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Abstract

The digital footprint in wireless sensor networks can bring great academic
and commercial value, but it will also bring the risk of privacy disclosure
to users. This study discusses the location privacy protection methods in
location based service under multiple scenarios. In the experiment, a false
location filtering algorithm for real-time location request scenarios and a
false path generation model for offline location release scenarios are pro-
posed. The false position filtering algorithm is implemented based on the
idea of a large top heap selection query. The algorithm can construct false
position candidate sets and filter false positions. The false track generation
model combines the false position technology and the generative adversarial
networks model, which mainly protects the user’s track data by synthe-
sizing tracks. In the attacker’s recognition experiment of a real location.
The minimum distance between the false locations generated by the algo-
rithm proposed in the study is above 400 m and the generation time does
not exceed 5 ms, generating a better set of false locations in terms of both
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effectiveness and efficiency. Compared with several commonly used privacy-
preserving algorithms, the proposed algorithm has the lowest probability of
being identified with real locations, with no more than 21% overall, and is
almost independent of the k value. the recognition accuracy of the trajectory
user link task decreases from over 90% to about 34%, indicating that the
proposed fake trajectory generation model can effectively protect users’ data
privacy. The experimental results demonstrate that the algorithm and model
proposed in the study can quickly generate physically dispersed and seman-
tically diverse sets of fake locations and effectively protect users’ trajectory
privacy, which is important for users’ digital footprint privacy protection.

Keywords: Digital footprint, false position technology, generate confronta-
tion network, synthetic track, TUL task.

1 Introduction

The emergence and popularization of sensor equipment and the Global
Positioning System (GPS) enable the digital world to collect the user’s daily
behavior track and the dynamic changes of the physical world on a large scale.
“Digital footprint” refers to all kinds of data generated by the interaction
between people and media or things, which are scattered on the Internet,
various information systems, and social media [1]. Information such as
human behavior, group characteristics, and urban development trends mined
from the digital footprints left by users on the Internet can be widely applied
to social management, resource management, environmental protection, and
public security [2, 3]. These massive digital footprints have brought fantastic
academic and commercial value to Internet service providers. However, it
also increases the risk of personal privacy data disclosure [4]. Illegal elements
can use big data analysis technology to dig out the user’s basic identity
information, home address, living habits, etc. from the user’s digital footprint.
Such behavior will cause certain adverse consequences and losses to individ-
uals and society [5, 6]. Currently, the more popular Location Based Service
(LBS) makes people more accustomed to exchanging network services with
personal information. For example, the telephone address is used for takeout
ordering and online shopping, real-time location of taxi travel, etc. [7].
Recently, as the harm caused by privacy disclosure has been gradually taken
seriously, people began to hesitate and distrust the use of LBS. This distrust
may in turn affect the future development of LBS [8]. Therefore, in the era of
big data, building an effective information security management system and



Research on Location Privacy Protection Technology 847

protecting the privacy of digital footprints is an essential part of social devel-
opment. Regarding the privacy issue based on location services, most existing
research focuses on protecting users’ location privacy through methods of
location perturbation and obfuscation, which typically use privacy metrics
such as k-anonymity. However, these schemes do not take into account
the Semantic information of the user’s location, and cannot guarantee the
semantic diversity of constructing false location sets. Currently, research
on trajectory privacy protection mainly focuses on three aspects: trajectory
generalization, false trajectories, and trajectory suppression. Most of these
methods group or mix trajectories of different users, thereby transforming
personal trajectory data recognition into k-anonymity problems. However,
most of these methods do not consider other information beyond the spatial
attributes of trajectory point data, making it difficult to ensure the availability
of generated position data. This study discusses location privacy protection
and tracks privacy protection, aiming to provide users with a more secure and
effective digital footprint privacy protection scheme.

Considering the above, the main contributions of this work include:

• To address the problem that most current fake location privacy protec-
tion schemes do not fully consider the background knowledge possessed
by attackers, the study innovatively proposes a location privacy pro-
tection scheme based on multivariate data by considering the query
probability, semantic information and physical distribution of locations.

• For the massive trajectory data generated by the increasing number of
LBS services in social networks and the shortcomings of traditional
trajectory protection methods. The study proposes a dummy trajectory
generation model based on multidimensional feature fusion, which com-
bines dummy location techniques and Generative Adversarial Networks
(GAN) models to generate privacy-preserving synthetic trajectory data.

