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Abstract

Continuous improvement of internet technology has driven the continuous
progress and improvement of industrial control systems, and provided more
support for security vulnerability detection in this field. Combining the GAN
model, the detection model based on Seq-GAN in industrial control protocol
vulnerabilities constructed in this article provides more options for further
improving the security of industrial control systems, and can detect and anal-
yse security vulnerabilities in industrial control protocols more efficiently and
accurately. By comparing the performance of different models for security
vulnerability detection, the Seq-GAN model has smaller prediction errors,
can also obtain higher G-mean and F1-score values, and has sufficient reli-
ability. At the same time, it can also improve the efficiency of vulnerability
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detection in industrial control systems, and can achieve better comprehensive
detection performance. Therefore, the application of the Seq-GAN model in
industrial control protocol vulnerability detection can provide more support
for improving security detection in this field.

Keywords: Seq-GAN, industrial safety, control protocol, vulnerability
detection, feasibility.

1 Introduction

In the field of manufacturing, industrial software is the cornerstone of indus-
trial production, providing support for the rapid development of industrial
production [1, 2]. Industrial software, as an important component of industrial
survival, not only helps industrial production become more convenient and
efficient, but also improves the efficiency of industrial production. As a
fundamental component of building the industrial internet, the security of
industrial software is directly related to the safe, stable, and reliable operation
of industrial generation, so its security issues are very important.

In the process of continuous improvement and updating of industrial
software, the development of Industrial Control System (ICS) is also grad-
ually improving. The industrial control system connects industrial control
software and hardware with the network, mainly responsible for real-time
data collection, data system monitoring, and automatic control and manage-
ment during industrial production processes. The industrial control system
consists of two parts, and the Operational Technology (OT) network is
used for monitoring and managing industrial equipment [3, 4]. Information
technology (IT) includes databases, workstations, and traditional machines
that process information. The communication protocol of industrial control
systems plays an important role in circuit communication and control in
industrial control systems and industrial software. Since industrial control
protocol information can directly or indirectly transmit the operation status
or operation of industrial software, there are potential safety risks. The devel-
opment of informatization has led to the interconnection of IT/OT networks,
simplifying the digital operation process, and inevitably creating vulnerabil-
ities that are vulnerable to attacks, posing more threats to the system [5].
Attacks against industrial control protocols and traditional industrial software
security vulnerabilities have made industrial production and manufacturing
the target of numerous attackers.
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The security of industrial control systems is manifested at different levels,
such as ensuring the reliability of embedded programs through formal veri-
fication; Through penetration testing to identify system vulnerabilities, etc.
Different research fields and related achievements have improved the safety
of industrial control systems to varying degrees [6, 7]. However, compared
to traditional manufacturing, intelligent manufacturing has a significant new
feature – increasing interconnectivity between industrial control systems,
and more complex and diverse internal control systems. With the rapid
development of industrial informatization, the interaction between different
subsystems in industrial control protocols has become increasingly frequent.
Industrial control protocols serve as communication bridges between various
parts of industrial control systems. Industrial control protocols always have
some inherent vulnerabilities or issues. If such internal security vulnerabil-
ities cannot be detected and fixed in a timely manner, they will become
important targets for attacks against industrial control protocols [8].

