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Abstract

The existence of vulnerabilities is a serious threat to the security of net-
works, which needs to be detected timely. In this paper, machine learning
methods were mainly studied. Firstly, network security vulnerabilities were
briefly introduced, and then a Convolutional Neural Network (CNN) + Long
Short-Term Memory (LSTM) method was designed to extract and match
vulnerability features by preprocessing vulnerability data based on National
Vulnerability Database. It was found that the CNN-LSTM method had high
training accuracy, and its recall rate, precision, F1, and Mathews correlation
coefficient (MCC) values were better than those of support vector machine
and other methods in detecting the test set; its F1 and MCC values reached
0.8807 and 0.9738, respectively; the F1 value was above 0.85 in detecting
different categories of vulnerabilities. The results demonstrate the reliability
of the CNN-LSTM method for vulnerability detection. The CNN-LSTM
method can be applied to real networks.
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1 Introduction

With the rapid development of network technology, network security faces
increasingly serious challenges under the influence of network timeliness and
openness [1], and network security is also gaining widespread attention [2].
Network security vulnerabilities are widespread in systems and software [3],
and attackers use vulnerabilities to steal and manipulate data, jeopardizing the
normal operation of the system while also seriously threatening the security
of network data [4], so it is increasingly important to detect vulnerabilities
in timely and efficiently. The detection of vulnerabilities is conducive to
the timely repair of vulnerabilities to avoid major problems in the system,
thus ensuring system security [5]. However, with the increase of vulnerabil-
ities, the traditional vulnerability detection methods have lagged behind [6].
Advances in machine learning technology have provided many new methods
for vulnerability detection [7]. Xiao et al. [8] designed a binary-level vulner-
ability detection technique and found through experiments that the method
achieved 100% accuracy for one-day vulnerabilities and 87.6% accuracy for
recurring vulnerabilities. Based on the theory of automata, Minaev et al. [9]
developed a structural model for unstable network interactions and found
through experiments that the model could detect vulnerabilities in the net-
work in a timely and complete manner. Nancy et al. [10] designed a decision
tree algorithm based on intelligent fuzzy temporal state and found that the
method had a good detection effect, with low false alarm rate, energy con-
sumption, and delay through experiments. For buffer overflow vulnerability,
Ren et al. [11] designed a method based on software metric and decision tree
algorithm and found that the method achieved 82.53% and 87.51% accuracy
in detecting different data sets. Kovtun et al. [12] proposed a mathematical
tool to simulate the process of operating an information system in an aggres-
sive cyber environment, taking into account the cumulative parameters of
functional efficiency of the studied system, operational risks, and the amount
of resources invested in cybersecurity measures during the design phase.
Alqarni et al. [13] developed a method to detect source code vulnerabilities in
the software development process, which solved the data imbalance problem
through the undersampling technique. The experiment showed that the accu-
racy of the method was 96.46% for the SATE IV Juliet dataset and 77.16% for
the balanced dataset of github and debian. Chakraborty et al. [14] designed
an automated vulnerability detection method based on deep learning, which
improved the accuracy by 33.57% and recall rate by 128.38% compared
to the baseline model. Munonye et al. [15] conducted a study to detect
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vulnerabilities in OAuth authentication and authorization processes and used
a machine learning-based approach. It was tested and found to have over 90%
accuracy. To address the shortcomings of existing methods in vulnerability
detection, in order to further improve the accuracy of vulnerability detection
and the adaptability of the algorithm in the face of complex vulnerabilities,
this paper developed the Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) neural network methods, providing a theoreti-
cal support to solve the delay and complexity of vulnerability detection and
helping to reduce the risk of network intrusion and establish a harmonious
network environment. The organization structure of this paper is as follows.
Section 1 introduces the concept of network security vulnerability and the
current trend of vulnerability and analyzes the pre-processing method of
vulnerability features. Section 2 describes the vulnerability feature extraction
and matching algorithm based on CNN+LSTM, which extracts vulnerability
features in CNN layer and LSTM layer, and then performs matching in
softmax layer to realize the classification of vulnerability. Section 3 conducts
experiments on the method proposed in this paper to prove the performance
of the method in vulnerability detection by analyzing the results. Section 4
gives a brief summary of the paper and gives the limitations of the research
and the direction of future research.

2 Network Security Vulnerability Overview and Data
Pre-processing

A vulnerability is a flaw in the hardware or software of a system that does
not affect the security of the system but is a condition for an attacker to take
control of the system, steal or manipulate data [16].

The existence of vulnerabilities may be related to the following factors:
(1) improper deployment by administrators; (2) defects in network protocols;
(3) defects in software design; and (4) defects in business interaction design.

