogeneous network IoT-
SGAS traffic information and emerging assaults. Additionally, this paradigm
resolves the privacy concerns associated with accessing and distributing this
information because it relies on a place to define forms and code these in
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fresh forms (if others need them). The module’s information is fed into
the IoT-CTIS system to ascertain whether specific patterns correspond to
assaults.

As a result, this method lessens the need for passive detection and
prevention methods that rely on conventional intrusion prevention methods
(like signatures or regulations). It is constructed using supervised Machine
Learning (ML) algorithms to find anomalous patterns that diverge from a base
of typical flow previously unknown depending on experience. As a result,
fewer erroneous negative patterns are mistakenly classified as standard ones.

For instance, it can specify a particular sequence of trends related to a
DDoS botnet, malware, or another attack. This data is used in the 2nd layer
of TI to give additional relevant information to comprehend these patterns
that indicate to which assault they correspond. This engine, which is based
on ML approaches, is quite capable of adapting these patterns to other known
attacks.

3.3.1 Deep pattern extractor
From the original network information, a Deep Pattern Extractor (DPE) com-
ponent helps to extract additional knowledge and patterns. It takes the data
from the gathered observations and determines how the features are related,
resulting in concise and practical pattern descriptions. That was an uncon-
trolled feed-forwarding neural technique with multiple subsystems (encoder
and decoding) split by a code/bottleneck level. The input level and one or
more concealed layers comprise the encoding sub-network that uses just
the code/bottleneck level to obtain the output. In contrast, the decoding
sub-network utilizes the coding level as input to recreate the input level.

Like other deep auto-encoders, the IoT-CTIS system operates by limiting
learning and preventing the copying of input information while providing
sparseness to every node’s outputs in concealed layers. As a result, relatively
few units are engaged for each view of network information. It can effectively
extract relevant and generalized patterns because it streamlines the learning
experience and generalizes to previously unknown material.

4 Mathematical Equation

E(r∅(h∅(fx), fx)) is the losses value/reconstruction mistake generated by
DPE, where fx denotes the (x) observations and h∅(fx) is the output
of the encoding sub-network. This method relies on Equation (1). While
Equation (2) is used to compute the decoding sub-network result, represented
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by the r∅(h∅(fx), fx).

h∅(fx) =∝ {Bfx + w} (1)

r∅(h∅(fx)) =∝
{
Bfx

∝
+ w

}
(2)

fT
x are the outputs from the encoded level using the coders, {Bfx , w} reflects

the matrix of weighting and biased levels of the encoding layer, {Bfx
∝ , w}, ∅

provides the matrix of weighted and biased elements of the decoding layer
and ∝ is the intended perception. The extraction algorithm is denoted in
Algorithm 1.

Pattern extraction

#Training

For every observation in f do

Input = obtain features

Code = trained decoding network

End for

# Testing

Coding list = []

For every measurement in g compute

Input = obtain features

Pattern = coding data

Coding list← Pattern

End for

The extraction algorithm in a Malware Cyber Threat Intelligence System
refers to the process of collecting, analysing and transforming raw data into
structured information that can be used for threat analysis and mitigation.
This can involve a variety of techniques such as data normalization, cluster-
ing, and categorization to extract relevant features, behaviours and patterns
from malware samples, network traffic logs, and other sources of threat
intelligence. The goal of the extraction algorithm is to provide actionable
intelligence to security teams to detect, prevent, and respond to cyber-attacks.
A mathematical method of comparing different values, r∅(h∅(fx), fx), and
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the error term is denoted E. It employs the Mean Square Error (MSE) from
Equation (3). The MSE is the optimal option for a lost function since DEP
attempts to forecast and rebuild the input data instead of classifying it, as
we discovered from our trial-and-error tests. The quantity n here indicates all
observations made throughout the learning experience.

E(r∅(h∅(fx), fx)) =
1

N

N−1∑
x=0

(r∅(h∅(fx)))
2 − (fx)

2 (3)

Since reducing reconstructive error/loss quantities Min{E(r∅(h∅(fx),
fx))} is the primary goal of learning. The DEP applies sparsity restrictions
(fx) on this training process to increase the reconstruction, allowing for
the comprehension and extraction of the collected data and the significant
connections. Equations (4) and (5) could describe how to do this by applying
the activities regularizer algorithm R to every concealed layer’s result. As a
result, R adjusts the total of the actual values of the activation functions in the
buried layers (here referred to as fH

x to serve as a function for both encoding
and decoding hidden levels) by the sparseness variable and penalizes it for
the observed number β.