In the face of vulnerabilities in industrial control protocols and the detec-
tion and analysis of vulnerabilities, generative adversarial networks (GANs)
provide a more suitable detection method with better performance. The
generative adversarial network is a groundbreaking framework that guides
the training of generative models in the direction of unsupervised training.
As in game theory, the two networks of generators and decision makers
manipulate each other, deceiving each other while making them stronger,
ultimately achieving a certain balance [9, 10]. In GAN, a discriminator
network D (Discriminator) learns to distinguish between the real situation of
a given data instance: whether the given judgment example comes from a real
example in the database or a pseudo example generated by the generator; The
generative network G (Generator) confuses the interference discriminator’s
decision ability by learning to generate false but highly reliable data. In many
generation tasks that replicate rich content from the real world, generative
adversarial networks exhibit significant advantages. In industrial control pro-
tocol vulnerability detection, this feature can be utilized to generate false
but pseudo real sequence information. Meanwhile, compared to other deep
learning models, GAN based training models have certain instability, and
the main reason for the difficulty in training is that the architecture not
only involves simultaneously training generators and decision models in zero
sum games, but also involves the requirement to ensure that the learning
abilities of the two neural networks can be synchronized and balanced
[11–13].
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Based on the above analysis, this article combines generative adversarial
networks in deep learning and reinforcement learning ideas to design and
implement a more efficient detection model for vulnerability detection in
industrial control protocols. This model addresses the problem of difficult
generation of discrete data in traditional generative adversarial networks. By
utilizing traditional GAN networks and incorporating reinforcement learn-
ing ideas, a Sequential Generative Adversarial Network (Seq-GAN) model
is constructed. Through the application of this model in industrial con-
trol protocol vulnerability detection, the diversity of vulnerability detection
and acceptance rate of test cases in industrial control protocols are fur-
ther improved, this lays the foundation for the feasibility of applying the
Seq-GAN model in vulnerability detection of industrial control protocols.

2 Sequence Generation Theory Based on GAN Networks

2.1 Generative Adversarial Neural Network

In generative adversarial networks (GAN), the main function of generators is
to generate simulation data that is similar to the original real data. The GAN
model is mainly composed of two neural networks, the generator model and
the discriminator model, which are combined to learn through game theory.

The generator model obtains a random vector as the input value for
relevant calculations and analysis, and after a series of data calculations and
transformations, provides new transformed data. The main function of the
discriminator model is to determine and distinguish the authenticity of the
data transmitted by the generator. The above two models are continuously
optimized and learned through this adversarial approach. In the conventional
adversarial learning process, the samples generated by the generator model
are input into the discriminator for analysis and judgment. The discriminator
model outputs a probability value based on the received data after calculation
and analysis, which represents the likelihood that the sample data is real data.
In the relevant process, the main goal of the generator model is to generate
a series of data information that can deceive the discriminator, so that the
generated data can interfere with the discriminator. Through training on this
interference, the discriminator model cannot distinguish whether the data is
real or generated. Meanwhile, the discriminator model in the GAN model is
based on the received data for analysis and judgment, accurately determining
the authenticity of the data input by the generator. During the training process,
the two models play games with each other and continuously improve their
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Figure 1 Structure diagram of generative adversarial neural network model.

abilities until a certain training effect is achieved [14–16]. As shown in
Figure 1, a structural diagram for generating an adversarial network model
is provided.

Through the continuous process of adversarial learning mentioned above,
the generator model continuously optimizes the generated data, making the
generated data more similar to the real data, and the interference to the
accurate judgment of the discriminator is becoming stronger and stronger.
For the discriminator model, it is also continuously improving its ability to
determine the authenticity of the data generated by the generator. The final
implementation result is that the generator model can generate new data
similar to the original data, while the discriminator model can accurately
determine the authenticity of the data [17]. The two constantly play games
with each other, achieving continuous optimization and improvement of the
generator model and discriminator model, ultimately achieving equilibrium.
The specific model optimization process is shown in formula (1):

min
G

max
D V (D,G) = EX∼Pdata(x)[logD(x)]+EZ∼PZ(z){log(1−D[G(x)])}

(1)
In the equation, H is the generator model, Z is a random variable,

G(Z) is the data generated by the generator after inputting the random
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variable. X∼Pdata (x) is the distribution of real data. Z˜PZ(z) is the Gaussian
distribution of random data.

