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Abstract

Image is one of the most important carriers of information that humans
transmit on a daily basis. Therefore, the security of images in the transmission
process has been a key study subject. A quantum bit-plane representation
of the Real Ket model (QBRK) is proposed, which requires 2n + 4 and
2n+ 6 quantum bits to represent gray-scale and color images of 22n−k × 2k

size, respectively. On the basis of the QBRK model and chaotic system, an
image encryption algorithm is proposed according to pixel position encoding
for slice dislocation and quantum bit-plane XOR operation. First, we use
a modified logistics chaos system to generate two matrices that perform
matrix determinant transformations in the bit-plane. Then, we perform an
XOR operation on the pixel values based on the parity bit-plane. Finally, the
pixel diffusion is completed by permutation with each cut encoding in the
QBRK model. According to the simulation outcomes and security analysis,
the encryption algorithm is very efficient and well resists state-of-the-art
attacks.

Keywords: Quantum image encryption, Real Ket model, Chaotic system,
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1 Introduction

As multimedia information technology develops quickly, images have been
a necessary form of communication in people’s day-to-day activities. Image
encryption is one of the commonly used security strategies in multimedia
transmission. It has achieved relatively fruitful results in classic digital image
processing [1–4]. Moreover, many excellent encryption algorithms have also
been proposed gradually [5–8].

At present, the existing image encryption technologies include Latore
et al. [9], which proposed the Real Ket model of continuously quartering
the image and storing it in the real vector state. The concept of the quantum
image was first proposed by Venegas-Andraca and others [10]. This method
mainly establishes the mapping relationship between electromagnetic wave
frequency and quantum probability amplitude. The quantum grid is the
smallest storage unit of this model. Unfortunately, this method does not bring
the advantages of quantum bits (mainly the superposition and entanglement
characteristics) into full play. It requires a large number of quantum grids
to store images, and the storage efficiency is low [10, 11]. However, the
traditional image encryption technology [12–14] is easy to attack. Therefore,
in recent years, people have created a new discipline of quantum image
processing by using the characteristics of quantum non-cloning and the uncer-
tainty principle, which has quickly attracted people’s attention. In 2011, Le
et al. [15] used a quantum superposition state to represent image information,
and proposed the FRQI model. In 2013, Zhang et al. [16] proposed the NEQR
model based on the polynomials of quantum superposition states. In 2016,
Yan et al. [17] improved the FRQI model and proposed an MCQI model
that can represent color information. In 2018, Li et al. [18] proposed the
BRQI model based on bit-plane representation, which reduces the number of
quantum bits occupied by color storage. It is worth noticing that the existing
quantum image-based methods have their own advantages and disadvantages.
For example, the FRQI model can only represent gray-scale images [15], and
the NEQR model needs to occupy more quantum bits [16].

Based on the aforementioned arguments, we combine the image position
encoding method of the Real Ket model with the color representation method
of the BRQI model, and proposes a new quantum image representation model
QBRK (quantum bit plane representation of the Real Ket model), which can
handle sizes of 22n−k×2k rectangular image. And we designed an encryption
algorithm based on the QBRK model, which combines chaotic systems and
XOR operations.
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The rest of this article is structured as follows. Section 2 gives the
background information on Real Ket and BRQI models. Section 3 describes
the proposed QBRK model in detail. Section 4 outlines a quantum image
encryption algorithm based on QBRK model. Section 5 simulates and ana-
lyzes the encrypted image. Section 6 analyzes the security of the resulting
images. In Section 7, we provide the conclusion of this article.

2 Real Ket and BRQI Models

In this section, we introduce the Real Ket and BRQI models’ representa-
tion techniques and list their respective flaws. These two models serve as
the foundation for the QBRK model we suggested, which combines their
benefits.

2.1 Real Ket Model

By constantly quartering the image, the Real Ket model [9] can represent an
image of 2n × 2n size as:

|φ2n×2n⟩ =
∑

i1,i2,...,in=1,2,...,4

cin,...,i1 |in, . . . i1⟩, (1)

where n is an arbitrary integer, cin,...,i1 represents the gray-scale value,
in, . . . i1 are the position information of the image after continuous
quartering.

For example, for a 4× 4 image, its Real Ket model can be expressed as:

|φ22×22⟩ =
∑

i1,i2=1,...,4

ci2,i1 |i2, i1⟩,

= c11|11⟩+ c12|12⟩+ c13|13⟩+ c14|14⟩

+ c21|21⟩+ c22|22⟩+ c23|23⟩+ c24|24⟩

+ c31|31⟩+ c32|32⟩+ c33|33⟩+ c34|34⟩

+ c41|41⟩+ c42|42⟩+ c43|43⟩+ c44|44⟩, (2)

It should be noted that the Real Ket model can only store 2n × 2n size
images, which edge length is limited to exponential multiple of 2, so it cannot
store rectangular images. Moreover, quantum image storage with this model
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requires the consumption of a lot of quantum bits for the representation of
color information.