According to the China National Vulnerability Database of Informa-
tion Security (CNNVD) (https://www.cnnvd.org.cn/home/report), a total of
199,523 vulnerabilities have been collected as of December 31, 2022.
According to CNNVD statistics, the number of new vulnerabilities per month
from July 2022 to December 2022 is shown in Figure 1.

From Figure 1, it was seen that the number of vulnerabilities was always
in a faster growth, and the average number of new vulnerabilities reached
2066 per month in the past six months, indicating that the vulnerability
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Figure 1 Number of new vulnerabilities per month from July 2022 to December 2022
(Source: https://www.cnnvd.org.cn/home/report).

Table 1 Top 10 types of vulnerabilities in December 2022
Vulnerability Type Number of Vulnerabilities/n Percentage

Cross-site scripting 350 16.11%
Buffer error 248 11.41%
Structured query language injection 104 4.79%
Code issues 98 4.51%
Input validation error 73 3.36%
Path traversal 58 2.67%
Resource management errors 58 2.67%
Cross-site request forgery 46 2.12%
Authorization issues 43 1.98%
Command injection 31 1.43%

situation is relatively serious and the demand for vulnerability detection is
high.

The top 10 vulnerability types with high percentages in December 2022
are shown in Table 1.

From Table 1, it was seen that the type of vulnerability that accounted for
the largest percentage was cross-site scripting (XSS). This type of vulnera-
bility means that the attacker modifies the user’s Uniform Resource Locator

https://www.cnnvd.org.cn/home/report
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(URL), injects malicious code, and then attacks the users when they browse
the page, and it is one of the most common vulnerabilities [17].

In vulnerability detection, in order to be able to facilitate the recording
and analysis of vulnerabilities, it is necessary to describe the vulnerability.
Vulnerability description refers to the description of the cause, location, and
other information of the vulnerability according to certain specifications.
Common Vulnerabilities & Exposures (CVE) provides the same description
of the vulnerability and uses the CVEID to distinguish between different
vulnerabilities. The National Vulnerability Database (NVD) is a free and
open database [18] that stores more than 170,000 vulnerability information
since 2000. The CVEID is represented by “CVE-2021-0001”, which means
“CVE-year-number”, and the original data is presented in English. In this
paper, the vulnerability features were extracted based on the NVD. First, the
CVEID, vulnerability category, and vulnerability description were obtained
from the NVD, and then the vulnerability features were extracted to match
the features with the categories.

For the original English text, the original English text is first cleaned
by word segmentation, removal of non-text symbols, and removal of stop
words, and then, two methods, Term Frequency-Inverse Document Frequency
(TF-IDF) and mutual information (MI) [19], are used to preprocess the
cleaned text.

TF-IDF refers to term frequency (TF) and inverse document frequency
(IDF) [20]. For preprocessed corpus Dn×3 (vulnerability ID, vulnerability
category, vulnerability description), firstly, the TF-IDF value of feature word
wi,j is calculated: TF − IDF (wi,j , di) = TF (wi,j , di) × IDF (wi,j); then,
the TF-IDF value is converted into two-dimensional matrix Tn×W by one-hot
encoding, where W =

∑n
i=1 size(di), 1 ≤ i ≤ n. Each column of the matrix

refers to the TF-IDF value of feature word wi,j in n texts.
Then, based on two-dimensional matrix Tn×W and the category labels of

the vulnerabilities, the MI value of each feature word and its category label
is calculated:

MI (wi,j , c) =
∑

wi,j∈T

∑
c∈C

p(wi,j , c)log2
p(wi,j , c)

p(wi,j)p(c)
(1)

where T refers to the set of all feature words, p(wi,j , c) refers to the occur-
rence frequency of wi,j belonging to category c, and p(wi,j) and p(c) are the
occurrence frequencies of wi,j and category c, respectively.

Threshold value ϑ(ϑ ∈ (0, 1)) is set, and k keywords with MIk > ϑ are
screened.
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The Skip-gram model in Word2Vec [21] is used to learn corpus Dn×3 to
obtain word vector v(w); then, MI(w) obtained after screening is indexed
and weighted with v(w) to obtain final word vector V (w) = v(w) · eMI(w).

3 Vulnerability Feature Extraction and Matching Algorithm
based on CNN and LSTM

The CNN is a very widely used model in machine learning [22], which can
achieve better feature extraction through convolutional and pooling layers.
It can effectively extract useful features and eliminate irrelevant features
while having faster training speed, and it has good performance in image
processing [23], speech processing [24], and so on. LSTM can hold sequence
information for a long time and process information, which has a wide range
of applications in speech recognition [25], data prediction [26] and other
fields. This paper combined the CNN with LSTM and used the CNN+LSTM
hybrid model to achieve the detection of vulnerabilities. The specific process
of the algorithm (Figure 2) is as follows.

