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Abstract

Due to the recent explosion in the amount of data being created by vari-
ous social media platforms, e-commerce websites, and other businesses, a
paradigm shift from on-site data centers to the cloud is required. Concerns
about privacy and secrecy have been a major obstacle to the mainstream
adoption of cloud computing. The best approach to protect the confidentiality
and privacy of cloud data is by using cryptographic techniques. Researchers
have developed several cryptographic algorithms, but they all have lengthy,
linear, predictable, memory-intensive execution times. The performance of
the CPU, memory, run-time trend, and throughput of the three cryptographic
schemes: Enhanced RSA (ERSA), Non-Deterministic Cryptographic Scheme
(NCS), and Enhanced Homomorphic Scheme (EHS) are compared using
RAsys. The experiment’s results demonstrated that NCS and EHS produced
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non-linear and non-deterministic run times. Again, NCS and EHS produced
the lowest throughput and memory consumption for text and numeric data
types when data sizes of 5n∗102 (KB (∈ 1, 2, 4, 10, 20, 40) were processed.
However, ERSA produced a run-time trend that was deterministic, linear, and
predictable

Keywords: Non-deterministic, cryptography, execution time, encryption,
decryption, throughput.

1 Introduction

In light of the intricacy of communication brought on by people’s expanding
activities, data security is increasingly required [1]. A paradigm change in
data storage from on-site data centers to the cloud has been required in order
to safeguard the large amounts of data created by different social media
platforms, including Facebook, Twitter, Instagram, and others, as well as
e-commerce websites [2, 3].

According to Maeser, a study by analytics company Cyence, discovered
that a four-hour Amazon cloud computing outage in 2017 cost S&P 500
firms $150 million [4]. A network traffic monitoring company called Apica
also predicted that the 54 most well-known e-commerce sites would see
a reduction in activity of at least 20% [4]. In addition, Maeser predicted
that while the Internet of Things would generate large amounts of data,
the need for cloud computing will rise steadily between 2013 and 2020,
amounting to about 266% [4]. Again, Maeser emphasized that, in accordance
with RightScale’s predictions [4], the infrastructure-as-a-service component
of cloud computing will result in an increase in demand of 85% or more.

Cloud computing continues to surpass conventional on-site data centers in
popularity because of the advantages of agility, scalability, and availability as
well as the capacity to speed up the creation of work and reduce operational
expenses via the effective use of pay-as-you-use services [5, 6]. This has
compelled technology behemoths to spend vast sums of money on cloud com-
puting in order to supply cloud services as contrasted to prior. These benefits
have encouraged companies to offload their data to the cloud using cloud
service models including Software-as-a-Service (SaaS), Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service, and Container-as-a-Service (CaaS)
[7, 8], and [9].

The usage of cloud computing raises a number of security concerns,
including data confidentiality and privacy [10, 11], and 12]. The use of
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cryptographic algorithms has shown to be a viable and effective technique
of ensuring the secrecy and privacy of cloud data [13–16], and [17]. The
employment of cryptographic methods helps to maintain the secrecy and
privacy of cloud data, much like with Enhanced RSA (ERSA) [18], Non-
Deterministic Cryptographic Scheme (NCS) [19], and Enhanced Homomor-
phism scheme [20].

In order to determine which algorithm is most effective for ensuring the
confidentiality and privacy of cloud data, this study compares the execution
times, CPU utilization, memory usage, and throughput time of Enhanced
RSA (ERSA) [18], Non-Deterministic Cryptographic Scheme (NCS) [19],
and Enhanced Homomorphic Scheme (EHS) [20].