2.2 BRQI Model

The BRQI quantum image representation model [18] is an improvement of
the NEQR model [16] using quantum bit-plane method, which can represent
gray-scale and color images of size 22n−k × 2k. The gray-scale images with
BRQI model can be represented as [18]:

|Ψ⟩ = 1√
22n+3

23−1∑
l=0

22n−k−1∑
x=0

2k−1∑
y=0

|f(x, y)⟩|x⟩|y⟩|l⟩, (3)

where l means the information of the bit-plane, l ∈ {0, 1, 2, . . . , 7}, |f(x, y)⟩
denotes the pixel information of the bit-plane, f(x, y) ∈ {0, 1}, |x⟩|y⟩ is the
coordinate information of the image.

If is it necessary to decompose an color image into three gray-scale
images according to the channels, so the color image can be represented as:

|Ψ⟩ = 1√
3
(|ΨR⟩|01⟩+ |ΨG⟩|10⟩+ |ΨB⟩|11⟩), (4)

where |ΨR⟩, |ΨG⟩, |ΨB⟩ denote the image information of R, G, B channels,
respectively.

BRQI model, which can represent both gray-scale and color images and
significantly reduces the amount of occupied quantum bits compared to the
NEQR model, uses the quantum bit-plane method to describe the color
information in an image. Yet, this model’s pixel location encoding law is
straightforward and simple to spot for attackers.

3 The Proposed Model – QBRK

Based on the benefits and drawbacks of the two models described
in Section 2, we propose a new quantum image representation model
named quantum bit-plane representation of the Real Ket (QBRK). It com-
pletes the quantization of the model and expands its application. QBRK
realizes the quantized representation of the Real Ket model, and extends
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its application to the rectangular image with the size of 22n−k × 2k. In the
following, we describe the representation of gray and color images by QBRK
model.

3.1 QBRK Representation for Gray-scale Image

The traditional Real Ket model can only store 2n×2n images. To enlarge the
storage size of images, we do the following modification.

Suppose s = min{2n − k, k}, t = max{2n − k, k}. The image of
22n−k × 2k can be represented as:

|φ22n−k×2k⟩ =
∑

is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

cit,...,i1 |it, . . . i1⟩, (5)

where cit,...,i1 represents color information, it, . . . i1 represents the position
information after image cutting.

To clearly record the pixel location code, here we still adopt the idea
of image segmentation. First, we split the image into four equal parts, and
each image block is numbered with 00, 01, 10 and 11, respectively. After the
short edge of the image is divided into units of pixels, we continue to bisect
the image along the long edge direction, and mark the cut image block as 0
and 1 from left to right, until the long edge is also divided into the smallest
pixel units. At this point, we have completed the pixel encoding of the
image.

The model uses the quantization bit-plane method to represent the color
data of the image. The color information cit,...,i1 of a gray-scale image with a
gray-scale scope of [0, 28 − 1] can be expressed as:

cit,...,i1 =
1√
23

7∑
l=0

|g(it, . . . , i1)⟩|l⟩, (6)

where g(it, . . . , i1) ∈ {0, 1}, and l ∈ {0, 1, . . . , 7}. Thus a 22n−k × 2k gray-
scale image can be specifically represented by QBRK as:

|φ22n−k×2k⟩ =
1√
23

7∑
l=0

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

× |g(it, . . . , i1)⟩|it, . . . i1⟩|l⟩, (7)
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As can be seen from Equation (7), the model indicates that a 22n−k × 2k

gray-scale image takes up 2n+4 quantum bits, where the position data of the
image takes up 2×s+(t−s) = s+t = 2n quantum bits, the gray-scale value
of the image takes up 1 quantum bit, and the quantum bit-plane information
for storing the color takes up 3 quantum bits.

Figure 1 is an example of a 2 × 4 gray-scale image, and the deci-
mal representation of the pixel gray-scale values is labeled in Figure 1(a),
which is used in this paper as an example to show how QBRK is stored.
Figure 1(b) shows how QBRK represents a representation of pixel location
information.

As can be seen in Figure 1(b), QBRK indicates that a 2 × 4 image
needs to be cut twice. First, the image is quadratically divided and encoded
sequentially, at which point the width of the image is already in pixels and
no further cuts can be made. Subsequently, the image subblocks are bisected
along the direction perpendicular to the length and encoded sequentially to
obtain the pixel location representation.

