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Abstract

The Internet of Things (IoT) is an all-encompassing system that tracks
and monitors real-world activities by gathering, handling, and interpreting
data from IoT equipment. It has successfully been applied in several fields,
particularly smart agriculture since there is a high demand for high-quality
foodstuffs worldwide. It is essential to develop new agricultural production
schemes to meet these demands. The heterogeneity of IoT devices makes
security essential for IoT communication. Also, IoT devices are restricted in
terms of processing, memory, and power capacities. Therefore, energy is a
key factor in extending the life of an agricultural IoT network. This study
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presented a novel energy-aware and secure routing scheme using the Whale
Optimization Algorithm (WOA) for IoT, referred to as SRWOA. The simula-
tion results indicate that SRWOA uniformly distributes energy consumption
in IoT and maximizes the packet delivery ratio.

Keywords: Internet of Things, agriculture, energy efficiency, whale opti-
mization algorithm.

1 Introduction

The Internet of Things (IoT) empowers physical objects in a variety of form
factors to exchange data and facilitate better communication [1, 2]. In recent
years, ubiquitous data access has expanded dramatically to include a variety
of fields, such as embedded technology that utilizes actuators and sensors in
order to gather data and respond appropriately [3]. Embedding the Internet
in various things and allowing them to communicate with each other is the
primary driver of IoT’s development [4]. Using a combination of front-end
computing devices and back-end services, IoT systems map relationships
between the real and digital worlds [5]. Front-end devices can incorporate
embedded computer systems that contain sensing devices, including mobile
phones, cameras, wearable devices, and RFID tags. These front-end devices
are typically situated in an open environment that is beyond the control of
the system administrator [6]. Back-end systems are software systems that
integrate, process, and analyze the data collected by the front-end devices;
they may also allow users to view analyzed results [7]. IoT systems typically
consist of three layers, as illustrated in Figure 1. IoT devices form the
first layer. The network layer comprises the communication network, which
consists of gateways to facilitate the control of IoT devices locally and link
them to the Internet. In this layer, storage and upper layer application services
are provided, including processing and analysis of data [8].

Machine learning and artificial intelligence are fundamental pillars of
the IoT, playing a pivotal role in unlocking its full potential [9]. With
the ability to analyze and interpret massive volumes of data generated by
interconnected devices, machine learning algorithms can extract meaningful
patterns, uncover valuable insights, and make intelligent predictions [10, 11].
Artificial intelligence techniques, such as deep learning and neural net-
works, enable IoT systems to adapt, learn, and make real-time decisions
based on the data they receive [12]. This synergy between machine learn-
ing, artificial intelligence, and IoT empowers organizations and industries
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to optimize processes, improve operational efficiency, enhance predictive
maintenance, enable autonomous systems, and create personalized experi-
ences for users [13]. Moreover, by continuously learning from data streams,
machine learning algorithms can identify anomalies, detect potential threats,
and enhance security in IoT ecosystems [14, 15]. In essence, the integration of
machine learning and artificial intelligence in IoT revolutionizes industries,
drives innovation, and paves the way for a more intelligent and connected
future [16]. Smart electricity networks are essential in the IoT ecosystem as
they provide effective power management and promote sustainable energy
usage [17, 18].

Connectivity is an integral part of IoT and has a highly distributive
nature, ranging from a local to a global scale. Compared to wired connec-
tions, wireless devices offer greater cost savings and ease of installation.
Furthermore, the wide range of wireless technologies contributes to the
development of a unique solution to the many IoT requirements [19]. The
requirements have been thoroughly reviewed, including application protocol,
network suitability, range, throughput, and the available framework. As a
result, IoT requires energy-constrained devices that are typically powered by
batteries [20]. As battery replacement is not a feasible solution for critical
applications, IoT devices are expected to be durable for years, making energy
efficiency a priority [21]. A major feature of the IoT is the ability to connect
heterogeneous devices together [22]. Since these devices are designed by dif-
ferent vendors, they are not often standardized. In this regard, interoperability,
which enables different devices to communicate with one another, is also an
important issue to resolve. As IoT continues to expand and exchange large
amounts of data, there is also an increasing threat to security. Several types
of attacks have been reported in the literature against IoT devices [23, 24].