The rest of this paper is structured as follows. Section 2 introduces the
research background of this paper as well as an overview and summary of
relevant studies at home and abroad, and presents the significance and content
of the research in view of the shortcomings of existing studies. Section 3
presents a privacy-preserving technique for digital footprints in wireless sen-
sor networks based on big data, including two parts: a fake location screening
algorithm and a fake trajectory generation model. Section 4 experimentally
validates the effectiveness of the fake location filtering algorithm to generate
fake location sets and the trajectory privacy preserving performance of the
fake trajectory generation model. Section 5 provides a concluding description
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of the article and presents the shortcomings of the study, giving ideas for
improvement and directions for subsequent research.

2 Related Work

Recently, scholars have carried out a lot of research on location privacy
protection and put forward many location privacy protection methods that
are applicable to different fields.

Wu Z et al. [9] proposed a framework for location privacy protection
system and introduced a location privacy model to describe the constraint
conditions for constructing masking ranges, achieving more efficient and
secure location privacy protection.

Then, Hassan et al. [10] investigated the implementation performance
of differential privacy technology in transportation systems and industrial
Internet of Things and other applications. They also described the problems,
difficulties, and future research directions of differential privacy technol-
ogy. This research provided a theoretical basis for the solution of physical
information system problems and data privacy protection.

Next, Wu et al. [11] proposed an LBS user privacy protection frame-
work, which mainly covered the query location and attributes of users by
constructing pseudo-query sequences. Finally, the experiment verified the
effectiveness and feasibility of the method from both theoretical analysis and
experimental evaluation.

In Zhang [12] and other scholars proposed a user privacy scheme com-
bining cache and spatial K anonymity. The multi-level cache in this scheme
could effectively reduce the exposure risk of user information and thus
achieved efficient privacy protection with small LBS server overhead.

Liu et al. [13] aimed at the problem that k anonymous regions were
prone to leak user information when choosing the construction location, thus
they proposed a completely pseudo-k anonymous algorithm that generated
multiple virtual addresses through location offset. This algorithm achieved a
higher tracking success rate without increasing communication overhead.

Currently, the protection of massive track data generated by LBS service
was mainly divided into three aspects: track generalization, false track, and
track suppression.

Zhang et al. [14] proposed a double-K mechanism. This mechanism
implemented k-anonymity by inserting multiple anonymous machine for
receiving query locations between users and location service providers.
Meanwhile, the experiment was based on a dynamic pseudonym and location
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selection mechanism, which increased the difficulty of the anonymous
machine and location service provider to obtain track.

Then, Qu Y et al. [15] introduced a differential privacy identifier in
GAN to balance the highly approximate spatiotemporal trajectory of purifi-
cation data generation and data privacy protection. The evaluation results on
real data sets verified the superior performance of this method in terms of
protection efficiency and optimization.

Next, Xiong et al. [16] designed two models of image and video privacy
protection for automatic driving using GAN. These two models hid the
real position of users by hiding the edge information and generated privacy
protection output according to the category of sensitive objects. This model
realized effective defense against attackers’ location inference in offline
applications.

Huang et al. [17] suggested a semantic-oriented antagonism network that
introduced an attention mechanism and rollover module to synthesize trajec-
tory. In the transmission simulation experiment of COVID-19 under the three
prevention measures, obtained 91%–98% of the determination measurement
coefficient.

Finally, Chen S et al. [18] proposed a differential privacy scheme for
big data publishing based on attribute correlation confusion. The experiment
innovatively constructed an identifier based on sensitive attributes and pri-
vacy ratio to evaluate the vulnerability of data sets. The experiment finally
achieved the balance between flexibility and privacy.

In the existing location privacy protection methods, the semantic infor-
mation of the user’s location is rarely considered or too dependent on trusted
third parties. That is why, the research performed in this paper compre-
hensively considers the semantic information and physical distribution of
the location to realize the fast construction of the false location set. Apart
from that, the experiment combines false location technology with GAN
and hopes to achieve efficient privacy protection by synthesizing trajectory
data.

3 Digital Footprint Privacy Protection Algorithms in
Different Scenarios

With the rapid advancement of the Internet and social networking services,
the emergence of a large number of devices equipped with various sensors,
the increasing popularity of GPS positioning in the daily use of the pub-
lic, and the large-scale deployment of various static sensing devices in urban
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management, the digital world is capturing the trajectory of daily human
behavior on an unprecedented scale. These collected digital footprints can be
vividly called “digital footprints”. How to build an information security
management system, protect digital footprints and protect users’ personal
privacy in the era of big data is a challenge that must be faced in the process of
future social development. Two common elements of digital footprint privacy
protection are user real location protection and track privacy protection.