(a) 

(b)  

000 032 064 080 

128 160 224 255 

Figure 1 Example of a 2×4 gray-scale image (a) Decimal representation of image gray-
scale values (b) Encoding process and pixel location.
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According to Equation (8), the storage process of the image can be
obtained by combining the quantum model proposed in this paper as:

|φ0⟩ = 1√
23

(|0⟩|000⟩+ |0⟩|100⟩+ |0⟩|001⟩+ |0⟩|101⟩

+ |0⟩|010⟩+ |0⟩|110⟩+ |0⟩|110⟩+ |1⟩|111⟩)

|φ4⟩ = 1√
23

(|0⟩|000⟩+ |1⟩|100⟩+ |0⟩|001⟩+ |1⟩|101⟩

+ |0⟩|010⟩+ |1⟩|110⟩+ |1⟩|110⟩+ |1⟩|111⟩)

|φ5⟩ = 1√
23

(|0⟩|000⟩+ |1⟩|100⟩+ |0⟩|001⟩+ |0⟩|101⟩

+ |0⟩|010⟩+ |1⟩|110⟩+ |1⟩|110⟩+ |1⟩|111⟩)

|φ6⟩ = 1√
23

(|0⟩|000⟩+ |0⟩|100⟩+ |1⟩|001⟩+ |1⟩|101⟩

+ |0⟩|010⟩+ |0⟩|110⟩+ |1⟩|110⟩+ |1⟩|111⟩)

|φ7⟩ = 1√
23

(|0⟩|000⟩+ |0⟩|100⟩+ |0⟩|001⟩+ |0⟩|101⟩

+ |1⟩|010⟩+ |1⟩|110⟩+ |1⟩|110⟩+ |1⟩|111⟩)

|φ1⟩ = |φ2⟩ = |φ3⟩ = |φ0⟩,

(8)

where |φl⟩ denotes the gray-scale image information stored in the l bit-plane
and l ∈ {0, 1, . . . , 7}.

The complete information of the image is expressed as:

|φ⟩ =
7∑

l=0

|φl⟩|l⟩. (9)

3.2 QBRK Representation for RGB Color Images

Color image can be represented as a superposition of gray-scale images on the
R, G, B channels. Therefore, when representing a color image, it is sufficient
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to represent the gray-scale images on each of the three channels.

|φR⟩ = 1√
23

7∑
l=0

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

× |gR(it, . . . , i1)⟩|it, . . . i1⟩|l⟩

|φG⟩ = 1√
23

7∑
l=0

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

× |gG(it, . . . , i1)⟩|it, . . . i1⟩|l⟩

|φB⟩ = 1√
23

7∑
l=0

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

× |gB(it, . . . , i1)⟩|it, . . . i1⟩|l⟩,

(10)

where l ∈ {0, 1, . . . , 7}, |gR(it, . . . , i1)⟩, |gG(it, . . . , i1)⟩, |gB(it, . . . , i1)⟩ ∈
{0, 1}, |φR⟩, |φG⟩, |φB⟩ store the image information on each of the three
RGB channels. Thus, the color image can be represented as a whole as:

|φ⟩ = 1√
3
(|φR⟩|01⟩+ |φG⟩|10⟩+ |φB⟩|11⟩), (11)

where |φR⟩, |φG⟩, |φG⟩ denote the image information of R, G, B channels,
respectively.

Therefore, using QBRK model to represent a color image of size
22n−k × 2k requires 2n+6 quantum qubits, where 2n quantum bits represent
the position information of the image, 1 quantum bit represents the color
information on different bit-planes, 3 quantum bits represent the bit-plane
information, and 2 quantum bits represent the color channel information.

3.3 The Advantages of QBRK

Real Ket model can only represent square images, but QBRK can represent
22n−k×2k images, increasing the range of applicability of the model. Distin-
guished from the traditional quantum image representation model based on
NEQR model, QBRK model is improved based on the image segmentation
principle of the Real Ket model. QBRK model is more proper for quantum
image encryption because the quantum encoding regularity is not obvious
and the position encoding of the image can be sliced.

Table 1 lists the number of quantum bits used by some quantum image
representation models for encryption of 22n−k × 2k color images. It also
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Table 1 Number of quantum bits occupied by different models
Quantum Model Number of Occupied Quantum Bits
NEQR [16] 2n+ 24
NCQI [19] 2n+ 24
BRQI [18] 2n+ 6
QRCI [19] 2n+ 6
QBRK (proposed) 2n+ 6

shows that QBRK occupies fewer quantum bits, which can effectively save
storage space.

4 Image Encryption Algorithm Based on QBRK

An image encryption technique is put forward on the basis of the pixel
position encoding and color information representation properties of QBRK
model with chaotic systems and quantum bit-plane XOR operations. Figure 2
illustrates its flowchart. First, we use QBRK model to represent the original
image as |Φ⟩. Second, we generate two matrices to perform the rank trans-
formation on the bit-plane using a modified logistic chaos system. Third, we
perform XOR operation on pixels at the same location based on the parity bit-
plane, and then overlay the bit-plane for the image |P ⟩. Finally, we use the
logistic chaos system to disrupt the pixel positions for the cipher image |C⟩.

Figure 2 Encryption process.