2.2 Sequence Generation Based on GAN Network

In response to the limitations faced by the GAN algorithm, a sequence gener-
ation adversarial network (Seq-GAN) model was constructed by introducing
a sequence generation algorithm. This model is based on a combination of
generative adversarial network (GAN) and reinforcement learning (RL) for
sequence generation, which can be used to generate discrete data sequences.
Solved the problem of traditional GAN networks being unable to transfer
discrete data from discriminators to generators during training [18, 19].
To address the issue of the discriminator model not being able to evaluate
complete sequences, Seq-GAN used Monte Carlo search in policy gradients
to further analyse and evaluate sequence generation. In the Seq-GAN model,
the generator model acts as an agent and generates an element at each step,
forming a sequence that is considered a state in reinforcement learning.
The next element to be generated is considered an action in reinforcement
learning. The generator model generates the next state and action based on
the current state and action, until the end of the sequence. The discriminator
model serves as the environment, receiving the sequence generated by the
generator and discriminating against it, thereby generating a reward signal,
and transmitting it to the generator model. The generator model updates
its own parameters based on reward signals to better generate the next
sequence [20]. The basic idea of Seq-GAN originates from GAN networks,
which generate high-quality discrete data such as speech sequences, text
sequences, and time series by incorporating reinforcement learning ideas.
As shown in Figure 2, a schematic diagram of the network structure of the
Seq-GAN network is provided.

The Seq-GAN network model also includes generators and discrimina-
tors. Due to the discrete nature of the sequence, it is usually not possible to
directly pass the gradient update generator parameters back from the discrim-
inator. Therefore, the Seq-GAN network incorporates reinforcement learning
ideas, treating the Policy network in reinforcement learning as generator G,
treating existing dots (a dot representing a word or a word) as the current
state, and the next dot to be generated as an action. At this point, the sequence
is generated word by word, and incomplete sequences cannot be input into
the discrimination for recognition and judgment [21, 22]. Therefore, when
determining the action at the next moment, it is necessary to complete the
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Figure 2 Schematic diagram of Seq-GAN network structure.

incomplete sequence and then input it into the discriminator. The specific
approach is to use the Monte Carlo tree search algorithm to generate all
possible complete sequences for each action. Discriminator D generates a
Reward by identifying these complete sequences and transmitting it back
to generator G, thereby completing the generator’s update at the current
time. The next time, the state will be updated until a complete sequence is
generated.

3 Construction of Industrial Control Protocol Vulnerability
Detection Based on Seq-GAN Model

3.1 Theory of Seq-GAN Model

Generative adversarial networks can generate data that is equally distributed
as real data, and this feature can be used to generate desired content. However,
generative adversarial networks have its limitations, as they can only generate
the distribution of continuous data. Once the data is discrete, generative
adversarial networks cannot be processed, thus making it difficult for the
discriminator to make better judgments. So there needs to be a method that
can both reflect changes and be applicable to discrete data. Seq-GAN cleverly
utilizes the method of strategy gradient to treat the process of sequence
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generation as a series of decision-making processes [23]. This allows us to
"infer" what the next generated node should be based on the already generated
parts, thereby generating the entire sequence. Then, the entire sequence is
tested by the discriminant network and the decision result of the sequence is
also obtained, which is very similar to GAN.

The training process of Seq-GAN usually consists of two parts: first, pre-
training, which mainly includes using the maximum likelihood method to
train the generated network; Then there is adversarial-training, which uses
the data generated by the generated network as negative samples to train the
discriminative network. The purpose of this step is to reduce the error range
of the network to a range that can effectively converge before subsequent
adversarial training, in order to prevent direct use of adversarial training from
causing the direction of network convergence to be uncontrollable, resulting
in completely unsatisfactory results. The training of discriminative networks
in adversarial training is similar to the training of discriminative networks in
pre training, with the entire sequence as the discriminative object, making the
discrimination more accurate. The generative network requires the construc-
tion of a parameter shared roll out extension network, which is responsible for
starting from a certain position in the sequence generated by the generative
network and succeeding the generative network by generating [24]. Because
in adversarial training, the training of the generative network is a Monte
Carlo tree search, which takes the generated sequence as the state, takes any
position from the beginning as the current state, and selects the next point
as the behaviour. As shown in Figure 3, a sequence generation adversarial
network training method is provided.