Min(E) = Min{E(r∅(h∅(fx), fx)) +R} (4)

R = β

N−1∑
x=0

fH
x (5)

Min{E(r∅(h∅(fx), fx))} is the primary goal of learning, and the activation
function is denoted fH

x . The number of observations is denoted β. The DDoS
botnet strike pervades hundreds of connected gadgets. Its malevolent features
typically have a higher transmission rate and reduced packets. So presuming
that a gathered analysis is linked to that invasion, the DPE subsystem instantly
uncovers the material of the internet traffic gathered, understands its behavior
methods, and then standards them in a more comprehensive portrayal in an
unsupervised fashion. If a network traffic assessment contains numeric data
values, the DPE modules can discover its underlying features and compress
them into a different form (i.e., practices).

4.1 TI driven detection

An ML technique-based component called TI uses the DPE component’s
intelligence to identify malicious actions in IoT networks. ML has the
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potential to offer a more effective generalization capacity than traditional
ML methods, which can be effective in the situation of unobserved data.
The detecting engines are built on an LR. A recurrent neural network (NN)
utilizes the concealed condition from the preceding keyframe (t) in the train-
ing experience, i.e., h∅(fx + gx−1), in contrary to a regular neural network.
An LR cell is made up of two gateways, updates and resetting.

The first one determines what data should be kept and what evaluated
data must be added. In contrast, the second determines how much-calculated
data from the usually undiscovered level should be disregarded or destroyed.
The result from the DPE, or the pattern(s)/code(s) that are most effective
for detecting anomalous behaviors, can be retained by the LR. T = (T1,
T2, . . . , Tn) is measured throughout the period n = 1, 2, . . . , N , m denotes
the mass of produced, as the DPE component outputs a succession of designs.
The prior hidden state, gx−1, serves as the input image for the LR, which
accepts patterns Tn for each timestep t.

Gu =∝ {BV
Tn
Tn +BV

HTn−1 +W} (6)

The updated gate is then determined using Equation (6), wherein W is
the biased and BV

Tn
, and BV

H are the values of the updated gate layers for
Tn and gx−1 correspondingly. The Gu to use the sigmoid transfer function
to determine whether the newly computed data is pertinent and should be
stored in memory. That is accomplished by converting these values obtained
to a range of 0 to 1. While one is significant, 0 is not. The Gr Specified in
Equation (7) is being used to regulate how much-calculated data from the
preceding concealed state gx−1 is deleted.

Gr =∝ {BR
Tn
Tn +BR

HTn−1 +W} (7)

ĥn = Tanh{BTnhn +Gr ×BHhn−1 +W} (8)

Equation (8) is used to compute the main memory contents, h depending
on this value. The biasing function of the recurrent network with timer is
denoted BR

Tn
, and the biasing function of the hidden layer is denoted BR

H .
The previous time function is denoted Tn−1, the hidden layer biasing function
is denoted BTn . The hidden layer’s final biased value is denoted BH . The
number of the hidden layer is denoted hn, the previous layer hidden function
is denoted hn−1. It applies the Tanh functional to the total of BV

Tn
Tn. W is

the element-wise relationship among Gr and BV
Tn

Tn−1. All values obtained
are controlled and kept inside the border [−1,1] to prevent some calculated
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values from bursting and making others irrelevant. Equation (9) determines
the memory’s ultimate contents in the present timestep (n), which is denoted
Hn. To decide what information should be gathered from the current memory
contents Tn and the prior step Tn−1 and sent to the networks (i.e., period
n+ 1), the Gu is employed.

Hn = Tanh{Gu × hn−1 + (1−Gu)(×)ĥn} (9)

Depending on the outcomes from the modules, the GRNN performs the
exact arithmetic computations during the learning phase. The result from the
LR levels is additionally supplied to the outcome nodes to carry out the
binary classification task to decide what action (Ô) should be taken about
the series of features P. Equation (10) is used to minimize the loss of fitness
values for data instances (i.e., batch size) among the total performance (O)
and anticipated output (Ô).