3.1 False Location Filtering Algorithm for the Real-time Location
Request

Wireless sensors form self-organized networks through a large number of
micro-sensor nodes in the sensing area and then conduct sensing, trans-
mission, and information collaborative processing. They are usually in a
development environment when processing data and are susceptible to dam-
age and tampering. Therefore, it is extremely required to protect the privacy
of wireless sensor networks. The location privacy protection methods, when
users use LBS, include area anonymity, location disturbance and confusion,
and false location. LBS is the use of various types of positioning technology
to obtain the current location of the positioning device, and provide infor-
mation resources and basic services to the positioning device through the
mobile Internet, which has the advantages of powerful, simple and direct use,
but also brings the risk of leaking user privacy. The false location technology
relies on submitting the user’s real location and several false locations to the
LBS server so that the attacker cannot distinguish between the real location
and the false location. Figure 1 demonstrates the system architecture.

Location 
coordinates

Wi-Fi AP

Semantic information 
and historical query 

probability
Dummy location set 

query

Terminal equipment

LBS server

Figure 1 System architecture diagram.
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The user’s position information in the network is represented by longi-
tude and latitude coordinates (x, y). The LBS request includes (x, y), the
requested query content, and the date and time of submission of the request.
The false location filtering method based on location query probability and
location semantics is studied. Screening and judgment are conducted simulta-
neously. First of all, based on the large top heap selection query, the location
candidate set is generated which is close to the user’s real location query
probability. Then, the physical distance and semantic distance between the
candidate location and the real location are compared respectively, and the
final qualified false location is selected. Finally, a false location set Pdum

containing the user’s real location and the size k are generated. In addition
to the geographic information of the selected region and the user’s location,
the algorithm also needs to define the parameters related to privacy require-
ments in advance: anonymity k and proportion coefficient r. The degree of
anonymity k represents the size of Pdum. The higher the k value, the more
difficult it is for an attacker to steal the user’s real location. The proportion
coefficient r indicates the weight of semantic distance in the comprehensive
distance. Define the rectangular area composed of (n × n A) uniform grids
selected in the experiment as RL = {n × n, SRL}. Wherein, SRL is the
dataset of all location points in the region. Define the user’s current real
location as LocalR. The difference between the historical query probability
of the real location is dq. The historical query probability of access location li
is usually expressed by location query probability Pi. In this research we use
the proportion of location access time in LocalR to represent Pi, as shown in
formula (1).

Pi =
ti∑n2

i=1 ti
(1)

where, ti represents the time of access at the location. The sum of the query
probabilities of all locations in the region is equal to 1. dp and ds indicate
the physical distance and semantic distance between locations respectively.
The semantic distance ds is calculated by Jaro-Winkler similarity between
two positions. Jaro-Winkler similarity is based on the number and order of
common characters between two strings s1 and s2. The calculation of this
similarity SimJ is performed using formula (2).

SimJ =


0, m = 0

1

3

(
m

|s1|
+

m

|s2|
+

m− b

m

)
, m > 0

(2)
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(a) Select false location based on anonymity

Dummy position

(b) Convex hull area of false position set

Figure 2 Schematic diagram of false position selection and convex hull area of false
position set.

In formula (2), |s1| and |s2| are the lengths of two strings; m is the number
of characters matching two strings; b replaces the digits for the character.
Jaro-Winkler similarity SimJ−W , based on SimJ , further considers the
impact of the length of the common prefix of a string on the semantics of
the string. Its definition is shown in formula (3).

SimJ−W = SimJ + lpre × p× (1− SimJ) (3)

where, lpre denotes the length of the common prefix of two strings, and the
maximum value is 4; p is a constant factor, with a maximum of 0.25 and a
default of 0.1. The degree of anonymity of false position sets can be measured
using entropy theory. Figure 2 demonstrates the schematic diagram of the
convex hull area of the false position and the false position selected according
to the anonymity.

The uncertainty of false position set Pdum is measured by entropy, which
indicates the degree of chaos and uncertainty within the system, as shown in
formula (4).