4.1 Bit-plane Encryption

QBRK model distributes the color information of a gray-scale image on eight
bit-planes, so that the color information on each bit-plane is either 0 or 1.
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In bit-plane encryption, we construct the transformation matrix using chaotic
mapping, which makes the key randomized.

Step 1: For an image of 22n−k×2k, let M = 22n−k, N = 2k. Use the chaotic
system [20] shown in Equation (12) to generate two chaotic sequences, where
the length of y1 is M ×M , and the length of y2 is N ×N .

xi(ki + 1) = µ× xi(ki)× (1− xi(ki))

yi(ki + 1) =
1

π
× arcsin(sqrt(yi(ki + 1))),

(12)

where i ∈ {1, 2}, k1 = 0, 1, 2, . . . ,M × M , k2 = 0, 1, 2, . . . , N × N , and
xk, yk ∈ {0, 1}.

Step 2: The two chaotic sequences obtained are mapped to integer sequences
respectively by the following equation.{

p(k1) = round(y1(k1)× α1) mod M

q(k2) = round(y2(k2)× α2) mod N,
(13)

where k1 = 0, 1, 2, . . . ,M × M , k2 = 0, 1, 2, . . . , N × N , and α1, α2 are
random keys larger than M and N respectively.

Step 3: Convert the obtained matrix p and q into the matrix Cp and Cq of bit-
plane row and column transformation according to the matrix transformation
rules of Equations (14) and (15) respectively.

Cp(x, y) =

{
1 n = p(x) + 1

0 n ̸= p(x) + 1,
(14)

Cq(x, y) =

{
1 m = q(y) + 1
0 m ̸= q(y) + 1,

(15)

where x and y are the position subscripts of the formed row and column
transformation, x ∈ [1,M ], y ∈ [1, N ].

Step 4: Convert the color information on each bit-plane into a matrix |Ei⟩
form of size M × N . Then perform row and column transformation for the
eight bit-planes as shown in Equation (16).

|Ψi⟩ = Cp × |Ei⟩ × Cq, (16)

where i ∈ {0, 1, . . . , 7}.
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Hence, the ciphertext image acquired by the first encryption |A⟩ can be
expressed as:

|A⟩ = 1√
23

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

7∑
i=0

Cp × |Ei⟩ × Cq|it, . . . i1⟩|l⟩,

=
1√
23

∑
s,...it=0,1

∑
i1,i2...is=00,01,10,11

7∑
i=0

|Ψi⟩|it, . . . i1⟩|l⟩. (17)

4.2 Parity Bit-plane Based XOR Operation

After the bit-plane encryption operation, we obtain the transformed eight bit-
planes |Ψi⟩, i ∈ {0, 1, . . . , 7}, and then we perform an XOR operation on the
elements in the same positions of the odd and even bit-planes respectively.
Next, we replace the value in the bit-plane with the smaller number with the
obtained result. Finally, we change the original value in the bit-plane to the
lower number. The specific operations performed are as follows.

|Ψ0(x, y)⟩ = |Ψ0(x, y)⟩ ⊕ |Ψ2(x, y)⟩,

|Ψ1(x, y)⟩ = |Ψ1(x, y)⟩ ⊕ |Ψ3(x, y)⟩,

|Ψ2(x, y)⟩ = |Ψ2(x, y)⟩ ⊕ |Ψ4(x, y)⟩,

|Ψ3(x, y)⟩ = |Ψ3(x, y)⟩ ⊕ |Ψ5(x, y)⟩,

|Ψ4(x, y)⟩ = |Ψ4(x, y)⟩ ⊕ |Ψ6(x, y)⟩,

|Ψ5(x, y)⟩ = |Ψ5(x, y)⟩ ⊕ |Ψ7(x, y)⟩,

|Ψ6(x, y)⟩ = |Ψ6(x, y)⟩ ⊕ |Ψ0(x, y)⟩,

|Ψ7(x, y)⟩ = |Ψ7(x, y)⟩ ⊕ |Ψ1(x, y)⟩,

(18)

where (x, y) is the position coordinate of the pixel in the bit plane, x ∈
[1,M ], y ∈ [1, N ].

Hence, the ciphertext image acquired by the first encryption |P ⟩ can be
expressed as:

|P ⟩ = 1√
23

7∑
l=0

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

|Ψi⟩|it, . . . i1⟩|l⟩. (19)
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Due to the self-reflexive nature of the heterogeneous operation itself,
while c = a ⊕ b, a ⊕ b ⊕ a = c ⊕ a = b. Therefore, in the decryption
process, we use a stepwise decryption starting from |Ψ6⟩ and |Ψ7⟩.

4.3 Pixel Position Information Encryption

After changing the color of the pixel, we designed the following operation to
change the position of the pixel. With the discussion in Section 3, the encryp-
tion of a 22n−k × 2k quantum image using the present model requires cutting
t = max{2n − k, k} times. Therefore, according to the logical map [21],
we generate a chaotic sequence with a length of t, and establish a map of the
sequence and the position coding obtained by each cut of the pixel. Then, the
chaotic sequence is sorted to disrupt the pixel position coding. Finally, the
new position code is converted to octal, and all pixels in the image are sorted.