1.1 Problem Statement and Contribution

Data security has proven to be the biggest obstacle to the adoption of
cloud computing [21]. To protect cloud data, researchers have proposed
several cryptographic schemes. Execution times of the proposed schemes
are predictable because of the linear run time trend these systems provide
and the inverse connection between run time and data volume. This gives
hackers knowledge to calculate runtime and get ready to hack on systems.
The linear run time has the effect of raising the amount of data bandwidth
required for the transmission and download of huge data volumes. Due
to the increasing CPU activity, both the cloud service provider and the
subscriber’s equipment deteriorate and wear out. The main objective of
this study is to experiment with Enhanced RSA [18], Non-Deterministic
Cryptographic Scheme [19], and Homomorphism Scheme [20] in order to
ascertain the computational statistics of the best-performing cryptographic
scheme. Once more, the study provides a well-informed framework that
practically and conceptually combines all of the recognized algorithms into
a potent system named RAsys. The primary contribution of this study is
the proposal of a comprehensive cryptographic system or schemes that
may be employed to safeguard the confidentiality and privacy of cloud
data.

2 Related Works

In an effort to protect the confidentiality and privacy of cloud data, many
cryptographic methods have been developed. An overview of the review of
past studies has been given in this section.
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ALmarwani et al. [22] proposed a novel tagging approach called Tagging
of Outsourced Data (TOD) to secure the privacy of data stored in the cloud.
By employing verification, their plan supported cloud data. Because of the
short run time of their algorithm, mobile devices might make great use
of it. Despite how innovative their method appeared, it was linear. Tahir
et al. proposed a genetic algorithm named CryptoGa in their study [23] to
enable Almarwani et al. achieve data privacy. When compared to cutting-edge
algorithms such as AES, RSA, and DES, their algorithm performed quicker.
Nonetheless, the execution time was linear.

Shen et al. [24] recommended the usage of proxy re-encryption and
Oblivious Random Access Memory (ORAM) to attain confidentiality and
privacy of cloud data. Their technology was developed to allow several users
to share cloud data. Members can control access using the ciphertext created
via proxy re-encryption, ensuring data privacy. Adee and Mouratidis’ [25]
work, which encompassed cryptography and steganography, offered proof to
back up their results. Although the algorithm’s efficiency seemed promising,
its execution time was linear.

Thabit et al.’s [26] approach for a Lightweight Cryptographic Algorithm
ensured the confidentiality and privacy of cloud data. Using Feistel and
substitution algorithms, they raised the complexity of encryption. Although
their approach had a linear execution time, it was extremely efficient in terms
of run time.

According to the linked research, all of the recommended algorithms
ensured the confidentiality and secrecy of cloud data, but their execution
times were inversely related to the amount of data processed, making them
predictable.

3 Methodology

3.1 Algorithms Used in This Work

3.1.1 Enhanced RSA
By integrating traditional RSA with the Gaussian interpolation formula,
Enhanced RSA improved the security of conventional RSA to the fifth degree.
The ASCII values of the message are encrypted initially using Gaussian
Forward interpolation, and the second and third layers are encrypted and
decoded using the standard RSA. As seen in Figure 1, the last stage uses
Gaussian First Backward interpolation to re-decode the data. The integration
aids in overcoming the well-known RSA factorization challenge [18].
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Figure 1 Work flow diagram of enhanced RSA [18].

3.1.2 Non-deterministic cryptographic scheme (NCS)
For producing keys, encrypting data, and decrypting data, NCS employs three
phases. The three layers of key creation are intended to give concealed keys
that increase the algorithm’s security [19]. These include the Fixed Sliding
Window Algorithm, Good Primes, the Linear Congruential Generator, and
XORing the output to plaintext. Following the use of the Fixed Sliding
Window [19], as shown in Algorithm 1, twelve numbers are generated in
NCS. A sub-array of (n(a[i])4 ) is computed on these twelve numbers.