E(O, Ô) =
1

N

N−1∑
x=0

(Ôx)
2 − (Ox)

2 (10)

The actual output is denoted Ox. Given network activity’s evolving,
massive, and various properties, this feature and the LR’s teaching approach
are beneficial for identifying the strange characteristics of network activity.
For instance, the characteristics of flooding attacks collected from the DPE
are supplied to the TI engine to see abnormal behaviors. The LR-based
detection modules learn to keep or ignore spatial structure at every step as it
deems appropriate for detecting anomalous behaviors. Surveillance, military
bases, and even sports all benefit greatly from anomaly detection systems.
The majority of currently available abnormal activity detectors depend on
motion data collected over many frames to define abnormalities. Considering
the need of executing the technique at the network edge, an auto encoder
based approach is developed for abnormal activity detection. An auto encoder
is trained using video frames showing typical activity, from which it extracts
motion information for each spatiotemporal area. An abnormal occurrence
is one that shows a significant statistical outlier compared to typical occur-
rences. The abnormal detection activity recognition algorithm is denoted in
Algorithm 2.

#Abnormal activity recognition

For every fx In C folds, do
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Initialize fx = test set

Training model = RF(C-1)

Prediction = Training model (fx)

If prediction = usual, then

Display normal

Else

Display malicious

End if

End for

Ability to detect and identify abnormal or suspicious behaviour within a
network or system that may indicate a potential cyber-attack is what is meant
by “abnormal activity recognition” in a Malware Cyber Threat Intelligence
System. Indicators like network traffic, system logs, user activity, and other
relevant data sources may be examined to spot out-of-the-ordinary occur-
rences. The purpose of anomaly detection is to alert the security team ahead
of time of any impending threats, and to aid in the prioritization of their
response. Machine learning algorithms, statistical analysis, and behavioural
analysis methods can all be used to monitor for and report on potentially
malicious behaviour.

4.2 Attack type identification

The ML technique-based identification component mentioned in the method
sums a background to the DPE. That resembles which invasion or danger
a trend, in contrast to the detection component that denotes the malicious
behaviors of networks, network activity is based on trends derived by the
DPE but forgets their accurate kinds of unusual traffic. It is constructed
using an RF with a softmax activation function on the hidden layers for
differentiating different threat kinds. The feature extractor with a softmax
value calculates the likelihood that a specific pattern corresponds to each
threat class. The LR-based identification modules are trained to preserve the
appropriate sequences.

Assume that a basic network framework comprises output nodes with a
softmax functional and one RF level with n timesteps. The outputs network
(activation feature) produces a encoding C-dimensional vectors O from the
input signal of sequences S = (S1, S2, . . . , Sn) sustained over n timesteps.



Malware Cyber Threat Intelligence System for IoT Using ML 75

Therefore, the likelihood that a single source S corresponds to a threat
category (O) is determined using Equation (11).

Pr(Ôc = Oc|S) = ρ(S)Oc
=

exp(Oc)∏C−1
x=0 exp(Ox)

(11)

The c-dimensional vector is denoted Oc. And the sequence of the input
signal is denoted S. The predicted output threat is denoted Ôc. The categories
of cross-entropy losses, or negative log, calculated over a group of many
series of dimension n with Equation (12) have been utilized to evaluate the
mistake of the output nodes (with a softmax activation function). The effec-
tiveness of a machine learning classification model may be evaluated with
the use of the cross entropy loss metric. For this reason, the loss (or error) is
reported as a decimal between 0 and 1, with 0 representing a flawless model.
Getting your model as close to 0 as feasible is the aim.

E(Ôc, Oc) = −
N−1∑
x=0

C−1∑
c=0

OSx
c

log(Pr(Ôc = Oc|Sx))
(12)

The C-dimensional vector is denoted Oc. The predicted threat is denoted
Ôc. The input sequence is denoted Sx. Cross-entropy losses are a metric that
assesses how off an algorithm is in predicting the probability distribution of
its output nodes compared to the actual distribution. The cross-entropy loss
measures how far off the mark a prediction is from the actual distribution by
taking the negative log of the probability distribution. This means that the
output nodes will make more mistakes as the cross-entropy loss increases.
The number of input and dimensions are denoted N and C, respectively.
The threat identification model is expressed in Algorithm 3.