The IoT has the potential to change the way we live by transforming
ongoing systems. It has been incorporated into a variety of fields, including
transport, industry, smart city, healthcare, and agriculture. In order to feed
the growing population, the agriculture industry must implement IoT-based
systems in its field operations [25]. IoT-driven agriculture decreases wasted
water, pesticides, and increases seed productivity. By providing efficiency
in water spraying or the optimization of inputs and treatments, IoT-based
agriculture can have a significant impact on the environment. In agriculture,
IoT platforms provide farmers with monitored data and useful solutions to
address real-life issues [26]. Wireless Sensor Networks (WSNs) have become
increasingly important as various IoT devices can be used to support their
operations [27]. With the integration of ICT into a new era of agriculture, the
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agricultural sector is experiencing a fourth revolution, Farming 4.0. In recent
years, a number of emerging technologies have been evaluated as part of
smart agriculture, including UAV technology, artificial intelligence, big data,
and data analytics [28, 29].

The IoT is transforming the agriculture industry by providing farmers
with a variety of tools to handle various challenges they face in the field. IoT-
enabled technologies allow farmers to access their farms almost anywhere
and at any time. Farming processes are regulated by sensors and actuators,
and the farm is monitored by WSN. The farm is monitored remotely with
wireless cameras and sensors, and pictures and videos are collected for
analysis. Agricultural land can also be monitored remotely via IoT using a
smart phone from anywhere in the world [30]. The use of IoT-enabled tech-
nologies has the potential to reduce crop production costs and increase land
productivity. Smart agriculture utilizes IoT in several key areas, such as crop
management, Tracking and tracing, Farm Management System, Livestock
monitoring, Waste management, Nutrient management, Precision farming,
Weather management, Soil management, and Water management [28]. Meta-
heuristic algorithms play a crucial role in IoT routing by offering adaptive and
efficient solutions to address the dynamic and resource-constrained nature of
IoT networks [31]. This paper proposes an IoT secure routing protocol for the
agriculture sector based on clustering and tree-based strategies and employ-
ing the Whale Optimization Algorithm (WOA), called SRWOA. With this
mechanism, security and energy efficiency are enhanced simultaneously. The
SRWOA algorithm employs a hierarchical routing approach based on two
operations: secure clustering and a WOA-based routing tree. In addition, the
trust scheme proposed can be used to protect against attacks related to black
holes. The main contributions of SRWOA can be summarized as follows:

• Energy-efficient routing: SRWOA employs the WOA to design an
energy-efficient routing scheme for IoT networks, enhancing the
longevity of agricultural IoT devices.

• Security enhancement: SRWOA integrates a secure clustering and hier-
archical routing approach to mitigate potential security threats, including
black hole attacks.

• Uniform energy distribution: Our proposed scheme aims to uniformly
distribute energy consumption across IoT devices, ensuring a balanced
energy utilization in the network.

• Packet delivery optimization: Simulation results demonstrate that
SRWOA maximizes the packet delivery ratio in agricultural IoT net-
works, further enhancing their efficiency.
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Figure 1 Typical architecture of an IoT system.

2 Related Work

Based on IoT technology, Xue and Huang [32] studied WSN routing pro-
tocols for smart agriculture and algorithms for positioning nodes. They
evaluated the efficiency of different routing protocols by simulating the
environment and analyzing the results. They also developed algorithms for
positioning nodes in a WSN to optimize communication paths and reduce
energy consumption. The simulations allowed them to analyze the perfor-
mance of the protocols in a variety of situations and they used the algorithms
to identify the best positions for the nodes in the WSN in order to optimize
the communication paths and reduce energy consumption. They also studied
the impact of factors such as node energy, distance, and mobility on the
performance of the LEACH protocol. As a result, they concluded that the Low
Energy Adaptive Clustering Hierarchy protocol offers increased efficiency
when compared to other protocols, and its lifespan is further extended through
improved algorithms.
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A wide range of low-cost hardware and communication technologies
have enabled the IoT to provide productive ways of cultivating soil. These
technologies allow for real-time monitoring of soil conditions, such as tem-
perature, moisture, and pH levels, which can be used to optimize crop
yields and reduce water and fertilizer usage. Additionally, the use of IoT-
enabled precision agriculture can reduce the need for manual labor, resulting
in cost savings. By continuously monitoring soil conditions and making
timely adjustments, farmers can adjust their irrigation and fertilizer schedules
accordingly, which can improve crop yields and reduce water and fertilizer
usage. Additionally, the use of IoT-enabled precision agriculture can help
automate manual processes, leading to fewer labor costs and less time spent
managing farming operations. In order to develop new functionalities based
on IoT deployment paradigms, Ferrández-Pastor, et al. [33] studied industrial
agricultural facilities with farmers and growers. In the process of introducing
technology to agricultural applications, the user-centered design model is
used as a means of acquiring knowledge and experience. This knowledge and
experience are then used to create a customized design to meet the needs
of the user. An IoT paradigm is used as a resource to facilitate decision
making. A distributed model based on edge and fog computing paradigms
is used to implement IoT architecture, operating rules, and smart processes.
These technologies are used to propose a communication architecture. The
objective is to assist farmers in developing smart systems in both existing and
new facilities. Farmers can easily deploy different decision trees to automate
the installation.