Algorithm 1 The proposed NCS algorithm
1: Procedure NCS
2: Compute H = P *Q ▷ H : P,Q ∈ Good Prime
3: XZ = k(Xx−1) + r mod n ▷ (n > 0, 0 < k < n, 0 ≤ r < n, Compute the CLG
4: (Xx−1) = H
5: XZ ∈ 1 . . . 100, 000
6: for i = 0, i < 12, i++) do
7: {a[i] = Rand (1, 100000)}
8: end for

Apply Fixed Sliding Window (FSD) on 12 arrays susing sub-array of 3
9: ay = ai + ai+1 + ai+2

10: ay1 = ai+3 + ai+4 + ai+5

11: ay2 = ai+6 + ai+7 + ai+8

12: ay3 = ai+9 + ai+10 + ai+11

13: sj = max(ay, ay1, ay2, ay3)

14: yi = xi ⊕ si mod
((

n(a[i])
4

))
▷ ENCRYPTION

15: xi = yi ⊕ si mod
((

n(a[i])
4

))
▷ DECRYPTION

16: End Procedure
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3.1.3 Enhanced homomorphism scheme
The Enhanced Homomorphism Scheme (EHS) is a combination of the
Linear Congruential Generator (LCG), Fixed Sliding Window Algorithm
(FSWA), Good Prime Numbers (GPN), and Gentry’s Algorithm. This strat-
egy considers two stages: the development of keys and the execution of the
homomorphism scheme. Two of the three methods used to generate the keys
are the generation of two great prime numbers and the use of the product
as a seed for the Linear Congruential Generator to produce twelve numbers.
The twelve integers are subjected to the sliding window technique utilizing a
sub-array of three (n(a[i])3 ).

As observed in Equation (1) for data encryption [20], the first value is si,
the second value is sj , the third value is sk, the fourth value is sl, and with M
the plaintext, as shown in Algorithm 2.

C = M + si ∗ sj + sk ∗ sl (1)

Algorithm 2 Proposed algorithm
1: Procedure EHS
2: Start of algorithm
3: Compute H = P *Q ▷ H : P,Q ∈ Good Prime
4: XZ = k(Xx−1) + r mod n ▷ (n > 0, 0 < k < n, 0 ≤ r < n, Compute the CLG
5: (Xx−1) = H
6: XZ ∈ 1 . . . 100, 000
7: for i = 0, i < 12, i++) do
8: {a[i] = Rand (1, 100000)}
9: end for

Apply Fixed Sliding Window (FSD) on 12 arrays susing sub-array of 3
10: si =

∑2
n=0 ayn

11: sj =
∑5

n=3 ayn

12: sk =
∑8

n=6 ayn

13: sl =
∑11

n=9 ayn

14: CI = Mt + si ∗ sj + sk ∗ sl ▷ Encryption
15: Cn+ = CI ▷ Addition homomorphism
16: Ct∗ = Ci ▷ Multiplication
17: Md = Ct mod sk ▷ Decryption
18: End

4 Experimentation

The Enhanced RSA [18], Non-Deterministic Cryptographic Scheme [19],
and Enhanced Homomorphism Scheme [20] were compared using a C#
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programming language and an i7 Lenovo computer with a 2.10 GHz
CPU. As demonstrated in a NET C# programming language where it
was used to analyze the execution of the AES algorithm, resulting in
300MB/seconds whereas OpenSSL C simulation obtained an average per-
formance of 960MB/seconds [39], C# programming language is preferable
since it influences data execution time.

4.1 Description of Dataset Used in This Work

The dataset for this study was obtained from the Kaggle database [27].
The dataset provides an English-to-French translation using a combination
of text and numbers, allowing the algorithms’ strength to be evaluated in
terms of an execution time trend. This is noteworthy since Loyka et al.’s study
yielded different findings when only text and numbers were utilized [28].
The encryption time trend for Loyka et al. when only text was tested was
non-linear, but linear for decryption time when only numbers were run [28].
The suggested methods were tested on data sets of 5n ∗ 102 (KB (∈
1, 2, 4, 10, 20, 40)).