#Threat identification model

For every fx In C folds, do

Initialize fx = test set

Training model = RF(C-1)

Prediction threat type = Training model (fx)

Decision = Prediction threat type

End for

The recovered sequences are analyzed by CTI identification as flood-
ing attacks. ML-depending identification engines can detect the threat and
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Table 1
SVM CNN DT LDA NB IoT-CTIS

Accuracy 43 39 50 55 60 90
Precision 53 49 50 55 62 90
F-measure 45 49 63 52 60 88
Recall 42 57 69 65 62 90

differentiate between several versions, which can assist a security detail
in performing an effective defensive and mitigating operation. Based on
this information, security staff can immediately recognize that such Internet
Protocol addresses the attack’s origin and needs to be banned. The best
malware cyber threat intelligence systems employ a multi-stage threat iden-
tification model to correctly identify and categorize threats. The following
elements ought to be part of this model:

First, data is gathered from various sources, including system logs, net-
work traffic, and malware samples, to establish a norm for system behaviour
and spot outliers that may indicate an attack. Data analysis is the second step,
and it involves looking through the information gathered to spot any oddities
or suspicious patterns that might point to the presence of malware. Detection
and categorization of threats through the use of cutting-edge analytics and
machine learning algorithms is the third step. Fourth, reacting to incidents
entails formulating a strategy to lessen the impact of the damage or danger
that has already been done. Delivering complete reports on the threat and the
response to stakeholders and management is the final step.

The proposed IoT-CTIS system is designed in this section with machine
learning models like logical regression and random forest to detect and iden-
tify malware and cyber security threats. The software results of the IoT-CTIS
system are analyzed and compared in the next section.

5 Simulation Analysis and Outcomes

The study and assessment of the suggested scheme, IoT-CTIS system, on
various variables, which uses the UNSW-NB15 datasets, are presented in this
section [26]. The IoT-CTIS system was created in Python on a Windows 8
computer with 8 GB of Random Access Memory (RAM) and an i5 Central
Processing Unit. A random selection of 70% of every dataset’s amount
is used for training the DPE and 30% for evaluating every experiment.
In order to answer research questions, put forward hypotheses, and assess
results, one must engage in data collecting, which is the systematic gathering
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and measurement of information on variables of interest. One way to get
information is by observations of individuals in their natural environments
at predetermined times. Researchers focus mostly on the actions of the
people and communities they examine. Research methods might range from
those that are regulated to those that are more organic or participant-based.
To ensure that every observation is assessed at least once, 15-k cross-
verifications are utilized for testing and certification. This research assessed
ML algorithms to distinguish harmful activity from innocuous network data
to implement the final concept on fog devices in the IoT-CTIS system in
further work. As a result, the machine learning-based technique for anomaly
identification is used in this assessment.

The simulation outcomes such as Precision (P), Recall (R), F measure
(F), and Accuracy (A) are expressed in Equations (13) to (16).

P =
TrP

TrP + FaP
(13)

R =
TrP

TrP + FaN
(14)

F = 2P × R

P +R
(15)

A =
TrP + TrN

TrP + TrN + FaP + FaN
(16)

The true positive is denoted TrP , the true negative is denoted TrN ,
the false positive is denoted FaP , and false negative is denoted FaN . False
Positive Rate (FPR) is denoted as the probability of the wrongly removing
the null hypothesis. True Positive Rate (TPR) is denoted as the probability of
correctly identifying the null hypothesis. The False Negative Ratio (FNR) is
denoted as the probability of falsely identifying the classification. The True
Negative Ratio (TNR) is defined as the probability of correctly identifying
the wrong dataset as wrong.

The simulation findings of the IoT-CTIS system, such as accuracy and
precision in detection and classifying the malware and cyber security threats,
are analyzed and plotted in Figure 3. The precision and accuracy are com-
puted using Equations (13) and (16). The simulation findings of the IoT-CTIS
system in terms of malware detection accuracy and precision results. They
are compared with existing classifiers namely SVM, CNN, DT, LDA, and
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Figure 3 Simulation findings of the IoT-CTIS system.