Figure 3 Seq-GAN training process.
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3.2 Construction of a Vulnerability Detection Model Based on
Seq-GAN

3.2.1 Construction of vulnerability detection model for industrial
control protocol

Seq-GAN mainly draws on reinforcement learning methods. The generator’s
task G(θ) is to generate a sequence Y1:T = {y1, y2, . . . , yt−1} under the
neural network parameter 0. At time t, the state s is the generated sequence
{y1, y2, . . . , yt−1}, and the action a is the next data yt to be generated.
Currently, the generator model is Gθ(yt|Y1:T−1). Formula (2) provides a
description of the optimal objective function:

J(θ) = E(RT |s0, θ) =
∑
y1∈Y

Gθ(y1|S0)Q
Gθ
Dθ

(s0, y1) (2)

The formula can be explained as the expectation of generating a complete
sequence under the conditions of S0 and θ [25]. QGθ

Dθ
(s0, y1) is the action

value function obtained from the discriminator model, and its calculation
process is shown in formula (3):

QGθ
Dθ

(s = Y1:t−1, a = yT ) = Dθ(Y1:T ) (3)

The Monte Carlo algorithm can be used to evaluate the rewards passed by
the discriminator to the generator. After N rounds of Monte Carlo algorithm,
the sequence can be obtained as shown in formula (4):

[Y 1
1:T , . . . , Y

N
1:T ] = MCGβ (Y 1

1:t;N) (4)

At this point, the Gβ and generator settings are the same. The generator
model Gβ and Monte Carlo algorithm generate N candidate options and
generate new states based on the output of the generated model. For each
candidate option, the discriminant function Dθ(Y1:T ) scores them and eval-
uates them using a value network. The total score of the candidate options
is calculated, which is the average value of the value network evaluation and
the discriminant function score [26, 27]. The calculation formulas (5) and (6)
are shown. When the last time step of the action is t = T , the discriminant
function Dθ(Y1:T ) is directly used to calculate the final estimate as the score
of the state.

QGθ
Dθ

(s = Y1:t−1, a = yT ) =
1

N

N∑
n=1

Dθ(Y
n
1:T ) (t < T ) (5)

QGθ
Dθ

(s = Y1:t−1, a = yT ) = Dθ(Y1:T (t = T ) (6)
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At this point, use the generated data to retrain D, as shown in formula (7):

min
θ −Eγ−Pdata [logDθ(Y )]− Eγ−Gθ

[log(1−Dθ(Y ))] (7)

Minimize the inverse number of D determining true data and D generating
false data. After training one or more rounds of D, use Policy gradient to
update G, as shown in formula (8):

∇J(θ) =
T∑
t=1

EY1:T−1∼Gθ

∑
yt∈V

∇θGθ(yt|Y1:t−1)×DGθ
Dθ

(Y1:t−1, yt)


(8)

At this point, the parameters of the generator need to be modified
according to the gradient, as shown in formula (9):

θ = θ + αh∇θJ(θ) (9)

Recurrent neural networks can fully learn time and input sequence infor-
mation by analyzing input information. The LSTM used in this article as a
generator model has more obvious advantages, mainly manifested in its com-
position of embedding layer, LSTM layer, perception layer, and softmax. The
embedding layer transforms the input sequences {y1, y2, . . . , yt}, encodes
each character into a vector, and uses the sequence data at the LSTM layer to
“Remember” the relationships between the sequences. The update function
g is applied to convert the sequence into hidden vectors {h1, h2, . . . , ht},
formula (10) is ht. Specific update formula:

ht = g(ht−1, xt) (10)

In addition, the softmax output layer z obtains the output vector by
weighting and normalizing the hidden states, as shown in formula (11):

p(yt|x1, . . . , xt) = z(ht) (11)

For z(ht), formula (12) can be used to describe:

z(ht) = softmax (c+ V × ht) (12)