Step 1: Generate a chaotic sequence [21] of length t by

xk+1 = µ× xk × (1− xk), (20)

where k = 0, 1, 2, . . . , t and xk ∈ {0, 1}.

Step 2: Establish a map of the sequence and the position coding obtained
by each cut of the pixel. The specific mapping relationship is shown in
Equation (21).

|it, . . . i1⟩ =


First cut : |i1⟩ −→ xt

Second cut : |i2⟩ −→ xt−1

. . .

The t − th cut : |it⟩ −→ x1,

(21)

Step 3: The chaotic sequences are compared in order of size, if xk is smaller
than xk+1, the position information corresponding to xk and xk+1 is not
changed; conversely, if xk is larger than xk+1, the position information
corresponding to xk and xk+1 is exchanged.

Convert the position information of pixels into octal representation to sort
from small to large, and we can get the encrypted image |C⟩ by:

|C22n−k×2k⟩ =
1√
23

∑
is+1,...it=0,1

∑
i1,i2...is=00,01,10,11

7∑
i=0

× |g(it, . . . , i1)⟩|it, . . . i1⟩|l⟩, (22)

where ik, . . . i1 is the pixel position sequence obtained after encryption.
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Figure 3 Example of image encryption process.

Take an image of 22×23 as an example, we chose µ = 4, and x0 = 0.78.
Then we can get a chaotic sequence of length 3.

sequence : 0.78 0.6864 0.8610. (23)

According to the rules defined above, we this results in the encryption
process of the image as shown in Figure 3.

Figure 3(a) shows the initial position encoding of every pixel of
the image. For a 22 × 23 image, the image needs to be cut 3 times to get
the encoding of the image. By sorting the chaotic sequence, we exchange the
code of the corresponding third segment with the code of the second segment.
Figure 3(b) illustrates the position encoding of the disordered pixels, and
the blue part indicates the corresponding octal number. Figure 3(c) presents
the result after sorting by octal number size, and the blue part indicates where
the pixel at that position is located in Figure 3(a). Figure 3 displays that the
chaotic sequence is extremely short, only one cut position exchange is experi-
enced to achieve the effect that all pixels outside of (1, 1) and (4, 4) have com-
pleted the position transformation. For a 512×512 image, we need to generate
a logistic chaos sequence of length 8 for dislocation, which can produce a
better dislocation effect and complete the operation of pixel diffusion.

Take the pixel at position (3, 4) as an example, it needs to go through
three cuts to get the complete pixel code. In the first cut, it belongs to the third
part with position code |10⟩; in the second cut, it belongs to the second part
with position code |01⟩; in the third cut, it belongs to the second part with
position code |1⟩. Therefore, the initial position code of (3, 4) is |10110⟩.
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Subsequently, the pixel position code is scrambled and the position code of
(3, 4) becomes |01110⟩. Finally, the octal representation of the position code
is sorted, and the initial pixel (3, 4) is converted to the position of (2, 7).

5 Image Simulation Results and Complexity Analysis

For testing purposes the encryption and decryption roles of the proposed
algorithm, Intel(R) Core(TM) i5-10300H CPU @ 2.50 GHz processor,
Windows 10, 64-bit operating system are used in Matlab 2018b for simulation
experimental processing. In the simulation experiments, we set the keys as
µ1 = 4, µ2 = 4, α1 = 1015, α2 = 1015, x1(1) = 0.78, x2(1) = 0.32,
sumA = Sum of the pixel grayscale values of the channels.

We choose the color image “Lena” and grayscale image “Peppers” of both
size 512 × 512 for simulation experiments. Figure 4 presents the original,
ciphertext and plaintext images obtained after decryption. It must be noted
that we can see no difference between the decrypted and the original images
with the naked eye, and we cannot get any information of the original image
visually from the ciphertext image.

5.1 Histogram Analysis

In this subsection, in order to count the distribution of gray-scale levels in
the image to check the role of encryption, we put the image to a gray-scale
histogram analysis. Figure 5 illustrates the histograms of the three signal

Figure 4 Simulation experiment results figures (a)–(c) are the original image, encrypted
image, and decrypted image of ‘Lena’ image in order; (d)–(f) are the original image, encrypted
image, and decrypted image of ‘Peppers’ image in order.
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Figure 5 The histograms of the three signal channels for ‘Lena’ and ‘Peppers’ (a), (c),
(e) represent the gray-scale scale histogram of RGB channel of ‘Lena’ image; (b), (d), (f)
represent the gray-scale scale histogram of RGB channel of ciphertext image; (g) (h) represent
the gray-scale scale histogram of ‘Peppers’ image and its ciphertext image.

channels for the ‘Lena’ plaintext and ciphertext color images as well as the
histogram for the ‘Peppers’ in gray-scale image. The illustration shows how
much more uniform the histogram information is for the ciphertext image
than it is for the plaintext image. As a result, it can be concluded that the
plaintext image cannot be immediately inferred from the ciphertext image
acquired.

