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Abstract

HTTP injection attacks are well known cyber security threats with fatal
consequences. These attacks initiated by malicious entities (either human or
computer) send dangerous or unsafe malicious contents into the parameters of
HTTP requests. Combatting injection attacks demands for the development
of Web Intrusion Detection Systems (WIDS). Common WIDS follow a
rule-based approach or a signature-based approach which have the common
problem of high false-positive rate (wrongly classifying malicious HTTP
requests) hence making them restricted to only one type of web applica-
tion. They are easily bypassed and unable to detect new kinds of malicious
attacks as they lack a sufficient model of understanding the representations
of HTTP request parameters. In this paper, deep learning techniques are used
to develop models that would automatically detect injection attacks in HTTP
requests. A special layer called the character embedding layer in the deep
learning models is used to allow the learning of the representation of the
request parameter of HTTP requests in higher abstract levels and also aid in
learning the relationships between the characters of the request parameter.
The experimentation results showed that with deep learning, better injection
attack detection is possible and given the right dataset, a deep learning
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detection model would be able to correctly classify HTTP requests for any
web application.

Keywords: HTTP, injection attack, DNN, CNN, cyber security, deep
learning.

1 Introduction

The Internet has come a long way from a research project called ARPANET
in 1963 to a widely accessible inter-network by billions of users around the
world. Many inventions today revolve around the use of the Internet. Due to
the rich nature and fast-growing availability of the Internet, the Internet has
now become a place for people to store valuable information and to present
that information in an organized format using web technologies. This allows
many users around the world to have access to information and also guarantee
the integrity of that information, but like all good things, the Internet has its
own share of security flaws.

Web Services run on the Internet and are mostly built on the client-server
architecture, where a dedicated computer acts as the server to various clients,
providing the necessary information requested by the clients. Attacking web
services has become prevalent and also turning to a lucrative venture by
malicious individuals, either human or computer (bot), who try to obtain
control of the server by sending malicious requests to the computer server.
The increase in web attacks is directly or indirectly related to the increase
of users of web applications and such increase will continue as observed
by some cyber security blogs predicting that by 2022, 75% of the 8 billion
projected world population would be Internet users.

This study focuses on one of the numerous types of web attacks on
the Internet, which is HTTP injection attacks. HTTP (Hypertext Transfer
Protocol) is an application layer protocol that does not keep state [1]. It
communicates via a TCP channel and is about a series of requests for a
resource and responses from a server. Hackers exploit the HTTP requests
by injecting harmful code or resources in order to gain access to the server or
have unauthorized access to information stored on the server. This exploita-
tion is called HTTP injection attack and is categorized as malicious HTTP
requests. There are many kinds and forms of injection attacks; the most
common, being SQL (Structured Query Language) injection, involves the
execution of malicious SQL database commands due to poorly validated data
flowing from the client to the database server [2, 3].
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In combatting injection attacks, solutions like intrusion detection systems
for web applications were developed. Intrusion detection systems are soft-
ware or devices that monitor networks or systems to find malicious activity
or violations, which are collected or reported to an administrator. Intrusion
detection systems identify suspicious-looking activities (in this case “HTTP
requests”), block such requests from reaching the webserver and reports to
the administrator. The goal of HTTP injection attack detection is to guarantee
data integrity, confidentiality and availability on the web server so that users
of the service can be rest assured that their information is safe.

Automatic detection of HTTP injection attack is a form of injection attack
detection such that the attack is identified as soon as it is sent to the webserver.
Unlike other detection approaches that identify the attack after the request has
been executed, it is normally implemented via an intrusion detection system
on either the server or client-side. It is an extra layer of security after data
validation has been carried out on a web request.

Existing approaches in detecting HTTP injection attacks employ statisti-
cal methods and machine learning techniques for malicious HTTP requests
detection. This study takes it further by making use of deep learning
techniques [4, 5] to achieve better HTTP injection attack detection.