By introducing new technologies and improving existing ones, farmers
can boost their yields while also reducing the use of chemicals, leading
to safer and more sustainable agricultural practices. Additionally, better
tracking and monitoring systems can be used to ensure the quality and
safety of agricultural products, as well as stricter regulations to minimize
environmental pollution caused by agricultural activities. Liu, et al. [30]
proposed an integrated framework system platform incorporating IoT, cloud
computing, and data mining. The new framework system provides a platform
for data collection, storage, and analysis. It also enables the use of AI-based
technologies for crop management, pest control, and crop yield prediction.
These technologies can help increase efficiency, reduce costs, and improve
the quality of agricultural products.

IoT can efficiently connect agriculture and farming bases located in rural
areas with fog computing and a WiFi-based long-distance network based on
cloud computing. For the specific purposes of monitoring and controlling
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agriculture and farms in rural areas, Ahmed, et al. [28] proposed a scalable
network architecture. The proposed solution reduces network latency to
some extent when compared with existing IoT-based agriculture and farm-
ing solutions. This paper proposes a cross-layer channel access and routing
solution for sensing and actuating. The network structure is analyzed based
on coverage range, throughput, and latency.

Precision agriculture has become a trending technology that improves
agricultural productivity. This method incorporates a variety of technologies,
such as IoT, remote sensing, information technology and WSN. Anand [34]
proposed a novel approach to the scheduling of irrigation water in precision
agriculture by utilizing wireless sensors, such as moisture and temperature
sensors. Blockchain technology is used in the proposed framework to enable
secure cloud data transfer. Further, the Improved LEACH algorithm is used to
achieve energy efficient data transfer. PIC microcontroller modules are used
to acquire data from sensors. Data acquired by the Raspberry Pi module is
then transmitted to the cloud. A blockchain-based IoT technique is then used
to secure and verify the collected data.

Cicioğlu and Çalhan [35] intend to enhance the productivity of corn
harvesting on large-scale fields using Internet of Things hardware and soft-
ware. They aim to use the hardware and software to gather data on soil
fertility, moisture levels, and weather conditions in order to provide more
accurate predictions about when it will be best to harvest the corn. This
will enable farmers to make more informed decisions about when to harvest
and maximize their yields. Using heterogeneous sensor nodes, the system
can detect acoustic signals, rain, wind, light, temperature, and pH levels in
cornfields. At coordinator nodes, special purpose sensors collect data on the
characteristics of cornfields, and these data are then relayed to the drone
through the coordinator node. Sensor nodes are only required to detect condi-
tions at specific times of the day due to the fact that the data in cornfields does
not fluctuate rapidly. In order to monitor farmers’ visual devices, the drone
sends data to the base stations. This eliminates the need for long-distance
communication between sensors in a region of large-scale cornfields.

Sankar, et al. [36] introduced a protocol called EGDAS-RPL (Energy-
aware Grid-based Data Aggregation Scheme in Routing) specifically
designed for agricultural IoT applications. The protocol consists of three main
processes: grid formation, grid head selection, and grid head parent selection.
Initially, EGDAS-RPL establishes a grid of equal-sized cells over the square
network. Subsequently, it probabilistically chooses a grid head node within
each grid. Lastly, the protocol utilizes the expected transmission count metric
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to identify the most suitable grid head parent for efficient data transfer. To
evaluate its performance, the COOJA simulator is employed for conducting
simulations. Comparative analysis with RPL and E2HRC-RPL demonstrates
that EGDAS-RPL effectively reduces packet loss ratio and end-to-end delay,
thereby prolonging the network’s lifespan.