E = −
k∑

i=1

qi log2 qi (4)

In formula (4), when the query probabilities of k locations in the pseudo
location set Pdum are equal, the information entropy Emax reaches the max-
imum value log2 k at this time, and the anonymity effect is also the best at
this time. qi denotes the query probability of different locations in the false
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location set, and its definition is shown in formula (5).

qi =
Pi∑k
i=1 Pi

(5)

The anonymous area D is defined as the convex hull area enclosed by the
outermost point of position k points in the false position set, which can be
calculated according to the shoelace formula shown in formula (6).

D =
1

2

∣∣∣∣∣
C∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (6)

In formula (6), C is the number of outermost position points in Pdum .
The semantic difference of false position set is measured by θ safety , whose
definition is shown in formula (7).

θ safety = 1− |SEM |
C2
k

(7)

where, SEM = {ds|ds(li, lj) ≤ u}; li and lj are any two positions in Pdum ;
u is the set semantic difference threshold. The size of θ safety value is
proportional to the semantic difference of the generated false position set.

3.2 False Track Generation Model for Offline Position Release

The existing track privacy protection methods usually blur the track position
by adding uncertainty, but it is tough to balance the effectiveness of privacy
protection and the practicality of data using these methods. Therefore, based
on the machine learning model, this paper proposes a false track generation
model that combines the Long Short-Term Memory (LSTM) network and
the Generation Adversary Networks (GAN). The model is applied to gen-
erate synthetic trajectory data that cannot be recognized by the trajectory
discriminator. The model consists of three important steps: track coding, track
generation and track identification. Figure 3 illustrates the overall workflow.

The track coding model used in the model includes track point coding
and track filling. Track point p = (x, y, t, A) is GPS coordinate point
with time stamp collected by LBS application. It includes longitude and
latitude coordinates (x, y), time stamps t, which can be described by r
attributes in A = {a1, a2, . . . , ar}, such as point of interest (POI) type,
access period, weather conditions, etc. Track is composed of a set of track
points arranged in sequence. Wherein pi(i ∈ {1, 2, . . . , k}) denotes the i
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Figure 3 Track data release process for privacy protection based on GAN.
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Figure 4 Neural network structure of trajectory generation model.

track point in the track. The track data set composed of n tracks is represented
as Γ = {T1, T2, . . . , Tn}. GeoHash coding is applied to represent the spatial
attributes of track points. One-hot coding is used to encode other temporal
attributes and classification attributes into binary vectors. GeoHash code
converts two-dimensional longitude and latitude into one-dimensional string.
The higher the prefix matching degree of GeoHash code in two positions, the
closer the distance between the two positions is. Figure 4 illustrates the neural
network structure of the trajectory generation model.
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In Figure 4, the model uses GAN to generate the track most similar to the
existing track. GAN is composed of two neural networks, generator D and
discriminator G. The track generator first takes real track data and random
noise z ∼ p(z) as input. Wherein, p(z) means that the noise obeys normal
distribution. The discriminator D takes the output sample G(z) of generator
G as the input, and the output sample is the probability of training data. The
goal of training generator G is to maximize the probability of misjudgement
of discriminator D, that is, the generator and discriminator play a minimax
game against the objective function shown in formula (8).

V (D,G) = min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

(8)

In formula (8), the training goal of discriminator D is to maximize the
probability of judging true data x ∼ pdata as true D(x) and minimize the
probability of judging false data as true. Therefore, the training goal of gen-
erator G is to maximize D(G(z)). To obtain the sequence characteristics of
trajectory data, LSTM is applied in D network and G network. The generator
first converts the input data into a fixed-length vector through the multi-layer
neural network embedding process, as shown in formula (9).

egi = ϕg(vgi ;Wes)

ewi = ϕw(vwi ;Wew)

ehi = ϕh(vhi ;Weh)

epi = ϕp(vpi ;Wep)

(9)

where, vsi is the binary vector obtained from the coordinates of the i-th track
point after GeoHash coding. vdi , vhi , and vpi represent the one-hour codes of
the week, hour and POI type of the track point respectively. ϕs, ϕw, ϕh and ϕp

indicate the neural networks in the embedded layer respectively; Wes, Wew,
Weh and Wep are the weight matrices of these networks. esi , ewi , ehi and epi
are the embedding vectors of the four outputs. In this work. The application
of many-to-many LSTM structure in LSTM network layer is studied. The
LSTM network layer accepts the track sequence of fusion features to generate
the same size track sequence H , as shown in formula (10).