2 Related Works

Injection attacks are very dangerous to organizations and Web users. Combat-
ting injection attacks demands for the development of Web Intrusion Detec-
tion Systems (WIDS). There are 3 popular approaches to building a WIDS.
They are signature-based approach, rule-based approach and anomaly-based
approach. Signature-based detection requires a library that holds malicious
symbols in which the contents of the requests are checked to see if any
symbol in the library appears in the request. If so, the request is deemed
malicious. This method is very static, as it does not cater to new types of
attacks and can fail to detect attacks which do not contain symbols in their
library. Rule-based detection is like signature-based detection, but it does not
keep a library of malicious symbols. Instead, it checks the HTTP request
on some already defined rules that a benign HTTP request follows and if
the request breaks one of the rules or a number of rules, it is considered
malicious. Anomaly-based detection involves the training of a mathematical
model to characterize the web requests so as to filter out malicious web
requests. Unlike signature-based detection, this method can detect new types
of attacks.
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Several attempts have been made in detecting HTTP injection attacks
and other forms of attacks. Gallagher and Eliassi-Rad [6], using anomaly-
based detection approach, developed an HTTP attack classifier based on the
vector space model, using TF-IDF (Term Frequency-Inverse Document Fre-
quency) weights and cosine similarities to identify requests that are “valid”
or “attack.” The classifiers also went further to identify the type of attack (i.e.
SQL injection, XSS, etc.). The model was evaluated using the ECML/PKDD
2007 dataset. The proposed model first trains by dividing the training requests
into the various types of attacks and one set of valid request, then computes
the TF-IDF weights for the requests after tokenizing the requests on special
characters and encoded URL characters. The weights are then saved and used
to classify test requests by computing the cosine similarity between their TF-
IDF weights. They reported that the model achieved high precision and recall
than previous methods in the literature.

Choudhary and Dhore [7] considered code injection attacks to be very
fatal to Internet users and proposed a signature-based model to classify
HTTP requests as either query-based or scripted and also detects the type
of attack on the request if any. The proposed model consists of two main
modules called query detector and script detector, which analyze the request
independently. The request first goes through the query detector where it is
analyzed if it has an invalid character before sending it to the script detector.
If any invalid character is found, it is classified as malicious and does not go
any further in the system. Once a request is considered valid, it goes to the
script detector, which encodes any invalid tags found in the request before
allowing the server to take action on the request. The proposed model was
able to beat alternative approaches by detecting more forms of SQL injection
attacks and all forms of XSS attacks.

Lampesberger et al. [8] also using an anomaly-based detection approach,
presented a generic method for detecting anomalous and potentially mali-
cious web requests without prior knowledge or the need for training data
of the web-based application. It made use of a Markov model which was
generated from legitimate sequences of semantic entries of web requests,
such that a request that deviates from the sequence will be reported as
anomalous, and was found to have acceptable false alarm and detection rates.

Kozik et al. [9] made use of a combination of anomaly-based detection
and signature-based detection. Their proposed method involved a whitelist
of legitimate requests. The whitelist is implemented as a hash-map with the
key-value being a concatenation of the HTTP request method and the HTTP
request URL. If a request’s generated key is in the whitelist, the parameters of
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the requests are encoded into a feature vector and a classifier is applied on the
feature vector to determine if it is malicious or not and if the generated key of
the request is not in the whitelist, the request is considered to be malicious.
Their method was evaluated using the CSIC 2010 HTTP dataset.

Seyyar et al. [10] approached the issue of HTTP attacks by first iden-
tifying vulnerability scan checks by malicious users. These scans, on their
own most often, are not attacks but they are used to locate vulnerability in
the web application. Using access log files of web servers, they made use
of signature and rule-based methods to efficiently detect web attack scans
and additionally XSS and SQL injection attacks. Their method was reported
to have a high detection probability and a low false alarm probability. They
concluded that static rules are able to detect web vulnerability scans and that
their method performs better on larger data sets.

Dong and Zhang [11] proposed an adaptive learning system called
AMODS for detecting malicious queries. According to the authors, it fol-
lows the anomaly-based detection approach but allows for re-learning or
model update which in turn reduces the False Positive Rate (FPR). AMODS
included what was called SVM HYBRID which reduces manual work by
choosing important queries and incorporating them into the training pool
to update the detection model for labeling via adaptive learning. It was
shown that AMODS outperforms SVMAL (Support Vector Machine Adap-
tive Learning) in both detection performance and the number of malicious
queries obtained.