Friha, et al. [37] present FELIDS (Federated Learning-based Intru-
sion Detection System), a solution designed to enhance the security
of agricultural-IoT infrastructures. FELIDS adopts a federated learning
approach, ensuring data privacy through local learning. In this system,
devices collaborate by sharing model updates with an aggregation server,
enabling the generation of an improved detection model without exposing
sensitive data. To counter agricultural IoT attacks, FELIDS employs three
deep learning classifiers: deep neural networks, convolutional neural net-
works, and recurrent neural networks. The performance evaluation of the pro-
posed intrusion detection system is conducted using three distinct datasets:
CSE-CIC-IDS2018, MQTTset, and InSDN. The findings demonstrate that
FELIDS surpasses traditional centralized machine learning approaches in
terms of protecting IoT device data privacy and achieves superior accuracy
in detecting attacks.

With the progression of IoT technology, modern agriculture is embracing
Agriculture 4.0. Agricultural IoT heavily relies on wireless communication,
yet traditional site selection overlooks the impact of terrain on transmission
loss, leading to power wastage and higher maintenance costs. Xie, et al. [38]
propose a rapid terrain sampler using a multi-sensor fusion algorithm to
collect point-cloud data of the experimental site terrain. They design an objec-
tive function considering electromagnetic wave losses, optimizing router and
gateway locations using k-means and Particle Swarm Optimization (PSO)
algorithm. Simulations show PSO’s sensitivity to execution parameters and
faster convergence compared to genetic algorithm. On-site received signal-
strength indication (RSSI) measurements demonstrate improved communica-
tion quality at optimized points. The algorithm is significant for agricultural
IoT node site selection. However, the objective function may require refine-
ment in diffraction loss calculations. The proposed tool enables quicker
3D modeling of farmland compared to traditional methods, with potential
applications in soil moisture analysis and plant light exposure prediction.

Research in the field of secure and energy-efficient routing for the agri-
cultural IoT reveals critical gaps that must be addressed. Firstly, there is a
need for robust security mechanisms specifically tailored to agricultural IoT
routing protocols. Existing protocols may not sufficiently meet the unique
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security requirements and constraints of agricultural environments, neces-
sitating the development of novel mechanisms to ensure secure data trans-
mission and protection against various attacks. Secondly, energy efficiency
is crucial in agricultural IoT systems, where devices are often deployed in
remote and resource-limited areas. Research is needed to design energy-
efficient routing algorithms that optimize energy consumption considering
factors such as node mobility, network topology, and data transmission pro-
tocols. These algorithms should aim to extend network lifetime and minimize
energy usage. Furthermore, guaranteeing quality of service (QoS) is essen-
tial for agricultural applications. Routing protocols should provide reliable
and timely data delivery, low latency, high throughput, and minimal packet
loss. They should be tailored to the specific requirements of agricultural
applications while considering the limited resources of IoT devices.

Scalability and adaptability are additional gaps requiring attention. Agri-
cultural IoT systems may involve numerous devices spread across large
farmland areas, necessitating scalable routing protocols that can handle
increasing device numbers and adapt to dynamic network topology changes.
Moreover, integrating diverse technologies like wireless sensor networks,
satellite communications, edge computing, and cloud platforms presents a
challenge. Research is needed to seamlessly integrate these technologies
into a unified routing framework, enabling efficient data exchange, seamless
handoffs, dynamic resource allocation, and ensuring security and energy
efficiency. Lastly, practical validation and real-world deployment of proposed
routing solutions are crucial to assess their performance, scalability, and
effectiveness in realistic agricultural environments. Field trials and experi-
ments will help uncover additional challenges and opportunities not apparent
in simulation-based studies. Addressing these research gaps will contribute to
the development of reliable, scalable, and sustainable routing solutions for the
agricultural IoT, empowering farmers with enhanced productivity, optimized
resource utilization, and improved agricultural practices.

3 Proposed Method

3.1 Network Model

As shown in Figure 2, SRWOA uses a WSN-based IoT network as its model.
It is composed of N heterogeneous sensor nodes that communicate with each
other to monitor the environment. IoT nodes are assigned unique identifiers,
and their deployment is random. In addition, all IoT nodes are equipped
with the global positioning system (GPS), which allows them to determine
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Figure 2 Network model.

their location within the network. IoT nodes’ energy levels, memory capacity,
and processing power vary. Cluster heads and cluster members are two roles
played by the nodes in this network. An overview of the tasks assigned to
each node follows:

• Cluster members: These nodes receive information from the target
region and forward it to the cluster head directly.