In the equation, c is the bias of the softmax function, and V is the weight
matrix. In order to address the problem of gradient vanishing and gradient
explosion, the LSTM update function g is used to update, adding a fixed h0
to each loop unit and updating the constant.
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3.2.2 Industrial control protocol vulnerability detection method
and process

The industrial control protocol vulnerability detection model based on the
Seq-GAN model constructed in this article mainly uses the generation of
adversarial networks as the basic theory to generate traffic data in industrial
control network systems [28]. This method can intelligently learn the format
of native data frames and generate similar format data frames for attacking
the target system. By mining many communication data patterns, a specific
generation model can be obtained to generate similar industrial control sys-
tem communication data. Then, the generated data is sent to the system to
be tested and abnormal behaviour generated by the system is recorded to
discover system vulnerabilities. Because the traffic data in industrial control
systems exist as sequences and have many similarities, this method can theo-
retically be used in most industrial control systems to improve the challenges
faced by vulnerability detection in industrial control protocols [29]. As shown
in Figure 4, the basic process of this method detection is presented.

By analysing the Seq-GAN based industrial control protocol vulnera-
bility detection model, it can be found that the process involved in this
model is composed of three main processes. Firstly, the construction of the

Start

Data frame 
capture

Data frame 
preprocessing

Model training Preliminary 
parameter settingsModel validation

Available models

Protocol system 
testing

Retraining the 
model

Test data 
generation

End

YES

NOImpact assessment

Dataset 
construction

Model 
construction

Testing 
and training

Figure 4 Process of industrial control protocol vulnerability detection model based on
Seq-GAN.
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dataset: The training and formation of adversarial network models require
a large amount of data, and the construction of the dataset needs to be
completed before the start of model training to ensure its rationality. In
actual industrial control systems, a large amount of communication data can
be captured. Finally, the processed data will be composed into a dataset
for training the model. Secondly, the construction of the model: the neural
network model can output corresponding outputs by giving a certain input, so
it can be regarded as a function. On the premise of obtaining effective fuzzy
test data, considering other factors, the model can consume less computation,
reduce time, and improve efficiency. After the model is trained, it indicates
that the model has achieved effectiveness in the training data, but the goal
of the model is to use new data for application. Finally, attack testing and
model retraining: using the constructed model to generate fuzzy test data
for attack testing on the target system, and attacking the target system to
discover vulnerabilities [30, 31]. In order to improve the method capability
and enhance its usability in practice, a retraining model was added after fuzzy
testing of the target system. The data frames that caused anomalies in the tar-
get system were collected and mutated to retrain the model, further improving
its performance in industrial control protocol vulnerability detection.

4 Model Experiment and Result Analysis

4.1 Model Evaluation Indicators

There is no comprehensive and reasonable evaluation index in the field of
application performance testing in industrial control protocol vulnerability
detection based on the Seq-GAN model. In order to compare and analyse the
performance of the model, this article compares the performance of the model
used for industrial control protocol test case generation from the dimensions
of accuracy, recall, accuracy, G-mean, and F1-score. The calculation process
of Precision is shown in formula (13):

P =

∑N
i=1TP i∑N

i=1(TP i + FP)
(13)

Recall rate represents the proportion of correctly detected negative
samples to all negative samples, and the calculation process is shown in
formula (14):

R =

∑N
i=1TP i∑N

i=1(TP i + FN i)
(14)
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Accuracy represents the proportion of correctly detected negative and
positive samples to the total number, and the calculation process is shown
in formula (15):

A =

∑N
i=1(TP i + TN i)∑N

i=1(TP i + FN i + TN i + FP i)
(15)

For the G-mean indicator, it represents the geometric mean of specificity
and recall, as shown in formula (16):

G-mean =

√
TP

TP + FN
× TN

TN + FP
(16)

In addition, F1-score is the harmonic mean of accuracy and recall,
commonly used to comprehensively evaluate the accuracy of classification
models. The specific calculation process is given by formula (17):

F1-score =
2P ×R

P +R
(17)