Althubiti et al. [12] compared different machine learning techniques in
detecting web intrusion. The various techniques were applied to the CSIC
2010 HTTP dataset for intrusion detection purposes. Compared to other
researches on intrusion detection, using the CSIC 2010 dataset, they went
further to select the best five features using Weka. This brought about better
results, high accuracy and reduced training time, which leads to the opportu-
nity of semi-supervised learning approaches on the same CSIC 2010 dataset
and also the usage of those five features on other datasets.

Rong et al. [13] proposed a malicious request detection system using the
anomaly-based detection approach with re-learning ability like that of [11]
but based on an improved Convolutional Neural Network (CNN) model. The
CNN model improvement involved the addition of a character-level embed-
ding layer and the addition of modified filters able to extract fine-grained
features of the web request query string. They also compared their model
with other traditional models like SVM and random forests and discovered
that their model pays more attention to the extraction of the local feature in the
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query string. The results showed that their improved CNN model outperforms
traditional models on test datasets, although it has not been tested on practical
applications at the time of the report.

3 Model

The goal of this study is to create a deep learning model capable of
performing automatic detection of injection attacks in HTTP requests.

3.1 Conceptual Design

Three datasets were used in this study. The first two datasets are the
ECML/PKDD 2007 dataset and the CSIC 2010 dataset. The third dataset
was generated by combining the malicious payloads gotten from the Pay-
loadsAllTheThings [14] project with both the ECML/PKDD 2007 and CISC
2010 datasets to form a new dataset which we named Hybrid 2020 dataset.
More details about the datasets are provided in Section 4.3. The data gotten
from each dataset was preprocessed in order to extract the relevant features
needed for the study, the extracted features included the query parameter for
GET requests and the body parameter for POST requests. After extracting
the necessary features, they are further processed by converting a request
parameter to a sequence of indexes from a predefined dictionary where an
index corresponds to a particular character, the generated index sequence is
passed as input to the detection model. This study made use of two deep
learning models, the first being a deep neural network with an embedding
layer and the second a convolutional neural network also with an embedding
layer.

3.2 Detection Model

The goal of this study is to efficiently classify HTTP requests as injection
attacks (malicious) or safe requests (benign), using a modified form of
word embedding called character embedding in which an embedding table
is built for every character instead of word. A deep neural network and a
convolutional neural network are then used to extract the features and perform
classification, and each model returns a detection result.

3.2.1 Character Representation and Embedding
A web request parameter is a sequence of characters. These characters fall
under 3 main classes of characters: numeric characters, alphabetic characters,
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and special characters. In total, there are 95 unique characters that can be
found in an HTTP request parameter. In word embedding, each word is
replaced with its index in the dictionary of possible words. Similarly, in
character embedding, each character C; is replaced with its index in the
dictionary of possible characters, in this case from 1-95. This representation
is then sent to the embedding layer.

3.2.2 Embedding Layer

The embedding layer takes in the index representation of the characters and
returns a matrix of real numbers. For every character index in the character
index sequence, there is a corresponding k-dimensional vector e; from an
embedding table E that embeds it. The embedding table is a matrix of N rows,
where N is the number of unique characters possible for an HTTP request (i.e.
95) plus an entry for unknown characters. Each row in the embedding table
is a vector representation of a character given its index from the dictionary
of characters. The embedding table is first initialized with random values and
the values are optimized via back-propagation which means that the model
would be able to learn the relationships between every character.

The embedding layer is a 2-dimensional matrix with M rows where M
is the number of characters to be considered for each request parameter and
N columns where N is the same as the number of rows in the embedding
table. If the request being considered has more than M characters the first
M characters are used and if the number of characters in the request is less
than M characters, the request parameter is padded with some “padding”
characters to make the number of characters equal to M.

3.2.3 Deep Neural Network

Our DNN architecture is shown in Figure 1. The Input to the model is the
index representation of the HTTP query gotten from the character dictionary,
the embedding table then provides an embedding vector for each index
making up the index representation and the matrix formed becomes the
embedding layer. The embedding layer is flattened and the flatten layer which
is a one-dimensional representation of the embedding matrix is formed, it
then serves as the input layer to the feed forward neural network which is
connected to a series of dense fully connected hidden layers. An output layer
is added just after the last hidden layer which gives the prediction results of
the computation, back propagation is used for optimization, the optimization
allows for the embedding table vectors to be updated to better represent each
character in a HTTP request. The RELU activation function is used in the
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Figure 1 Deep neural network detection model architecture showing the embedding layer
and feed forward neural network.

neuron layers in the hidden layers and the softmax activation function is used
in the final dense neuron layer and leads to the output layer.