5 Results and Discussion

5.1 Architectural Design for the Proposed Approach

This section explains the implementation of the four phases in the proposed
RAsys, with Figure 2 providing a visual perspective of data sharing and
storage. Cloud computing provides storage as part of Infrastructure-as-a-
Service. This allows for data storage and sharing in the cloud using a web
browser on any electronic device [29].

5.2 The Proposed Framework of the System

This section presents a high-level summary of the improved RSA, enhanced
homomorphism scheme, and non-deterministic cryptographic scheme com-
parison. The diagrammatic representation (RAsys) of the framework is shown
in Figure 3. The ERSA, NCS, and EHS structures each include five phases:
key generation, encryption, decryption, memory use, and throughput.

How a user registers with a cloud service provider is shown in Figure 3.
The registered client uploads the ciphertext onto the cloud after using ERSA,
NCS, or EHS to encrypt the plaintext and from which the encryption time,
memory utilization, and throughput timings are generated. After downloading
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Figure 2 Architectural design for the proposed RAsys.

Figure 3 Framework for the proposed RAsys.
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the Ciphertext, the decryption, memory storage, and throughput times are
determined.

5.3 Computational Results

Tables 1 and 2 show the results of running the algorithms fifty times and
calculating their averages.

5.3.1 Encryption time
According to Table 1, EHS had the fastest encryption time for data with a size
of 500 KB (0.5 MB), clocking in at 381 milliseconds, followed by NCS at
614 milliseconds. When the data amount was raised to 1000 KB, the ERSA
encryption procedure took longer, increasing from 648 milliseconds to 685
milliseconds. However, the encryption times for NCS and EHS decreased
from 614 milliseconds to 438 milliseconds and 381 milliseconds to 257
milliseconds, respectively, when the data size was raised from 500 KB to
1000 KB.

5.3.2 Decryption time
The trends in the average decryption times for ERSA, NCS, and EHS are
compared in Table 2. The quickest was EHS, which had a decryption time
of 392 milliseconds with a data size of 500 KB. Decryption times for
data sizes of 500 KB, 1000 KB, 2000 KB, 5000 KB, 10 000 KB, and
20 000 KB rose as well, moving from 563 milliseconds to 590 milliseconds,
693 milliseconds, 740 milliseconds, 763 milliseconds, and 840 milliseconds,
respectively. However, NCS required 643 milliseconds to decode 500 KB
of data. The decryption time dropped to 564 milliseconds when the data
size was increased to 1000 KB. It increased to 93 milliseconds when the
data size was increased to 5000 KB, then again dropped to 8 milliseconds
with a 2000 KB data size. The decryption time for NCS increased to 725

Table 1 Comparing the average encryption time of ERSA, NCS, and EHS
Data Size (KB) ERSA (ms) [18] NCS (ms) [19] EHS (ms) [20]
500 648 614 381
1000 685 438 257
2000 701 692 999
5000 753 805 668
10000 780 406 766
20000 832 158 479
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Table 2 Comparing the average decryption time of ERSA, NCS, and EHS
Data Size (KB) ERSA (ms) [18] NCS (ms) [19] EHS (ms) [20]

500 563 643 392

1000 590 564 268

2000 693 8 69

5000 740 93 725

10000 768 725 782

20000 840 534 496

Table 3 Encryption throughput (KB/ms)
Data Size (KB) ERSA (ms) [18] NCS (ms) [19] EHS (ms) [20]

500 0.77 0.81 1.31

1000 1.46 2.28 3.89

2000 2.85 2.89 2

5000 6.64 6.21 7.49

10000 12.8 24.63 13.05

20000 24.04 126.58 41.75

Table 4 Decryption throughput (KB/ms)
Data Size (KB) ERSA (ms) [18] NCS (ms) [19] EHS (ms) [20]

500 0.89 0.78 1.28

1000 1.70 1.77 3.73

2000 2.89 250 28.99

5000 6.76 53.76 6.9

10000 13.02 13.79 12.79

20000 23.81 37.45 40.32

milliseconds when a data size of 10,000 KB was run, but it decreased to 534
milliseconds when a data size of 2,000 KB had been processed.