In addition, combined with the application of the Seq-GAN model in
industrial control protocol vulnerability detection, this article further anal-
yses indicators such as Test Input Acceptance Rate (TIAR) and Ability of
Vulnerability Detection (AVD) of the model. TIAR reflects the proportion of
all data received by the test target, and the more data is accepted, the greater
the likelihood of vulnerabilities occurring in the test target. AVD is ability
to trigger system anomalies and is a direct indicator of the effectiveness of
evaluation methods, as our goal is to trigger as many system anomalies as
possible and discover vulnerabilities. The calculation of test case acceptance
rate and vulnerability detection ability is given by formulas (18) and (19):

TIAR =
nAccept

nCent
× 100% (18)

AVD =
nBugs

nCases
× 100% (19)

4.2 Model Test Results

After collecting the dataset required for model training, it is necessary to
preprocess the dataset; Next, training the model designed in the previous
section by using the data from the training set. The advantage of the Seq-GAN
model is that it largely overcomes the instability problem of GAN training.
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Figure 5 Comparative analysis of Wasserstein distance and wall clock time under different
epochs.

This model is based on GAN architecture constraints to design and improve
its own model architecture, and utilizes distance and gradient penalties to
improve training speed and sample quality. To further analyse its performance
changes in industrial control protocol vulnerability detection, the Seq-GAN
model was trained on a dataset with 500000 test cases in the experiment.
As shown in Figure 5, the Seq-GAN distance and the loss function values
of the generator and evaluator are given. For comparative analysis, this
article trained another W-GAN based model using the same hyperparameter
setting. The comparison results show that the industrial control protocol
vulnerability detection method based on the Seq-GAN model not only has
faster convergence speed, but also a more stable training process.

After the model training is completed, use the generator of the trained
model to generate pseudo test cases, input them into the tested industrial
control system, and implement fuzzy testing for industrial control proto-
cols according to the standard fuzzy testing process. During the process of
inputting test cases into the industrial control system under test, it is necessary
to monitor the system in real time, record output faults or interface crashes,
and restart the testing process at the current point. At the end of the entire
test, by analysing the causes of previous anomalies and the logs of the com-
munication server system, the operational status of potential vulnerabilities
can be identified.

During the testing phase, more attention is paid to the recall rate, while
also considering the G-mean index and F1-score. Therefore, this experiment
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Figure 6 Comparison of detection results of different models under different datasets.

uses recall, G-mean, and F1-score to reflect the detection performance of the
model. F1-score is the harmonic average of recall and accuracy, and G-mean
is the geometric average of specificity and recall, both of which can reflect
the comprehensive performance of the model. Based on the above main
performance indicators, a comparative analysis was conducted between the
Seq-GAN based industrial control protocol vulnerability detection model and
the changes in indicators of other models. The detection results are shown in
Figure 6.

As shown in the figure, the Seq-GAN model has a recall rate of 0.96 on the
WADI dataset and 0.98 on the KDDCUP99 dataset. Compared to other mod-
els, the recall rate of the Seq-GAN model can be improved by approximately
2% to 7%. The increase in recall rate represents a decrease in the false alarm
rate generated by the model for abnormal data. The Seq-GAN model can not
only more accurately identify abnormal samples, improve system security,
but also consider the real-time performance of the system, avoiding situations
where the system response is invalid due to high false alarm rates. In addition,
in the detection of the WADI dataset, the G-mean and F1-score indicators of
the Seq-GAN based industrial control protocol vulnerability detection model
improved by 5% to 9% and 4% to 8% compared to other comparative models,
respectively. Through the above experimental results, it can be found that
compared to other models, the Seq-GAN based industrial control protocol
vulnerability detection model constructed in this paper has better detection
performance and can achieve more accurate detection results.