H = LSTM (F ;WLSTM ) (10)

In formula (10), F is the fusion feature of all track points on the same
track. WLSTM is the weight matrix of LSTM network. Each feature vector
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hi in H contains the spatiotemporal attribute and semantic feature of the
composite track point. Finally, the synthetic track data is decoded from the
output of the LSTM network layer, as shown in formula (11).

vsi = Ds(hsi ;Wds)

vwi = Dw(hwi ;Wdw)

vhi = Dh(hhi ;Wdh)

vpi = Dp(hpi ;Wdp)

(11)

where, Ds, Dw, Dh, and Dp represent the use of fully connected layers with
excitation function sigmoid or softmax, respectively. hi is the vector output
by the output LSTM network layer; Wds, Wdw, Wdh, and Wdp represent the
weight matrix of the full connection layer. In general, the discriminator D
and generator G in GAN can set the binary cross entropy as the loss function
LBCE during training. This function is often used in binary classification
problems, as shown in formula (12).

LBCE = − 1

N

N∑
i=1

Qi · log(p(Qi)) + (1−Qi) · log(1− p(Qi)) (12)

In formula (12), the value of Q is 1 or 0, which is a binary label of real
data. p(Q) indicates the probability that the output belongs to Q. The pro-
posed model needs to input real trajectory data. Therefore, the experiment
needs to consider the similar loss of real track data and synthetic track data in
space-time and POI category dimensions, and use the updated loss function to
train the generator. The updated loss function L∗(Qr, Qp, Tr, Tp) is shown in
formula (13).

L∗(Qr, Qp, Tr, Tp) = αLBCE (Qr, Qp) + βSs(Tr, Ts)

+ γSt(Tr, Ts) + λSc(Tr, Ts) (13)

Qr and Qp represent the real label of the trajectory and the prediction
label of the discriminator for the trajectory; Tr and Tp are real tracks and
synthetic tracks respectively; Ss, St, and Sc are the spatial similarity loss,
temporal similarity loss and POI category similarity loss of the two tracks
respectively; β, γ and λ represent their weights. The study used ACC@1,
ACC@5 and Macro-F1 to evaluate the accuracy of the Trajectory User Link
(TUL) task for the model. ACC@1 and ACC@5 indicate the maximum
predicted classification probability and the probability of having a correct
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classification in the top five, respectively. Macro-F1 is equal to the average
value of F1 of all categories, as shown in formula (14).

Macro-F1 =
1

v

v∑
i=1

F1i

F1 =
2PR

P +R

(14)

In formula (14), v is the number of classifications; F1 is the average of
precision P and recall R, which can reflect the overall performance of the
model. The spatial and temporal characteristics of synthetic trajectories are
evaluated by using the Hausdorff distance measurement index and the access
probability distribution index of different time periods and without POI type.
The Hausdorff distance is calculated as shown in formula (15).

H(TA, TB) = max[h(TA, TB), h(TB, TA)]

h(TA, TB) = max
pa∈TA

min
pb∈TB

∥pa − pb∥

h(TB, TA) = max
pb∈TB

min
pa∈TA

∥pb − pa∥
(15)

where, h(TA, TB) and h(TB, TA) are the one-way Hausdorff distance
between the two point sets TA and TB respectively.

4 Application of Privacy Protection Technology for Digital
Footprints in Wireless Sensor Networks Based on
Big Data

The study addresses location privacy protection methods in different scenar-
ios in location-based services, and optimizes and improves the shortcomings
of current privacy protection techniques by combining existing privacy pro-
tection techniques from two scenarios: real-time single query location and
trajectory publishing in location sharing. The current metrics for evaluating
location privacy protection techniques need to consider various aspects such
as the operation speed, security, stability and performance overhead of the
method, so the study evaluates the proposed fake location screening algorithm
in five aspects, namely the efficiency of fake location set generation, physical
dispersion, semantic diversity, uncertainty and recognition rate, and analyzes
the effectiveness of trajectory protection by suppressing the accuracy of the
TUL algorithm.
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4.1 Performance Evaluation Index and Experimental Parameter
Setting

Two algorithms are proposed in this study, namely, the false location filtering
algorithm for real-time location requests and the false path generation model
for offline location publishing. The effectiveness of the two performances is
verified by experiments. The first experiment is to validiate sthe false position
filtering algorithm. This experiment applies the Geolife [19] track data set
from Microsoft Asia Research Institute to simulate the user’s historical query
probability in various regions of the map, and supplements the semantic
information obtained through Baidu Map API. The Geolife trajectory dataset
contains 17621 GPS trajectories from 182 users from 2007 to 2012. The
coordinate range of the experimental area selected in the data set is 39.95◦–
40.00◦ N and 116.30◦–116.35◦ E. The experiment divides the area into
200 × 200 grid; The position of each grid is represented by the longitude
and latitude of the grid center.