NB. The IoT-CTIS system with a machine learning model and IoT enhances
the overall system outcomes than the existing models.

The software performance analysis of the IoT-CTIS system in terms of
F measure and recall are computed, and the outcomes are plotted in Figure 4.
The F-measure and recall are computed using Equations (14) and (15).
The proposed IoT-CTIS system outcomes are compared with existing models
like SVM, CNN, DT, LDA, and NB. The SVM performs very poorly com-
pared to other models. The proposed IoT-CTIS system outperforms all the
models with the help of IoT, cyber threat intelligence, and machine learning
models (LR and RF). The IoT-CTIS system efficiently analyses and detects
the malware as normal and malicious nodes. The performance of the method
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Figure 4 Software performance analysis of the IoT-CTIS system.

is based on the evaluation of the accuracy of the system in terms of identifying
malicious activity and false positives. The accuracy of the system is measured
by the true positive rate (TPR) and the false positive rate (FPR). The TPR
measures the percentage of correctly identified malicious activity, while the
FPR measures the percentage of wrongly identified non-malicious activity.
The performance of the system is then evaluated by calculating the F-score,
which is the harmonic mean of the TPR and the FPR, the higher the F-score,
the better the performance of the system.

The error analysis of the IoT-CTIS system in terms of Root Mean Squared
Error (RMSE) and Mean Squared Error (MSE) are analyzed and plotted in
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Figure 5 Error analysis of the IoT-CTIS system.

Figure 5. The MSE and RMSE are denoted in Equations (17) and (18).

MSE =
1

N

N∑
x=0

(Ox − Ôx)
2

(17)

RMSE =

√√√√ 1

N

N∑
x=0

(Ox − Ôx)
2

(18)

The actual output is denoted Ox, and the predicted output is denoted Ôx.
The total number of samples is denoted N. The IoT-CTIS system error is
computed as the function of the classification, detection of malware, and
cyber security threats. The results are compared with the existing models,
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and the outcomes depicted a higher performance of the suggested IoT-CTIS
framework than the others. The IoT-CTIS system with machine learning
and IoT enhances malware detection efficiency, reducing classification error.
Analysing errors in a malware cyber threat intelligence system entails getting
to the bottom of what went wrong and fixing whatever problems were
uncovered. This may involve determining whether the error was caused by
the user or the system, and whether it was the result of poor coding or an
incorrect configuration. Understanding how the mistake affected the system
or its users is also crucial. In order to prevent similar mistakes in the future,
it’s also crucial to pinpoint possible solutions and preventative measures.

The true positive and true negative rates are depicted in Figure 6(a),
and the false positive and false negative rates are depicted in Figure 6(b).
The simulation outcomes of the IoT-CTIS system are evaluated, and the
results are compared with the existing models like SVM, CNN, DT, LDA,

 
Figure 6(a) The true positive and negative rate analysis.
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Figure 6(b) The false positive and negative rate analysis.

and NB. The TPR and TNR are expressed using Equations (19) and (20).

TPR =
TrP

TrP + FaN
(19)

TNR =
FaN

TrP + FaN
(20)

The true positive and false negative are denoted TrP and FaN . The FPR
and FNR are expressed in Equations (21) and (22).

FPR =
TrN

TrN + FaP
(21)

FNR =
FaP

TrN + FaP
(22)

The false positive and true negative is denoted FaP and TrN .
The IoT-CTIS system with machine learning models (LR and RF) and
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Figure 7 Security and MCC analysis of the IoT-CTIS system.

IoT enhances the overall outcomes than the existing models. The three-tier
architecture increases connectivity and security.

The Security (S) and Mean Correlation Coefficient (MCC) analysis of
the IoT-CTIS system are depicted in Figure 7. The security and MCC of the
suggested IoT-CTIS system are higher than the existing models SVM, CNN,
DT, LDA, and NB. The security and MCC are expressed in Equations (23)
and (24).