5.3.3 Throughput
In Table 3, EHS had the throughput time that was the fastest at 1.31 KB/ms
when 500 KB of data was executed. The same thing happened when the data
size was extended from 500 KB to 1000 KB and 5000 KB. However, NCS
had the fastest encryption throughput time of 126.56 KB/ms, followed by
EHS with a throughput time of 41.75 KB/ms when data size of 20000 KB
was executed.

With 500 KB of data, EHS had the fastest decryption throughput time
in Table 4, clocking up at 1.28 KB/ms. EHS once more had the quickest
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Table 5 Encryption memory usage for ERSA, NCS, and EHS (MB)
Data Size (KB) ERSA (ms) [18] NCS (ms) [19] EHS (ms) [20]
500 17 13 18
1000 17 9 18
2000 17 9 18
5000 18 9 18
10000 19 9 17
20000 19 9 18

Table 6 Decryption memory usage for ERSA, NCS, and EHS (MB)
Data Size (KB) ERSA (ms) [18] NCS (ms) [19] EHS (ms) [20]
500 17 13 18
1000 17 9 18
2000 17 9 18
5000 18 9 18
10000 19 9 17
20000 19 9 18

throughput time for decryption at 40.32 KB/ms even when the data size was
increased to 20000 KB.

The NCS model exhibited the lowest average memory consumption from
Tables 5 and 6, with data sizes ranging from 500 KB to 20000 KB.

6 Discussion

Due to the enormous amounts of data that social media platforms and
e-commerce companies create every day, encryption techniques with fast run
times are crucial in cloud computing systems [30]. It is possible to infer from
Table 1 that the amount of the data executed, which came about as a result
of the size of the key selected and the size of the data, is proportional to
the length of the ERSA encryption process. The run times is deterministic,
predictable, and patterned as a result hackers are able to attack such system
based on the trend of the execution times [31–33, 38, 41], and [42]. As indi-
cated in Table 1, the only factor affecting the run times of NCS and EHS
is the secret key size, hence these encryption times are neither patterned,
non-deterministic, nor unpredictable.

According to the trend in run times shown in Table 1, encryption times
for NCS and EHS is only reliant on secret key size, not data size, however
encryption time for ERSA is affected by both data size and secret key size
[34–36, 38, 41], and [42].
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Additionally, the ERSA decryption time is proportionate, making the
trend in decryption time predictable and linear [37–39], and [40]. However,
the Fixed Sliding Window Algorithm, which disintegrates the enormous num-
bers acquired by choosing the good prime numbers as the beginning keys and
XORing the secret key and the Ciphertext, as used by NCS and EHS, results
in non-deterministic and nonlinear decryption times. This demonstrates how
much less expensive data transfers to and from the cloud are, as well as how
much less wear and tear is placed on the computer hardware when NCS
and EHS is employed. Tables 2 and 4 when compared inferred that a low
throughput time corresponds to a high decryption time.

7 Conclusion

This research provides an in-depth analysis of three cryptographic algorithms
with the goal of achieving the quickest linear, non-linear execution times
with the least amount of memory usage and throughput time. Encryption
time, decryption time, memory use, and throughput were the performance
parameters used to compare the various algorithms. The comparison’s find-
ings showed that the execution times trends provided by ERSA was linear,
patterned, predictable, and deterministic. Again, they required more memory
and had longer execution times. However, it has been demonstrated that NCS
and EHS had the advantage of producing a non-linear execution time trend,
non-patterned execution time trend, non-deterministic execution time trend,
lowest execution time, and consumed less amount of memory during execu-
tion capable of resisting side-channel attack. Additionally, this makes NCS
and EHS eliminate the need for high bandwidth to transmit and download
large amounts of data as well as minimize ripping and wearing of hardware
due to excessive CUP consumption.
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