The second experiment is to evaluate the false track generation model
for offline position release. The experiment uses the Foursquare weekly track
data set extracted from the Foursquare NYC Check-Ins data set. The attribute
data is screened in the experiment. 2/3 of the data in the data set is selected
as the training data set of the model. The remaining 1/3 serves as the test data
set. The parameter settings of Experiments 1 and 2 are shown in Table 1.

4.2 Experimental Results of False Location Filtering Algorithm
for Real-time Location Request

In this experiment we use five metrics to evaluate the algorithm: physical
dispersion, false position set generation efficiency, semantic diversity, uncer-
tainty and recognition rate. In addition, three other algorithms are selected for
performance comparison: Dummy Location Selection (DLS) algorithm [20],

Table 1 Experimental parameter setting
Experiment 1 Experiment 2

Parameter Value Parameter Value
Anonymity k ≥2 Batch size 256
Scale factor r 9 Parameter saving cycle/epoch 100
Semantic difference threshold u 0.15 Number of longest tracks 144
Number of grids 20 × 20 Loss function weight (α, β, γ, λ) 1,5,1,1
Number of selectable areas 100 Geohash encoding length 8
Wi-Fi AP coverage area/m 700 Geohash binary output threshold 0.5
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Figure 5 Relationship between k value and minimum distance between false position.

Enhanced-DLS algorithm [21] and Maximum and Minimum Dummy Selec-
tion (MMDS) algorithm [22]. The physical dispersion of false location sets
can be measured from the minimum distance between false locations and
the area of anonymous regions. The larger the value of both, the more evenly
distributed the false positions generated. The relationship between the k value
and the minimum distance between the false positions and the area of the
anonymous area covering the false positions is shown in Figures 5(a) and
5(b), respectively.

In Figure 5(a), the minimum distance between false positions generated
by the four algorithms gradually decreases with the increase of k value.
It tends to flatten after k ≥ 5. When k ≤ 4, the minimum distance of the
proposed algorithm and MMDS algorithm is more than 400 meters, which is
significantly greater than DLS and Enhanced-DLS algorithms. The two algo-
rithms that perform well consider the physical distance and semantic distance
between locations. The result shows that ensuring semantic diversity can
make the generated false position distribution more dispersed. In Figure 5(b),
when k > 5, the anonymous area of MMDS algorithm is much larger than
that of other algorithms. It reached 0.12 square kilometers at k = 8. This is
because when the other three algorithms generate false locations, the first
consideration is the historical query probability of the location. However,
the algorithm proposed in the study still has better physical dispersion than
DLS and Enhanced-DLS algorithms. Figure 6 illustrates the influence of the
k value on the time when different algorithms generate false positions.
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Figure 6 The influence of k value on the time of generating false position by different
algorithms.

In Figure 6, when the value of k is small, the time for MMDS algorithm
and the algorithm proposed in the study to generate false position sets does
not exceed 5 ms; The time of DLS and Enhanced-DLS algorithms is between
37 and 45 ms. Figure 6(b) shows the time-consuming change of each algo-
rithm to generate false position set when the value of k continues to increase.
Due to the limited number of POI categories, the probability of successful
anonymity of MMDS algorithm after k ≥ 10 is extremely low. Therefore, it is
only required to compare the time consumption of the other three algorithms.
The increase of the proposed algorithm is between Enhanced-DLS and DLS,
and the time difference is not more than 15 ms. This method adopts the
strategy of selecting while judging, which is the most efficient in generating
false position sets among the three algorithms. The semantic diversity of false
location is evaluated by θ safety . The larger the value, the more difficult it is
for attackers to determine the semantic information of the real location. The
θ safety of the false position set is shown in Figure 7.