5.2 Time Complexity Analysis

As we know, time complexity is also an important index for image encryption
algorithm, for an image of 22n−k × 2k, let t = max{2n − k, k}, there are
three parts that take up more time in the process of image encryption. The first
part is pixel position replacement, which mainly includes image cutting,
representation of pixel positions and generation of chaotic sequences, and
its time complexity is O(t) = max{O(1), O(t)}. The second part is the pixel
color perturbation part, which mainly includes the operations of perturbation
matrix generation and pixel permutation, and its time complexity is O(t2); the
third part is the pixel diffusion operation, which mainly includes the quantum
CNOT gate operation in the bit-plane, and its time complexity is O(1).

The speed of image encryption is one of the important indicators of image
encryption algorithms. For better test the proposed algorithm, we need to
compare the encryption and decryption times of color images with those
in [22], which was proposed in 2022 and applied XOR operations similar
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Table 2 Algorithm encryption and decryption time
Image QBRK(s) Chaotic Mapping(s) Ref. [22](s)
Lena 7.35 0.93 19.14

Encryption Pepper 7.05 0.90 19.97
Baboon 7.45 0.86 21.50

Lena 7.49 0.74 20.93
Decryption Pepper 7.36 0.74 19.91

Baboon 7.84 0.72 21.22

to this article for encryption. We also compare the encryption and decryption
times of different images using an improved chaotic system. Table 2 presents
the comparison outcomes. From the data in the table, we can see that the
encryption and decryption time of the proposed algorithm for three classic
images is shorter than that in [22]. At the same time, due to the improved
algorithm based on chaotic sequences and the introduction of XOR, cutting
and other operations, the encryption and decryption time of QBRK is longer
than that of chaotic systems. Therefore, it can be concluded that the model
and the algorithm encrypt in a shorter time and may have better application
prospects.

6 Security Analysis

Since ciphertext pictures could be attacked by outsiders during image trans-
mission, their security is a crucial sign of the effectiveness of image encryp-
tion techniques. We analyze the ciphertext image thoroughly and evaluates
the proposed algorithm using a variety of ways.

6.1 Correlation Analysis of Adjacent Pixels

There is a clear correlation between adjacent pixels of the images. The cor-
relation between neighboring pixels of the ciphertext image is very strong, if
we want to make the data of the ciphertext image inaccessible to the attacker
directly, we should minimize the correlation between neighboring pixels in all
directions of the ciphertext image, including horizontal, vertical and diagonal
directions. We randomly select K = 30000 pairs of adjacent pixels to detect
the adjacent pixel correlation of plaintext and ciphertext images.

We chose the color “Lena” image as an instance to detect the correlation
of adjacent pixels in different channels in horizontal, vertical and diagonal
directions. Figure 6 shows the correlation of 30,000 pairs of adjacent pixels in
the R, G and B channels of plaintext and ciphertext images in the horizontal,
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Figure 6 Correlation coefficient of adjacent pixels (a) ‘Lena’ horizontal direction (b) ‘Lena’
vertical direction (c) ‘Lena’ diagonal direction (d) Cipher horizontal direction (e) Cipher
vertical direction (f) Cipher diagonal direction.

vertical, and diagonal directions. The blue scatter, green scatter and red
scatter in the figure indicate the correlation between adjacent pixels of R
channel, G channel and B channel, respectively. It is obvious from Figure 6
that the adjacent pixels of every channel of the original “Lena” image show
strong correlation and linearity in all directions, while the adjacent pixels in
the ciphertext image are highly scattered and disordered, which means the
correlation between adjacent pixels is extremely weak. It can be concluded
that attackers cannot directly obtain the valid information from the ciphertext
image.

Moreover, the correlation coefficient is used to show the relationship
between neighboring pixels more visually. The correlation coefficient is
calculated as in Equation (24).

rxy =
cov(x, y)√
D(x)

√
D(y)

, (24)

where x and y are the positions of a pair of adjacent pixels, cov(x, y) means
the covariance of x and y, D(x) stands for the variance, rxy ∈ {−1, 1}, and
|rxy| the smaller, the lower the correlation between adjacent pixels.
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Table 3 Correlation coefficients of adjacent pixels in various directions for color ‘Lena’
image