(1) The word vector obtained in the previous section was used as the input
of the CNN layer. The vulnerability features were extracted by the
convolutional and pooling layers.

Figure 2 The CNN+LSTM hybrid model.
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(2) The new feature vector obtained from the CNN layer was used as the
input of the LSTM layer to further extract features.

(3) The feature results obtained from the LSTM layer were classified in the
softmax layer, and the vulnerability category was output.

In the CNN layer, for word vector V (w):V (w)i = (x0, x1, . . . , xn),
let the sliding window be h, and the new window vector is written as:
Xk = [v(w)k, v(w)k+1, · · · , v(w)k+h−1]. By convolution kernel C, the
current window feature vector is calculated: Yk = f(Xk ⊗C + b), where b is
the bias and f is the activation function, f = 1

1+e−x . After the convolution,
the most important features are extracted by maximum pooling in the pooling
layer: Bk = MAX (Yk−h+1, Yk−h+2, . . . , Yk).

In the LSTM layer, Bk obtained by the CNN layer is taken as the input.
In the LSTM layer, the processing of the features is done by the updates of
the forgetting gate, the input gate, and the output gate. The update of the
output of the forgetting gate is written as: ft = σ(wfht−1 + ufxt + bf ), the
update of the input gate output is written as: it = σ(wiht−1 + uixt + bi),
C̃t = tanh(wcht−1 + ucxt + bc), the update of the cell state is written as:
Ct = ft × Ct−1 + it × C̃t, and the update of the output of the output gate
is written as: ot = σ(woht−1 + uoxt + bo), ht = Ot × tanh(Ct). In these
equations, σ stands for the sigmoid function, ht refers to the hidden state
at moment t, xt is the input vector, wf , wi, wc, and wo are the weights of
different gates of ht, uf , ui, uc, and uo are the weights of different gates of
xt, and bf , bi, bc, and bo are the biases of different gates.

Ultimately, the output of the LSTM is classified in the softmax layer, and
the formula is written as:

P (y = i|x, θ) = eoi∑N
k=1 e

ok
, (2)

where P(y = i|x, θ) refers to the probability of sample x belonging to
category i. The result of vulnerability detection is obtained by matching the
feature results of the LSTM layer to the category with the highest probability.

4 Experiment and Analysis

4.1 Experimental Setup

The experimental environment was a TensorFlow/Keras deep learning
framework based on Python 3.7, Windows 10 operating system, Intel(R)
Core(TM)i7-8700 CPU, and 16 GB of random access memory. The batch size
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Table 2 Experimental vulnerability situation
Vulnerability ID Vulnerability Category Category Label

CWE-79 Cross-site scripting 0
CWE-119 Buffer error 1
CWE-20 Input verification 2
CWE-200 Information leakage 3
CWE-787 Out-of-bound write 4

Table 3 Confusion matrix
True Value

Confusion Matrix Positive Negative

Predicted value Positive TP FP
Negative FN TN

of the CNN+LSTM model was set to 128, the maximum number of iterations
was set to 300, the Adam optimizer was used, and the learning rate was set to
0.01. The experimental data were the top 5 vulnerabilities in the NVD, whose
IDs, categories, and labels are presented in Table 2.

For feature extraction, the cleaned corpus was divided into a training set,
a validation set, and a test set in the ratio of 6:2:2, and ϑ = 0.0005 was set
to screen feature words. A 50-dimensional feature word vector was obtained
using the skip-gram model. After exponential weighting, the final word vector
was used as the feature during vulnerability detection. The vulnerability
detection performance of the model was evaluated using the confusion matrix
(Table 3).

(1) Recall = TP/(TP + FN)
(2) Precision = TP/(TP + FP )
(3) F1 = (2× Precision × Recall)/(Precision + Recall)
(4) Mathews correlation coefficient (MCC) [27]: MCC = (TP × TN −

FP × FN)/
√
(TP + FP )(TP + TN)(TN + FP )(TN + FN)

The F1 value is a comprehensive evaluation of the recall rate and preci-
sion, and the MCC is an evaluation of the balance of the model classification.
For vulnerability detection, higher F1 and MCC values of the model indicate
that the model was better at vulnerability detection.

4.2 Analysis of Results

The CNN+LSTM model was compared with other methods:

(1) Support vector machine (SVM) [28],
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Figure 3 Comparison of the training accuracy between different methods.

(2) Recurrent Neural Network (RNN) [29],
(3) CNN [30],
(4) LSTM [31].

First, the comparison of the training accuracy between different methods
on the training set is shown in Figure 3.