There are certain differences in the impact of different sampling mod-
els on the classification confidence of classifiers. In order to quantitatively
analyse the impact of different models on classifiers, this article combines
the characteristics of different models and selects reliability graphs to discuss
the rationality of the model’s class prediction probability. In the reliability
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Figure 7 Reliability analysis of various sampling methods on KDDCUP99 dataset.

analysis chart, the blue dashed line is the optimal calibration. In addition,
ECE was selected as the measure of model confidence when analysing rel-
evant indicators in this experiment. The closer the accuracy and confidence,
the smaller the obtained ECE value, indicating a higher confidence level of
the model. At this point, the dataset used in the experiment was KDDCUP99.
As shown in Figure 7, experimental results of reliability analysis for different
models are presented. It can be seen from the figure that the industrial control
protocol vulnerability detection model constructed in this paper has higher
reliability.

After the model training is completed, to ensure the feasibility of the new
data, further validation is mainly carried out on the Seq-GAN model. Through
relevant analysis, it can be found that there are significant differences in
the performance of different models on TIAR indicators when the learning
rates are 0.02 and 0.001. When the learning rate is set to 0.001, TIAR can
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steadily improve without fluctuations, so using a learning rate of 0.001 in
the experiment is appropriate. As shown in Figure 8, the comparison of
TIAR indicators when using Modbus slave as the attack target is presented.
As shown in the figure, as the training cycle increases, the TIAR value
gradually increases, indicating that more and more generated data meets the
acceptance requirements of the testing objectives. If the test data is accepted,
it indicates that the accuracy of the generated data format is increasing.
Compared with other models, the Seq-GAN model can achieve higher TIAR.
The highest point of the Seq-GAN model reached 91%, indicating that a small
portion of the data was not formatted correctly. However, in terms of data
acceptance rate comparison, the Seq-GAN model has more advantages in
industrial control protocol vulnerability detection.

In addition, the AVD (Ability of Vulnerability Detection) indicators that
evaluate the vulnerability detection capabilities of different models can more
intuitively reflect the performance of the model in vulnerability detection
in industrial control protocols. As shown in Figure 9, in the experiment,
Modbus slave was used as the test target, and the changes in AVD indicators
between different models and Seq-GAN models were presented. As shown
in the figure, as the training time of AVD gradually increases, it indicates
that the number of errors caused by generated data is increasing, and the
AVD curve ultimately reaches a flat stage and reaches its highest point. The
height that can be achieved in practice is not only related to the method itself,
but also to the testing objectives. If the tested target contains many vulnera-
bilities and defects, the final peak will also be larger. The Seq-GAN model
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Figure 9 Ability of vulnerability detection efficiency of different models.

has greater advantages compared to other models in terms of vulnerability
detection performance in industrial control protocols.

5 Conclusions

Internet technology has promoted the continuous improvement of security
vulnerability detection technology in the field of industrial control, providing
more convenient means for the detection and analysis of vulnerabilities in
industrial control protocols. Based on the application of GAN model in the
field of security vulnerability detection, this article constructs a Seq-GAN
based industrial control protocol vulnerability detection model, and compares
and analyses the relevant performance indicators with experimental data,
summarizing the application advantages of this model in the field of industrial
control protocol vulnerability detection. The main conclusions drawn are as
follows:

(1) Combining the GAN model, the Seq-GAN based industrial control
protocol vulnerability detection model constructed can achieve bet-
ter overall performance compared to other models, achieving further
improvement in security vulnerability detection performance. Through
experimental analysis, it can be concluded that the error of this model in
industrial control protocol vulnerability detection is relatively low; The
highest recall rate of the model is 96%, which can be improved by 2% to
7%. At the same time, the G-mean and F1-score indicators can also be
significantly improved. The reliability analysis results also indicate that
the model has better evaluation results.
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(2) Through analysis of its TIAR and AVD indicators, when the Training
epoch is 50, the test case pass rate of the Seq-GAN model is about 91%,
which is significantly better than other models; In terms of its vulner-
ability detection efficiency, the Seq-GAN model has an improvement
range of 0.7% to 3.5%, which is significantly improved compared to
other models. It exhibits more advantageous comprehensive detection
performance in industrial control protocol vulnerability detection, pro-
viding support for security vulnerability detection and analysis in the
field of industrial control.
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