Chaotic

Channel Direction Plain Image QBRK Ref. [23] Ref. [25] Mapping

Horizontal 0.98378886 0.00091612 0.0071 −0.001854 0.0069

R Vertical 0.97105290 0.00181037 0.0418 −0.021045 −0.0113

Diagonal 0.95833005 0.00257735 0.0092 0.0070670 0.0142

Horizontal 0.97825353 0.00117159 −0.0039 −0.029268 −0.0136

G Vertical 0.96197501 0.00223737 −0.00009 0.0012360 0.0159

Diagonal 0.94658953 0.00304897 −0.0034 −0.09406 0.0065

Horizontal 0.96651105 −0.0066649 0.0014 −0.005394 0.0108

B Vertical 0.94267581 0.00058526 0.0061 0.050137 −0.0319

Diagonal 0.92037511 −0.0012418 −0.0128 0.0019080 0.0073

The correlation coefficients of adjacent pixels in every direction of the
‘Lena’ image are listed in Table 3. The obtained results prove that the corre-
lation coefficient of the plaintext image is close to 1, that is, the correlation
between adjacent pixels of a plaintext image is strong. While the correla-
tion coefficient of the ciphertext image is close to 0, that is, no significant
correlation between adjacent pixels is found. While comparing the data in
Refs. [23, 25] and the improved logistic chaotic mapping, the correlation
coefficients of adjacent pixels in the nine directions of the proposed algorithm
are only higher in one direction than in [23], slightly higher in only two
directions than [25], and lower in all directions than the chaotic mapping.
This means that the proposed algorithm has lower correlation coefficients of
adjacent pixels in more directions. And this advantage does not solely rely
on encryption with chaotic mapping. Therefore, attackers cannot decipher
ciphertext images through statistical analysis and correlation analysis.

6.2 Information Entropy Analysis

Information entropy analysis is a significant index to test image encryption
algorithms. The formula for calculating the information entropy is shown
below.

H(X) = −
n∑

i=1

p(xi)log2p(xi), (25)

where n denotes the gray-scale level of the image, and all the images used in
this paper have n = 256, and p(xi) means the possibility of occurrence of
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Table 4 Information entropy of ‘Lena’ images on different channels
Channel Plain Image QBRK Ref. [24] Ref. [26] Ref. [25] Chaotic Mapping
R 7.3388 7.9993 7.9938 7.9974 7.999281 7.9911
G 7.4963 7.9993 7.9951 7.9976 7.999337 7.9912
B 7.0583 7.9994 7.9952 7.9974 7.999335 7.9911
Average 7.2978 7.99933 7.9947 7.9975 7.999318 7.99113

the gray-scale value xi. Since the color range of each channel of the image is
within [0, 28 − 1], the theoretical value of H(X) is 8.

We take a 512 × 512 color ‘Lena’ image as an example and perform
information entropy analysis for R, G and B channels, and compare the results
with those in Refs. [24–26] and the improved logistic chaotic mapping.
We list all the data in Table 4. From the table, the data entropy of the
plaintext image is significantly smaller than that of the ciphertext image.
And the average value of the information entropy of each channel of the
ciphertext image reaches 7.99933, all of which are higher than those in
Refs. [24–26] and chaotic mapping, so it can be concluded that the ciphertext
image acquired by the proposed algorithm has a higher confusion degree and
can better resist the information entropy attack.

6.3 Key Sensitivity Analysis

A good encryption algorithm must exhibit a high sensitivity to the key, which
can be changed by a very small amount and still have a huge impact on
encryption and decryption. We set seven keys to decrypt the cipher image
which are µ1, µ2, α1, α2, x1(1), x2(1), sumA. µ1 and µ2 are used to control
the degree of chaos of the logistic chaotic sequence. It has been shown that
the chaotic state is optimal when µ1 = µ2 = 4 [21], so we do not discuss
the sensitivity of µ1 and µ2. The color ‘Lena’ image is taken as an example,
and the six images shown in Figure 7 are obtained by making small changes
to each of the remaining five keys. From this figure we can observe that
the correct plain image cannot be obtained even with the key with small
differences, and the decrypted image with the wrong key cannot visualize
any valid information. Therefore, we can assume that the keys used by the
proposed algorithm are highly sensitive.

6.4 Differential Attack Analysis

Differential analysis is a selective plaintext attack [27] that can effectively
judge the encryption effectiveness of the algorithm. When a pixel value
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Figure 7 Minimally changing the key for decryption (a) x1(1) + 10−16 (b) x2(1) + 10−16

(c) α1 + 1 (d) α2 + 1 (e) sumA+ 10 (f) Correct key.

of the plaintext image is changed, the ciphertext image will be changed
substantially. We chose two metrics to evaluate the resistance of the algorithm
to differential attacks. The first metric is the pixel change rate (NPCR) it
represents the number of pixel variations between two encrypted images.
The second metric is the Uniform Average Change Intensity (UACI ) which
is used to calculate the mean number of changes in intensity between two
encrypted images. They are calculated as follows.