• Cluster heads: Data collection from cluster members is the responsibility
of the cluster heads, aggregating these packets, and sending them to the
base station. Using a binary routing tree, data is transferred from cluster
heads to base stations.

• Basic station: Data received from cluster heads is processed, analyzed,
and decided by the base station. Each IoT node has a fixed and
predetermined position at the base station.
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3.2 Energy Model

An energy model measures the energy consumption of WSNs. The energy
model accounts for the energy consumed by each node in the network, such
as the radio, processor, and sensors. This model then estimates the overall
energy consumption of the WSN based on the power requirements of each
node. Two types of models are available: free space and multipath channel
models. The free space model estimates the energy consumption of WSNs in
an ideal environment without interference.

On the other hand, the multipath channel model considers the presence of
obstacles and the effects of interference on the radio signal, and thus provides
a more realistic view of the energy consumption of WSN. Energy models are
selected based on the distance between the receiver and transmitter. Figure 3
depicts the energy model for WSNs. Equations (1) and (2) calculate the
energy required to transmit and receive k bits of data:

Etran(k, d) =

{
kEelec + kεfsd

2 d < d0
kEelec + kεampd

4d ≥ d0
(1)

Erecie(k) = kE elec (2)

Figure 3 Energy model for WSN.
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3.3 Attack Model

A wireless communication channel makes IoT vulnerable to various security
attacks. An attacker may employ various security attacks to compromise
secure information transfer, such as black holes, Denial of Service (DoS),
flooding, and wormholes. Wormhole attacks allow an attacker to take control
of the data transfer process by creating a tunnel between two endpoints.
Flooding attacks can overwhelm a network with bogus traffic, making it
difficult for legitimate traffic to reach its destination. DoS attacks prevent
legitimate users from accessing a device or network. Black hole attacks
create a void that prevents data transfer between two endpoints. Selectively
forwarding attacks exploit the trust between wireless nodes to forward data
packets to an attacker selectively.

In this study, we focused on black hole attacks. Black hole nodes in an IoT
system quickly respond to route request messages (RREQ) by declaring they
have an efficient route to the destination. This malicious behavior causes all
the other routes in the system to be ignored, resulting in all the data packets
being routed through it. As a result, the black hole node can intercept and
modify the data packets, leading to security breaches in the system. The
network forms an insecure path when the source node receives the fake route
reply message. This insecure path is traversed by a black hole node that
eliminates all information packets as an intermediate node. Figure 4 shows
an overview of a black hole attack.

3.4 Proposed Algorithm

In this section, the secure routing protocol using the Whale Optimization
Algorithm (SRWOA) is discussed in detail. SRWOA uses a bio-inspired algo-
rithm to optimize the route selection process, considering several parameters
such as the amount of energy consumed, latency, and data transmission rate.
This optimization process allows the selection of the most secure and reliable
route for data transmission. SRWOA includes three key stages: lightweight
and distributed trust, trust-based clustering, and WOA-based routing.

3.4.1 Lightweight and distributed trust
W-trust uses a weighted trust algorithm to calculate the trustworthiness of
a device by taking into account the success and failure of prior interactions
and the context in which the communications occur. This allows devices to
make trust decisions without needing a centralized trust authority. W-Trust
monitors the behavior of each node within the IoT network and assigns them
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Figure 4 Overview of a black hole attack.

a trust level. If a node behaves maliciously, the penalty factor is applied,
and the node is isolated from the network, preventing it from carrying out
its malicious activities. The reward factor is used to incentivize nodes into
participating in routing protocols, as it will increase their trust level, which
can then be leveraged for better routing paths and faster communication.
W-Trust requires the calculation of three variables, including total trust, direct
trust, and indirect trust.

Tdirect
ij represents the direct trust among node i and node j. Node i

produces this trust for Node j immediately. Tdirect
ij can be obtained by

examining the direct communication among the nodes over time, like (t-1,
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t). This direct trust can be derived from the interactions between the nodes
and their associated states, such as the performance of tasks, the frequency
of communication, and other factors. This trust can then be used to measure
the reliability of the nodes and inform decisions on future interactions. The
node I determine the packet sending and receiving rates to the node j over the
interval (t − 1, t) using Equation (3). In Equation (7), λ ∈ [0, 1] represents
an adjustable weight coefficient. PSRj(t) and PRRj(t) represent the packet
sending rate and packet receiving rate of node j at time intervals of (t − 1, t).