In Figure 7, the θ safety of the proposed algorithm is between 0.8 and
0.9, slightly lower than that of MMDS algorithm. The θ safety of MMDD
is above 0.9. However, with the increase of θ safety value, the probability of
anonymity failure of the algorithm will increase until anonymity is impossi-
ble. The θ safety of Enhanced-DLS algorithm is slightly higher than that of
DLS, and about 0.7 higher. The reason is that the former considers the factor
of anonymous area. It can be seen that there is a positive correlation between
physical dispersion and semantic diversity. Figure 8 illustrates the position
entropy and recognition rate of the false position set.
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In Figure 8, except for the MMDS algorithm, the position entropy of the
other three algorithms gradually approaches the maximum value log2 k as
the value of k increases. The recognition rate in Figure 8(b) is the attacker’s
recognition rate of the user’s real location. The higher the value, the lower
the anonymity rate of the algorithm. The false location set generated by the
three algorithms is most easily recognized by attackers, and its recognition
rate is close to 90% at the highest. The algorithm proposed in the study has
the lowest probability of being recognized, which does not exceed 21% as
a whole, and is almost unaffected by the increase of k value. According
to the experimental results of five metrics, it can be seen that the proposed
false location filtering algorithm can quickly generate physically dispersed
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and semantically diverse false location sets. Therefore, the proposed method
can effectively prevent the attack and identification of attackers, and plays an
important role in protecting the privacy of users’ digital footprints.

4.3 Experimental Results of False Track Generation Model for
Offline Position Release

To verify the data privacy and practicability of the model, firstly, the effective-
ness of the model for trajectory privacy protection is evaluated on TUL. Then
the validity of the synthetic trajectory in data analysis is verified according
to its spatiotemporal characteristics. The research applies traditional random
perturbation [23], trajectory rotation [24] and Trajectory generation model
based on GAN (TrajGAN) [25]. The core idea of TUL task is to identify
users based on data mining. The higher the recognition accuracy, the worse
the ability of track privacy protection. Figure 9 demonstrates the accuracy of
TUL task for user identification of different algorithms.

In Figure 9, the model used in the study significantly suppresses the
recognition accuracy of TUL tasks; In particular, the decline of ACC@1
and Macro-F1 metrics is the most obvious, falling from more than 90% to
about 34%. ACC@5 also decreases from 98.36% to 53.18%. It shows that
the false track generation model proposed in the study can effectively protect
the user’s data privacy. The Hausdorff distance of the track point set is shown
in Figure 10.
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In Figure 10, the track data with the smallest average Hausdorff distance
is random disturbance. But this method is to preserve spatial similarity at the
expense of privacy. The trajectory generated by trajectory rotation has the
maximum average Hausdorff distance, which is 16.8 kilometers, and also has
the lowest spatial similarity. The time interval access probability distribution
and POI type access probability distribution of the original track and the
composite track are shown in Figure 11.

From Figure 11, the model proposed in the study can better fit the
overall time access frequency distribution of the original data compared with
the random disturbance. This indicates that the model better preserves the
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time and POI category characteristics of the track data. Generally speaking,
there is always a conflict between user privacy protection and data validity.
However, the model based on deep learning can better monitor and quantify
this relationship in the process of training and testing, so as to find the most
balanced parameter setting. The performance of the proposed algorithm on
several metrics is not necessarily optimal, while it is the most balanced. It can
not only maintain the spatiotemporal characteristics of data, but also ensure a
low TUL recognition rate.

5 Conclusion

The popularization and development of LBS have brought great convenience
to social media based on mobile devices, satellite positioning, and geographic
tagging to collect users’ digital footprints in the cyberspace. However, how to
avoid large-scale private information leakage caused by digital footprints is a
crucial issue. For the protection of location privacy in different scenarios,
the false location filtering algorithm of multiple data and the false path
generation model combined with false location technology and GAN are
proposed. Protecting user privacy data by constructing fake location candi-
date sets and synthesizing trajectories. The false position filtering algorithm
performs well in five indicators. The time to generate false position set is
within 5 ms. The index θ safety of semantic diversity is between 0.8 and
0.9. Compared with the original trajectory, the three metrics of the model
proposed in the study in the TUL task decreases by about 64%, 45.9% and
61.3% respectively. The results prove that the synthetic trajectory generated
by the model can significantly inhibit the accuracy of TUL task prediction,
and thus effectively protect the user’s trajectory privacy. However, the model
proposed in the study does not consider the variations in privacy needs of
different users, so it is tough to carry out practical applications in complex
scenarios. In the subsequent research, it is required to adjust the privacy
protection level according to the actual situation, so as to avoid excessive
data protection and further enhance the practicability of the model.
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