NPCR =

∑M
i=1

∑N
j=1D(i, j)

M ×N
× 100%, (26)

UACI =
1

M ×N

M∑
i=1

N∑
j=1

|I1(i, j)− I2(i, j)|
255

× 100%, (27)

where I1, I2 are ciphertext images, which are obtained by encrypting the
original image and the plaintext image modified by one pixel, respectively,
and D(i, j) = 0 when I1(i, j) = I2(i, j), otherwise D(i, j) = 1. We use



Quantum Image Encryption Algorithm 777

Table 5 NPCR and UACI of the images

NPCR [%] UACI [%]

Image R G B R G B

Lena 99.6162 99.6116 99.6054 33.5057 33.4224 33.4735

Peppers 99.6091 99.6130 99.6140 33.4315 33.4273 33.4894

Baboon 99.6114 99.6071 99.6063 33.4694 33.4752 33.4224

Ref. [22] in Lena 99.6535 99.5770 99.6560 33.4943 33.5117 33.5901

Ref. [25] in Lena 99.6037 99.5983 99.6159 33.4290 33.4306 33.3665

Ref. [26] in Baboon 99.6185 99.6075 99.6143 33.4766 33.4968 33.4689

Chaotic mapping in Lena 99.6136 99.6225 99.5979 33.5451 33.5846 33.6196

Chaotic mapping in Peppers 99.6323 99.6323 99.5998 33.5974 33.4359 33.7761

three different images as examples to test the algorithm’s resistance to
differential attacks and compare the results with the corresponding images
in Refs. [22, 26] and chaotic mapping. Table 5 shows NPCR and UACI
values. The ideal value of NPCR and UACI are 99.6094% and 33.4635%.

Results presented in Table 5 proves that NPCR and UACI obtained
by changing a pixel value in each channel are close to the ideal values.
Comparing with the literatures and chaotic mapping, the proposed algorithm
has better results in both NPCR and UACI . Therefore, it can be considered
that the proposed algorithm has better resistance to differential attacks.

6.5 Cropping Attack

Images may lose some data due to external attacks during transmission.
To detect the robustness of image against cropping attack. Taking a 512 ×
512 color ‘Lena’ image as an example, we do 100 × 100 edge cropping
attack, 212 × 212 and 256 × 512 center cropping attack on the ciphertext
image respectively. Figure 8 shows the attacked ciphertext images and the
corresponding plaintext images. Figure 8(e)–(h) displays that the pixels of
the decrypted image are affected to different degrees, but the main feature
information of the original image is still retained. As the cropping contin-
ues to expand, the more image information is lost in the decrypted image.
However, the cipher text image obtained by the proposed algorithm does
not affect the main image features of the decrypted image even if 50%
of the image data information is lost. Hence, it is concluded that the pro-
posed algorithm can resist cropping attacks and has good robustness against
cropping.
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Figure 8 Crop attack (a) ciphertext image with one 100 × 100 edge crop; (b) ciphertext
image with four 100× 100 edge crops; (c) ciphertext image with 212× 212 center crop; (d)
ciphertext image with 256 × 512 horizontal crop; (e)-(h) decrypted images corresponding to
the image above them.

6.6 Noise Attack

Images may suffer from different noise attacks during transmission, such as
Gaussian noise, pretzel noise, Poisson noise, etc. For detecting the anti-noise
robustness of ciphertext images, we design the anti-noise experiments on
ciphertext images to verify the stability of the encryption algorithm. We take
the color “Lena” image as an instance and add pepper noise with densities of
0.01, 0.03 and 0.1 to the ciphertext image. Then we decrypt the image with
added noise for testing, and the obtained plaintext image is filtered with 3×3,
5×5, and 7×7 median for noise removal, and Figure 9 displays the obtained
outcomes.

Figure 9 illustrates that with the increase in the density of the pretzel
noise, the decrypted image loses gradually more image information, but the
naked eye can still identify the main features of the image. As the two-
dimensional sliding template of median filtering gradually increases, the
higher the blurring of the restored image obtained, that is, the worse the
elimination effect for isolated noise points. However, it can still be considered
that the peppers of different densities can be separated from the reduced
image, that is, the image has good anti-noise robustness.
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Figure 9 (a), (d), (g) represent the ciphertext images with the addition of pretzel noise
of intensity 0.01, 0.03, 0.1, respectively; (b), (e), (h) represent the corresponding decrypted
images; (c), (f), (i) represent the images after noise removal, respectively.

7 Conclusions

This paper puts forward a quantum bit-plane representation of the Real Ket
model (QBRK). The model implements the quantization of the Real-Ket
model and extends the application to rectangular images of 22n−k × 2k.
In addition, the model is also applicable to grayscale and color images. On the
basis of the QBRK model and chaotic system, an image encryption algorithm
is proposed that relies on pixel position encoding for slice dislocation and
quantum bit-plane XOR operation. Experimental results of simulations prove
that the QBRK-based image encryption algorithm has low complexity, high
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security, and resistance to typical image attacks. At the same time, we have
also demonstrated through experiments that the advantages of the proposed
algorithm do not solely depend on the improved chaotic mapping.
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