The DNN model used consists of 2 hidden layers (first with 3000 neurons
and the second with 1024 neurons), Dropout was applied to the two hidden
layers with the probability of retention p = 0.5. The reason this configuration
was chosen was based on the need to avoid overfitting while still achieving
good performance. Given the current hardware limitations, this configuration
led to about 245 million trainable parameters which was the best possible.

3.2.4 Convolutional Neural Network

Our CNN architecture is shown in Figure 2. The input layer is a vector
consisting of the index representation of the http request, the embedding
layer is formed by the creation of the embedding matrix via lookup from
the embedding table. The convolutional layer network, is a network of 6
convolutional layers all with 256 features (filters), the first 2 convolutional
layers have a filter size of 7 and the other convolutional layers make use of
a filter size of 3, the pooling operation is carried out in the first two layers
and the last layer, each operation makes use of a pooling size of 3. Following
from the pooling operation carried out on the last convolutional layer in the
convolutional layer network, the resulting matrix is flattened and the resulting
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one-dimensional matrix forms the flatten layer. The flatten layer is made as
input to the fully connected layer network which consists of 2 dense layers
with 1024 neurons and dropout of 0.5 leading to an output layer with 2
neurons which gives the results of the entire computation. Back propagation
is used for optimization, the optimization allows for the embedding table
vectors to be updated to better represent each character in a HTTP request.

The filter set chosen for the convolutional neural network configuration
was motivated by the need to reduce the total number of training parameters
going to the fully connected layers without affecting the accuracy. The 2
fully connected layers were chosen to avoid overfitting because the convo-
lutions have reduced the dimensions of the input data, thereby exposing the
more relevant features. An increase in the number of connected layers or
convolutional layers may prove fatal as the model would only tightly fit the
training set and would perform poorly in generalization to other examples.
Other setups were considered but were not chosen due to the fact that the
number of trainable parameters for those model configurations were higher
than that of the chosen model configuration (9 million) and also because of
the need to avoid overfitting.

An example of a different network configuration tried was to feed the
output of the embedding layer to 3 different copies of the convolutional
layer network configuration (as described above) and combining the flattened
output of each configuration to a single layer which serves as input to a
fully connected layer network with 2 dense layers each with 1024 neurons
and dropout of 0.5. Although this configuration captures more features than
the chosen configuration, however it has the limitations of high number
of trainable parameters (51 million), overfitting and duplication of features
where by a feature is considered twice which is not optimal.

4 Experimentation and Results

4.1 Test Environment

The models’ architectures were implemented in python 3 using Keras [15, 16]
with Tensorflow [17] backend and other third party libraries like sci-kit
learn [18], pandas [19] and numpy [20].

4.2 Design of Experiments

In this study, three datasets were considered, the ECML/PKDD 2007 [21],
CSIC 2010 [22], and the Hybrid 2020 datasets. The three datasets covered
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Figure 2 Block diagram of the convolutional neural network detection model architecture.

a larger range of HTTP injection attacks such as SQL injection, command
injection and cross-site scripting. The composition of the three datasets is
shown in Tables 1-4.

The Hybrid 2020 dataset was generated in the course of this study by
combining the other two datasets with the malicious payloads gotten from
the PayloadsAllTheThings [14] project hosted on GitHub which is an open
source repository for malicious payloads of different types of HTTP, web
and cloud based attacks that can be used for penetration testing to measure
the security of web applications. The PayloadsAllTheThings repository is an
updated repository of all forms of attack payloads and that is the reason for
naming the generated dataset from it as Hybrid 2020. The dataset was created
by converting known valid requests from both the ECML/PKDD 2007 and
the CSIC 2010 datasets to malicious type by randomly replacing a value in
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Table 1 Composition of the CSIC 2010 dataset used for the experiment
Count
Malicious 19586