S =
TrP

TrP + TrN
(23)

MCC =
FaPTrN − (FaPFaN )√

(FaP + TrP )(TrP + FaN )(TrN + FaP )(TrN + FaN )

(24)
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The true positive and false negative are denoted TrP and FaN . The false
positive and true negative is denoted FaP and TrN . The IoT-CTIS sys-
tem, with the help of logical regression and random forest, enhances the
malware detection and classification results and thus enhances the security.
The IoT-CTIS modules with edge and cloud technologies further enhance the
MCC than the existing models. An organization’s ability to detect, analyse,
and respond to cyber threats in a timely and effective manner is the primary
objective of a malware cyber threat intelligence system. Malware cyber threat
intelligence should include thorough security analysis. The external environ-
ment, internal systems, data, and processes associated with the system should
all be evaluated as part of a thorough security analysis. Possible dangers
to the system, as well as its vulnerabilities and risks, should be catalogued
in the report, along with suggestions for eliminating or minimizing them.
The analysis should also evaluate the system’s architecture and design to
guarantee its safety and resilience against cyber-attacks. Finally, the analysis
should evaluate the system’s security controls, policies, and procedures to
guarantee they are sufficient and being carried out as intended.

The proposed IoT-CTIS system is analyzed, and the results are compared
with existing models. The IoT-CTIS system with machine learning models
and IoT enhances the overall system performance and security in the entire
network. All parameters are elaborated, for this to be possible, it is necessary
to have what are often referred to as the communication, control, and com-
puting. You won’t have a system where physical processes may influence
calculations and vice versa without these three components.

6 Conclusion and Future Study

The extraction of beneficial cyber-threat characteristics from IoT data of
Space, Air, Ground, and Sea (SAGS) systems that can assist in identifying
assaults has been presented in this research. An IoT-based Cyber Threat Intel-
ligence System (IoT-CTIS) is designed in this article to detect malware and
security threads using a machine learning algorithm. The use of a machine
learning algorithm allows for the development of an Internet of Things Cyber
Threat Intelligence System (IoT-CTIS) that can identify malware and secu-
rity threats. With its real-time monitoring and threat detection capabilities,
IoT-CTIS aims to increase the safety of connected devices. Malware and other
security threats in IoT-CTIS can be detected with the help of machine learning
algorithms. Malware can be categorized based on its behaviour and attributes
using supervised learning algorithms like decision trees and random forests.
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The presence of a security threat can be inferred from anomalous behaviour
using unsupervised learning algorithms like clustering and anomaly detec-
tion. Overall, IoT-CTIS can be built to counteract malware and security
threats using machine learning techniques. It’s worth noting, though, that
the system’s efficacy hinges on the quality and relevance of the data used to
train the algorithm. The suggested algorithm automatically learns the obscure
and unidentified patterns of IoT communication without needing the user to
understand what is being searched. It depicts and codes these recently found
trends in new ways that can be fed into the right engine to help recognize
unusual IoT network activity based on established knowledge. The engine,
founded on the LR-output layers, has a softmax activation function to give
the recovered patterns meaning by recognizing their malicious types.

The suggested IoT-CTIS system can extract threat signals from heteroge-
neous networking IoT internet traffic utilizing the UNSW-NB15 databases.
Its performance while feeding the TI detection engine with the distinguish-
ing features as inputs demonstrates the high quality of such patterns and
aids in the model’s definition of abnormal activity. The TI’s next level
exhibits a respectable performance for detecting harmful pattern patterns.
In subsequent work, the research intends to assess the effectiveness of the
suggested method using an existing IoT system and look into getting TI
from IoT systems, including their logs. Moreover, the research intends to
improve and advance the IoT-CTIS scheme using microservices in the future.
The present study is limited by the number of IoT devices and limited
data resources. The outcomes are enhanced in the future using the big data
analytics module. Production enhancement, configuration change, standard-
isation, and IT are only few of the areas where CPS in manufacturing faces
obstacles. We identify five specific risk factors: prior engagement with child
protective services, mental health or drug misuse issues, domestic violence,
ineffective parenting, financial difficulties, and child safety/special needs.
The experimental analysis of IoT-CTIS outperforms the method in terms of
accuracy (90%), precision (90%), F-measure (88%), Re-call (90%), RMSE
(15%), MSE (5%), TPR (89%), TNR (8%), FRP (89%), FNR (8%), Security
(93%), MCC (92%).
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