T direct
ij (t) = λPSRj(t) + (1− λ)PRRj(t) (3)

A group of recommender nodes evaluates the performance of node j to
determine the indirect trust of node i to node j. The recommender nodes
measure the performance of node j in terms of its interactions with node i,
and use this information to calculate an indirect trust score between the two
nodes. This score is then used to determine the trustworthiness of node j when
it comes to making recommendations to the node i. Equation (4) is used to
calculate the weighted indirect trust. TWeighted−direct

ir show the direct trust
assigned to node i relative to node r and TWeighted−direct

rj represents the direct
trust assigned to node j relative to node r. Total trust equals the sum of direct
and indirect trust values, calculated by Equation (5).

TWeighted−indirect
ij (t) =

1

p

p∑
r∈Nei

(TWeighted−direct
ir · TWeighted−direct

rj ) (4)

TTotal
ij = ∝ TWeighted−direct

ij + (1− ∝)TWeighted−indirect
ij (5)

3.4.2 Trust-based clustering
During this stage, cluster heads are chosen only from members whose trust
value exceeds a threshold value. This ensures that only honest nodes can
become cluster heads, preventing malicious nodes from taking control of the
network. Furthermore, by using the trust level as the criteria for selection, the
trustworthiness of the clusters is increased, creating a more secure network.
The clustering process generally consists of four steps: picking cluster heads,
becoming a cluster member, departing from the cluster, and maintaining the
cluster.

Periodically, every IoT node in the SRWOA exchanges beacons messages
with its neighbors. This exchange of beacon messages allows each node to
keep track of its neighbors and their relative locations. The beacon messages
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contain other important information, such as network topology and traffic
load. This message also provides information regarding the corresponding
node’s location, remaining energy, and trust value. According to this message,
each IoT node has a neighborhood database to store data obtained from its
single-hop neighbors. Based on the information provided in this table, the
nodes use Equation (6) to calculate their probability (Si) of being chosen
as CH. Each node calculates its Si value by taking into account its residual
energy (Ei), the primary energy of nodes (Emax), the neighbor degree (Degi),
and the distance between it and the base station (d(ni, ,BS)). This Si value is
then compared to the Si values of all the other nodes, and the node with the
highest Si value is chosen to be the cluster head.

Si =

(
Ei

Emax

)
×
(
Degi
N

)
(

1
Ni

∑Ni
nj∈Nei d(ni, nj)×

(
d(ni,BS)
dmax

)) (6)

3.4.3 WOA-based routing protocol
SRWOA uses the WOA to determine the best routes between the cluster heads
in the network. It then uses those results to create a binary tree structure of
clusters representing the optimal paths. This binary tree is then used to route
data between the cluster heads. Each cluster head transfers data packets to its
parent by the proposed routing protocol, which eventually reaches the base
station. This ensures that each route is the most efficient and that data packets
are routed in the shortest amount of time.

Additionally, the binary tree structure allows for dynamic changes in the
network, as it can adapt to changing conditions. The whales in this issue are
binary routing trees between cluster heads. Four parameters are used to create
a routing tree: the number of hops between a cluster head and the number of
cluster members, the remaining energy, the trust level, and a base station.

The whales are initialized randomly. The number of CHs is contained in
arrays of whales, and each element’s value is a CH in the routing tree. With
the WOA, CHs are prioritized on the network and placed at the top of the
routing tree based on their priority. Each element in each whale indicates each
CH’s priority in the network. Four rules were adopted to create the routing
tree. The base station is the root of the tree. According to WOA, the base
station’s left child has the CH with the highest priority, while the right child
has the second-highest priority. The leftmost CH must determine its children
at each level of this binary routing tree. The children on the left and right have
the first and second priorities and have not yet been chosen. In the case of two
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CHs with a similar priority, the CH with the higher trust level will be given a
higher priority.

The generated routing trees are evaluated based on a fitness function
(Equation (7)), comprising four criteria. The criteria include the trust level,
number of cluster members, remaining energy, and several hops to the base
station. In the proposed routing protocol, a stop condition specifies when
the algorithm should be terminated. If this condition is met, the algorithm
will cease, and the most effective reaction will be taken as its result. This
algorithm is terminated after 300 iterations. When the algorithm has been
completed, the base station sends a message informing cluster heads of their
position in the routing tree.