Benign 16000
Total 35586

Table 2 Composition of the ECML/PKDD dataset used for the experiment

Count
Valid 28962
SSI 1818
SQL injection 2221
Xpath injection 2228
path traversal 1983
command injection 1985
LDAP injection 2232
XSS 1686
Total Benign Malicious  Total
28962 14153 43115

Table 3 Composition of the generated dataset

Count
SQL injection 5326
command injection 1960
LDAP injection 105
XSS 6900
Total Benign Malicious  Total
0 14291 14291

the sequence of key-value pairs of the request with a malicious payload;
this process resulted in 14,291 malicious request examples as shown in
Table 3. This 14,291 generated malicious requests were added to the original
ECML/PKDD dataset to form a new dataset containing a total of 57406
requests made up of 28962 benign requests and 28444 malicious requests
as shown in Table 4. This also implies that the generated Hybrid 2020
dataset is a balanced dataset as compared to the original ECML/PKDD 2007
dataset.
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Table 4 Composition of the hybrid 2020 dataset used for the experiment

Count
Valid 28962
SSI 1818
SQL injection 7547
Xpath injection 2228
path traversal 1983
command injection 3945
LDAP injection 2337
XSS 8586
Total Benign Malicious ~ Total
28962 28444 57406

4.3 Experimentation Results

4.3.1 Performance Results with the CSIC 2010 Dataset

The dataset was divided with 70% (24910) used for training and 30% (10676)
used for validation. The CNN model achieved a training accuracy of 86.04%
and validation accuracy of 96.27%, the DNN model achieved a training
accuracy of 85.52% and validation accuracy of 86.26%. The results from the
various experiments carried out on this dataset are shown in Tables 5-8.

Table 5 Performance results from training and testing the CNN model on the CSIC 2010
dataset

Experiment Precision (%)' Recall”’ F-measure FPR®  Accuracy (%)
On 10676 requests 98.83 0.95 0.97 0.020 96.39
(malicious and benign)

IThe performance measures used in evaluating the performance of each model on the different datasets
with both malicious and benign requests are precision, F-measure, recall, accuracy and false positive rate
(FPR).

2Recall, also known as the True positive rate (TPR), shows the ability of the model to correctly classify a
malicious request as malicious.

3False positive rate (FPR) shows how well the model did in predicting benign requests correctly by
measuring the number of false classifications of benign requests.

Table 6 Performance results from training and testing the DNN model with the CSIC 2010
dataset
Experiment Precision (%) Recall F-measure @ FPR  Accuracy (%)
On 10676 requests 86.66 0.86 0.87 0.164 85.17
(malicious and benign)
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Table 7 Performance results of the CNN model trained with the CSIC 2010 dataset and
tested with 43115 requests from the ECML/PKDD 2007 dataset

Precision (%) Recall F-measure FPR  Accuracy (%)

36.01 091 0.52 0.79 43.86

Table 8 Performance results of the DNN model trained with the CSIC 2010 dataset and
tested with 43115 requests from the ECML/PKDD 2007 dataset

Precision (%) Recall F-measure @ FPR  Accuracy (%)

32.86 1.00 0.49 0.998 32.95

4.3.2 Performance Results with the ECML/PKDD 2007 Dataset

The dataset was divided with 70% (30180) of the dataset used for training
and 30% (12935) used for validation. The CNN model achieved training
accuracy of 94.73% and validation accuracy of 94.74%, the DNN model
achieved training accuracy of 91.89% and validation accuracy of 91.90%.

The results of the various experiments carried out on this dataset are shown
in Tables 9-14, 21 and 22.