From Figure 3, it was seen that with the increase of iterations, the training
accuracy of different methods was gradually improved, and the accuracy
reached the highest when the number of iterations reached 300. After com-
paring different methods, it was found that the SVM algorithm had the lowest
accuracy in detecting vulnerabilities (85.45% the highest), and the RNN algo-
rithm also had a low accuracy in detecting vulnerabilities, below 90%. The
difference between the training accuracy of the CNN and LSTM algorithms
was small. When the number of iterations was 300, the training accuracy
of the CNN and LSTM algorithms was 93.68% and 94.96%, respectively,
while the accuracy of the CNN+LSTM method reached 97.63%, which was
significantly higher than that of a single CNN or LSTM algorithm, proving
the effectiveness of the hybrid model in vulnerability detection.

The performance of several different methods was compared on the test
set, and the results are shown in Table 4.

From Table 4, on the test set, the vulnerability detection performance of
the SVM algorithm was poor, its recall and precision were below 0.7, its F1
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Table 4 Performance comparison of different methods on the test set
SVM RNN CNN LSTM CNN+LSTM

Recall rate 0.6784 0.7012 0.7536 0.7607 0.8876
Precision 0.6892 0.7126 0.7654 0.7738 0.8739
F1 value 0.6838 0.7069 0.7595 0.7672 0.8807
MCC 0.9156 0.9367 0.9678 0.9687 0.9738

Table 5 Comparison of F1 values of different methods in detecting different categories of
vulnerabilities

Vulnerability ID SVM RNN CNN LSTM CNN+LSTM

CWE-79 0.6736 0.7001 0.7768 0.7762 0.8907
CWE-119 0.6864 0.7154 0.7825 0.7684 0.8867
CWE-20 0.7012 0.7126 0.7263 0.7536 0.8536
CWE-200 0.6525 0.7005 0.7436 0.7864 0.8687
CWE-787 0.7053 0.7059 0.7683 0.7514 0.9038

value was only 0.6838, and its MCC value was 0.9156; the RNN algorithm
was slightly better than the SVM algorithm in vulnerability detection, and its
F1 value reached 0.7069, which was 0.0231 larger than the SVM algorithm.
The performance difference between the CNN and LSTM algorithms in
vulnerability detection was not significant, with F1 values of 0.7595 and
0.7672, and MCC values of 0.9678 and 0.9687, respectively. The recall rate
of the CNN+LSTM hybrid model reached 0.8876, showing an improvement
of 0.134 and 0.1269 over the CNN and LSTM algorithms, respectively,
and its precision reached 0.8739, showing an improvement of 0.1085 and
0.1085 over the CNN and LSTM algorithms, respectively. In terms of F1
value, only the CNN+LSTM algorithm exceeded 0.8 among the compared
methods, reaching 0.8807, and its MCC value was also the highest, reaching
0.9738, indicating that the CNN+LSTM algorithm had better performance
in vulnerability detection and could detect different vulnerabilities more
accurately with better classification balance.

The results of comparing the F1 values of different methods on different
categories of vulnerability detection are shown in Table 5.

From Table 5, it was seen that the F1 values of the SVM algorithm ranged
from 0.65 to 0.7 when detecting different vulnerability categories, among
which the best detection effect was achieved for CWE-787, with an F1 value
of 0.7053. The F1 values of the RNN algorithm were all around 0.7, among
which the best detection performance was achieved for CWE-119, with an
F1 value of 0.7154. The CNN and LSTM algorithms had the best detection
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effect on CWE-119 and CWE-200, respectively, with F1 values of 0.7825
and 0.7864, respectively. Finally, the F1 values of the CNN+LSTM algorithm
were all above 0.85, among which the best detection effect was achieved
on CWE-787, and the highest F1 value was 0.9038. In general, although
different methods performed differently in detecting different categories of
vulnerability, the CNN+LSTM algorithm always maintained a high F1 value,
indicating that the method maintained a high level of detection for different
categories of vulnerabilities and could achieve good detection for different
categories of vulnerabilities. Therefore, the CNN+LSTM algorithm could
provide services for practical network security.

5 Conclusion

This paper focused on the detection of network security vulnerabilities and
designed a CNN+LSTM method to achieve the extraction and matching
of vulnerability features. Through experiments on the NVD vulnerability
library, it was found that the CNN+LSTM method had the highest training
accuracy and the best performance on the test set compared with the SVM and
RNN methods, with F1 values reaching 0.8807 and the MCC value reaching
0.9738, both better than the single CNN and LSTM methods, proving the
reliability of this hybrid model for further applications in practical network
security vulnerability detection. However, the CNN+LSTM method also has
some limitations, for example, the vulnerability dataset used for experiments
was small, the types of vulnerabilities are few, and the data imbalance
situation was not investigated. Therefore, in future research, the applicability
of this method on larger and more complex datasets needs to be analyzed,
and the data imbalance situation needs to be improved.
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