F =

|log nCH |∑
D=1

1

D

 C∑
i=1

(
Ei

Emax

)
×
(
T total
i
Tmax

)
(
hopcount (ni,BS)

N−1

)
×
(

nci
nmax

)
 (7)

4 Experimental Results

The NS2 simulator has been used to compare the performance of SRWOA
with that of E-BEENISH [39] and EEMSR [40]. We measured the packet
delivery ratio (PDR) and energy consumption of the three routing protocols
under a variety of network conditions. In order to evaluate the performance
of SRWOA, the results of the tests were compared with those of the other two
protocols. The simulation parameters are summarized in Table 1.

Figure 5 compares the three approaches in terms of PDR. This test clearly
shows that SRWOA is performing well. Our method, however, delivers
packets at a lower rate than EEMSR, about 0.4%, since EEMSR uses beta

Table 1 Simulation parameters
Parameter Value
Population size 100
Network dimensions (100*100)
Location of a base station (50,100)
Number of sensor nodes 100
Connection radius 30 m
Packet size 500 bytes
Eelec 50 nJ/bit
ϵfs 10 pJ/bit/m2

ϵmp 0.0013 pJ/bit/m4
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Figure 5 Packet delivery ration comparison.

distributions to build its trust system. The lack of security mechanisms causes
E-BEENISH to perform poorly. A second test evaluates the security of IoT by
examining received packets (Figure 6). According to several packets that the
base station receives, communication is secure since the information has been
properly sent and received. Communication may be less secure if a few pack-
ets indicate hostile nodes have interfered with transmission. EEMSR received
the greatest number of packets, and according to the proposed method,
the base station received 3.1% fewer packets than EEMSR. Furthermore,
SRWOA has a higher success rate than E-BEENISH by about 14.5%.

A comparison of residual energy between various methods is presented
in Figure 7, revealing their energy consumption patterns. It is evident from
the figure that our proposed method, SRWOA, outperforms the other meth-
ods in terms of energy consumption. As compared to E-BEENISH and
EEMSR, SRWOA stores a significant amount of energy, with gains of 16.65%
and 35.35%, respectively. By optimizing energy distribution and utilization
throughout the network, SRWOA achieves remarkable energy efficiency.
The poor performance of E-BEENISH can be attributed to its sole reliance
on energy factors for selecting CHs without considering multi-hop paths.
In contrast, SRWOA takes into account various parameters such as trust,
energy, intra-cluster traffic, distance, and hop count when designing a fitness
function to establish an energy-efficient and secure routing tree between CHs.
This holistic approach ensures a balanced energy consumption among the
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Figure 6 The number of packets received in comparison.

Figure 7 Energy consumption comparison.

network nodes, leading to enhanced performance and prolonged network
lifetime.

Furthermore, Figure 8 introduces an additional experiment to quantify the
energy consumption balance among IoT nodes by evaluating their standard
deviations. A lower standard deviation indicates a more uniform distribu-
tion of energy consumption, reflecting a balanced energy utilization across
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Figure 8 Standard deviation of energy consumption.

the network. The figure demonstrates that SRWOA outperforms the other
methods in achieving energy consumption balance, with its standard devia-
tion being significantly lower. The superior performance of SRWOA in terms
of energy efficiency, energy storage, and energy consumption balance is a
testament to its effectiveness in addressing the energy-related challenges in
IoT networks. By leveraging the WOA and incorporating multi-hop routing
techniques, SRWOA optimizes available energy resources, maximizes net-
work lifetime, and ensures reliable and sustainable operation of agricultural
IoT networks.

The network lifetime evaluation of different routing approaches is
depicted in Figure 9. CTSRD exhibits the longest network lifetime among
the compared methods, reducing the number of dead nodes by approximately
20.92% and 61.57% compared to EEMSR and E-BEENISH, respectively.
SRWOA demonstrates the longest first node die time in the figure, fol-
lowed by EEMSR. Conversely, E-BEENISH’s performance is unsatisfactory
due to its sole focus on energy efficiency, disregarding the security of
IoT nodes. Malicious nodes negatively impact E-BEENISH, diminishing
its lifetime. In contrast, SRWOA and EEMSR employ a multi-hop routing
technique between cluster heads, effectively balancing energy consumption
among network nodes. On the other hand, E-BEENISH allows each cluster
head to transmit data directly to the base station, leading to imbalanced
energy consumption and reduced network lifetime. Additionally, SRWOA
considers multiple parameters in its fitness function, including trust, energy,
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intra-cluster traffic, distance, and hop count, resulting in an energy-efficient
and secure routing tree. In comparison, EEMSR solely relies on the square of
the distance between cluster heads in its fitness function, potentially compro-
mising energy efficiency. The impact of these considerations is evident in the
network lifetime of SRWOA and EEMSR.