Table 9 Performance results of the CNN model trained and tested with the ECML/PKDD
2007 dataset
Experiment Precision (%) Recall F-measure FPR  Accuracy (%)
On 12935 requests 100.00 0.84 0.91 0.00 94.70
(malicious and benign)

Table 10 Performance results on the CNN model trained on the ECML/PKDD 2007 dataset
and tested with various types of requests (benign and malicious) present in the ECML/PKDD
2007 dataset

Request Type Recall FPR  Accuracy (%)
Benign - 0.00 100.00
SSI Injection 0.83 - 83.27
SQL Injection 0.82 - 82.44
XPath Injection 0.84 - 83.75
Path Traversal 0.84 - 83.91
Command Injection  0.89 - 89.11
LDAP Injection 0.84 - 83.56

XSS 0.83 - 83.39
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Table 11 Performance results of the DNN model trained and tested with the ECML/PKDD
2007 dataset
Experiment Precision (%) Recall F-measure FPR  Accuracy (%)
On 12935 requests 98.03 0.77 0.87 0.008 92.09
(malicious and benign)

Table 12  Performance results on the DNN model trained on the ECML/PKDD 2007 dataset
and tested with various types of requests (benign and malicious) present in the ECML/PKDD
2007 dataset

Request Type Recall FPR  Accuracy (%)
Benign - 0.008 99.23
SSI Injection 0.81 - 81.29
SQL Injection 0.76 - 76.50
XPath Injection 0.84 - 83.53
Path Traversal 0.59 - 59.20
Command Injection  0.85 - 84.69
LDAP Injection 0.77 - 77.01
XSS 0.83 - 82.98

Table 13 Performance results of the CNN model trained with the ECML/PKDD 2007
dataset and tested with requests from the CSIC 2010 dataset

Precision (%) Recall F-measure @ FPR  Accuracy (%)

84.42 0.34 0.48 0.076 60.01

Table 14 Performance results of the DNN model trained with the ECML/PKDD 2007
dataset and tested with requests from the CSIC 2010 dataset

Precision (%) Recall F-measure FPR  Accuracy (%)

96.94 0.26 0.41 0.01 58.73

4.3.3 Performance Results with the Hybrid 2020 Dataset

The Hybrid 2020 dataset was divided with 70% (40184) used for training
and 30% (17222) used for validation. The CNN model achieved a training
accuracy of 95.59% and a validation accuracy of 95.95%, the DNN model
achieved a training accuracy of 92.19% and a validation accuracy of 92.67%.

The results of the various experiments carried out on this dataset are shown
in Tables 15-20.



Automatic Detection of HTTP Injection Attacks 503

Table 15 Performance results of the CNN model trained and tested with the Hybrid 2020
dataset

Experiment Precision (%) Recall F-measure @ FPR  Accuracy (%)
On 17222 requests 99.71 0.92 0.96 0.003 95.95
(Benign and

Malicious)

Table 16 Performance results of the DNN model trained and tested with the Hybrid 2020
dataset

Experiment Precision (%) Recall F-measure FPR  Accuracy (%)
On 17222 requests 98.21 0.87 0.92 0.02 92.67
(Benign and

Malicious)

Table 17 Performance results of the CNN model trained with the Hybrid 2020 dataset and
tested on the CSIC 2010 dataset

Precision (%) Recall F-measure FPR  Accuracy (%)

70.95 0.39 0.5 0.19 57.59

Table 18 Performance results of the DNN model trained with the Hybrid 2020 dataset and
tested on the CSIC 2010 dataset

Precision (%) Recall F-measure FPR  Accuracy (%)

54.81 0.9 0.68 0.9 53.61

Table 19 Performance results of the CNN model trained with Hybrid 2020 dataset and tested
separately on benign and malicious requests of the CSIC 2010 dataset

Experiment Recall FPR  Accuracy (%)
Benign samples - 0.271 72.90
Malicious samples 0.44 - 44.14

Table 20 Performance results of the DNN model trained with Hybrid 2020 dataset and tested
separately on benign and malicious requests of the CSIC 2010 dataset

Experiment Recall FPR  Accuracy (%)

Benign samples - 0.990 1

Malicious samples ~ 0.93 - 93.22
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Table 21 Performance results of the CNN model trained with the ECML/PKDD 2007
dataset and tested separately on benign and malicious requests of the CSIC 2010 dataset

Experiment Recall FPR  Accuracy (%)
Benign samples - 0.027 97.28
Malicious samples ~ 0.18 - 18.17

Table 22 Performance results of the DNN model trained with the ECML/PKDD 2007
dataset and tested separately on benign and malicious requests of the CSIC 2010 dataset

Experiment Recall FPR  Accuracy (%)
Benign samples - 0.009 99.13
Malicious samples ~ 0.25 - 25.17

4.4 Discussion of Results

From the Figures 3-5, it is shown that the CNN model performs better than
the DNN model on all the three datasets. The CNN model and DNN model
trained with the ECML/PKDD 2007 and Hybrid 2020 datasets showed better
performance when tested with the CSIC 2010 dataset as compared to training
them on CSIC 2010 dataset and testing with ECML/PKDD 2007 and Hybrid
2020 datasets (cf. Tables 7, 8, 13, 14, 17, and 18). This is because the way
each dataset was compiled and classified by experts differ greatly; the CSIC
2010 dataset was compiled based on an e-commerce web application and has
a lot of reoccurring request parameters classified as benign and malicious
depending on the URL or HTTP method with which the request parameter
is sent. Another factor is that the CSIC dataset does not cover as much
injection attacks as the ECML/PKDD 2007 and the Hybrid 2020 datasets.
One other reason for the differing performance among the datasets is the
embedding table in the embedding layer. The embedding table is optimized
during training so the representations of characters of the models of the three
different datasets are not completely similar. Because there is no existing pre-
trained character embedding table, the embedding layer in the models have to
optimize the randomly initialized embedding table based on the inputs given
to the network which may make the models not to be able to generalize well
outside their current dataset.

As stated earlier, the CNN model’s performance was better than the DNN
model’s performance. The DNN had a lower performance due to factors like
limited computational resources, the width and depth of the neural network
and the compilation of the dataset. The DNN model required more computa-
tional resources as training was performed with over 15 million parameters as
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Figure 3 Comparison of accuracy of the DNN and CNN models trained on the
ECML/PKDD 2007 dataset and tested on various types of requests (benign and malicious)
present in the ECML/PKDD 2007 dataset.

compared to the CNN training with just 9 million parameters. The increase in
parameters came from the flattening of the embedding layer and due to this,
the DNN could not go much deeper or wider as that would exponentially
increase the number of trainable parameters and the available computational
resources would not be able to cater for such network.

Despite the limitations, the current architecture of the DNN model is well
enough to classify even better if the datasets have provided more examples
of HTTP injection attacks and benign requests in order to adjust the weights
of the network to a more optimal value. The CNN performance is attributed
to the advantages of a convolutional neural network, which are convolutions
and parameter sharing and these allow it to achieve better abstraction than the
DNN model.

Results from training the models with the ECML/PKDD 2007 dataset
show a recall not less than 0.77 and a maximum FPR of 0.008 as seen in
Tables 9 and 11. Results from training the models with the CSIC 2010 dataset
show a recall not less than 0.86 and a maximum FPR of 0.164 as shown
in Tables 5 and 6. When the models trained with the CSIC 2010 dataset
were evaluated using the ECML/PKDD 2007 dataset, it was observed that the
models performed poorly. This could be because the CSIC 2010 dataset was
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Figure 4 Performance comparison of the CNN and DNN models trained on the CSIC 2010
dataset and tested on the CSIC 2010 dataset.
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Figure S Performance comparison of the CNN and DNN models trained on the Hybrid 2020
dataset and tested on the Hybrid 2020 dataset.

not compiled to cater for cases the ECML/PKDD 2007 dataset was compiled
for (cf. Figure 6).

We also experimented testing the trained models separately with mali-
cious requests and separately with benign requests as shown in Tables 21
and 22. When evaluated with the CISC 2010 dataset, the ECML/PKDD
2007 dataset trained models only performed better in classifying benign
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Figure 6 Performance comparison of the CNN and DNN models trained with the CSIC
2010 dataset and tested on the ECML/PKDD 2007 dataset.

requests but performed not so well in identifying malicious requests (cf.
Figure 7) which was due to the compilation of the CSIC 2010 dataset as
earlier explained. It can also be observed that the performance of the two
models when tested on the benign requests has only a very slight difference.