5 Conclusion

The Internet is revolutionizing our world. The use of connected devices
has become an essential part of daily life. The agricultural industry is
evolving from precision farming to micro-farming. IoT has enriched commu-
nication by enabling human-to-human and environmental-to-environmental
communication. IoT should be viewed as a core for omnipresence for devel-
oping a new architectural concept, i.e., anytime, anywhere, everywhere.
Agricultural IoT networks face two critical challenges: security and energy
efficiency. Both challenges must be addressed through robust security proto-
cols and energy-saving designs to ensure these networks’ success. This paper
addresses these challenges by introducing a new routing protocol named
SRWOA. The simulation results demonstrated that SRWOA had superior
performance in terms of energy usage and PDR metrics compared to other
approaches. Although our SRWOA routing protocol demonstrates encour-
aging outcomes in tackling the issues of security and energy efficiency in
agricultural IoT networks, it is important to acknowledge the presence of
specific constraints and limiting assumptions. The study focuses mainly on
networks of small to medium size, and more research is needed to assess the
scalability of the protocol in larger networks. Furthermore, the protocol relies
on the assumption of a consistent network environment with unchanging
topologies, when real-life situations may entail dynamic alterations. It is
crucial to take into account the versatility and efficiency of the protocol across
various IoT hardware platforms, as well as the necessity for validation in real-
world scenarios. Field trials and practical deployments offer vital insights into
the protocol’s performance and applicability for various agricultural contexts.
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[35] M. Cicioğlu and A. Çalhan, “Smart agriculture with internet of things
in cornfields,” Computers & Electrical Engineering, vol. 90, p. 106982,
2021.

[36] S. Sankar, P. Srinivasan, A. K. Luhach, R. Somula, and N. Chilamkurti,
“Energy-aware grid-based data aggregation scheme in routing protocol
for agricultural internet of things,” Sustainable Computing: Informatics
and Systems, vol. 28, p. 100422, 2020.

[37] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, K.-K. R. Choo, and M.
Nafaa, “FELIDS: Federated learning-based intrusion detection system
for agricultural Internet of Things,” Journal of Parallel and Distributed
Computing, vol. 165, pp. 17–31, 2022.

[38] J. Xie, G. Liang, P. Gao, W. Wang, D. Yin, and J. Li, “Research on
site selection of agricultural internet of things nodes based on rapid
terrain sampling,” Computers and Electronics in Agriculture, vol. 204,
p. 107493, 2023.

[39] Y. Zhang, X. Zhang, S. Ning, J. Gao, and Y. Liu, “Energy-efficient
multilevel heterogeneous routing protocol for wireless sensor networks,”
IEEE Access, vol. 7, pp. 55873–55884, 2019.

[40] Y. Zhang, Q. Ren, K. Song, Y. Liu, T. Zhang, and Y. Qian, “An Energy-
Efficient Multilevel Secure Routing Protocol in IoT Networks,” IEEE
Internet of Things Journal, vol. 9, no. 13, pp. 10539–10553, 2021.



A Novel Secure and Energy-efficient Routing Method 749

Biographies

Yanling Wang received her master’s degree in signal and Information pro-
cessing from Changchun University of Technology in 2005. She worked at
the Electrical Information School of Changchun Guanghua University in
2005. Her main research interests are electronic information engineering and
Internet of Things engineering.

Yong Yang received his master’s degree in materials engineering from
Changchun University of Technology in 2005. He has been working in
ThyssenKrupp Fuo Automotive Steering Column (Changchun) Co., LTD
since 2022. His research direction is Smart Control.




	Introduction
	Related Work
	Proposed Method
	Network Model
	Energy Model
	Attack Model
	Proposed Algorithm
	Lightweight and distributed trust
	Trust-based clustering
	WOA-based routing protocol


	Experimental Results
	Conclusion