The introduction of the PayloadsAllTheThings dataset to serve as a means
to oversample the malicious examples in the ECML/PKDD dataset in order
to achieve a balance on the distribution of malicious and benign samples
in the dataset (resulting in a new dataset we referred to as Hybrid 2020
dataset) brought about some interesting observations as seen in Tables 15
and 16. The CNN still has the upper ground in performance matrices as
expected based on earlier discussions. Taking the trained model and testing
it with the CSIC dataset separately on benign requests and separately on
malicious requests brings about new observations (Tables 19 and 20); the
CNN is somewhat good on benign samples and does poorly on malicious
samples while the DNN does poorly on the benign samples and does so well
on malicious samples. One of the possible reasons why these observation
occur lies in the level of abstraction of each model. The DNN when faced
with malicious requests simulates a pattern recogniser because it needs to
identify a character or phrase it considers malicious from it’s training to
classify incoming requests as malicious, this is due to the way the DNN
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Figure 7 Accuracy Performance of the CNN and DNN model trained with the
ECML/PKDD 2007 dataset and tested separately on benign and malicious requests from the
CSIC 2010 dataset.

creates it’s abstract representations of the requests. However CNN creates
higher abstractions compared to the DNN and then classify based on the
abstractions, the CNN model is able to work better in identifying benign
because it is easy to get a general abstraction for benign requests in the Hybrid
2020 dataset that can recognize benign requests in the CSIC 2010 dataset.
This is because CNN is able to reduce noise found in data samples via its
series of convolutions. The DNN however is weak on the benign samples
because the DNN abstractions are noisy compared to the CNN, Also because
there isn’t a standard embedding table for HTTP requests like there are for
sentiment problems, it would be difficult for the DNN trained on different
datasets to generalise benign representations to other datasets accurately,
same is the case for the CNN on malicious requests.

A general look at the results of the models when trained with a dataset and
tested on another shows that the CNN does better in identifying the benign
requests and the DNN does better when identifying malicious requests and
as explained earlier with the results concerning the Hybrid 2020 dataset,
this is due to the way the CNN and DNN models generate their abstract
representations. The CNN, through convolutions, is able to reduce the noise
in the data which makes it easier to identify benign requests even on datasets
it was not originally trained with, but with malicious requests it is dependent
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Figure 8 Accuracy Performance comparison of the CNN and DNN models trained with the
Hybrid 2020 dataset and tested separately on benign and malicious requests from the CSIC
2010 dataset.

on the dataset used because malicious requests can differ based on the web
application involved. The DNN on the other hand works like a regular
expression equation looking for a pattern or character it can easily use to
identify malicious requests, it flags any request that contains any character
it deemed malicious during training so it can be ported to another dataset
and do relatively well or even better if more samples are given. The issue
the DNN has with identifying benign requests in other datasets is as a result
of the limitations in the building of the DNN due to limited computational
resources and the fact that there is no general character embedding for HTTP
requests. It is also affected by the nature of the dataset it was trained with.
A good recommendation would be to build an ensemble of the deep learning
models in order to take advantage of both models on each type of request
especially when testing on data it was not trained with.

In general, the results show that deep learning (DL) models are able
to perfectly generate higher abstract representations of an HTTP request
parameter and also able to correctly classify the requests. If trained on good
datasets, DL. models would be able to classify HTTP requests correctly for
any web application and also an ensemble of DL models would lead to even
better results because in this study there are cases where the DNN cover for
the CNN and vise-versa (Figures 6-8).
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5 Summary and Conclusion

This study focused on automatic detection of injection attack in HTTP
requests. The study first began with a review of HTTP requests, HTTP
injection attacks and deep learning. To give better insight on the project
study, related works done in HTTP attack detection were reviewed. Deep
learning techniques were used to develop models that would automatically
detect injection attacks in HTTP requests. A special layer called the character
embedding layer is used to allow the learning of the representation of the
request parameter of HTTP requests in higher abstract levels and learning the
relationships between the characters of the request parameter. The experimen-
tation results showed that with deep learning, better injection attack detection
is possible and given the right dataset, a trained deep learning detection model
would be able to correctly classify for any web application.

In conclusion, HTTP injection attacks are dangerous to web servers and
affect the safety of the Internet at large and better detection models are
needed in order to automatically detect such attacks. This study took the
approach of deep learning techniques to develop detection models capable
of identifying injection attacks before the server acts on the requests, based
on just the request parameters alone and was able to get good accuracy (not
less than 85% for both models tested on the validation set of each dataset’s
training set). The CNN model outperformed the DNN model in various test
experiments.
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