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Abstract

Specific Emitter Identification (SEI) is advantageous for its ability to pas-
sively identify emitters by exploiting distinct, unique, and organic features
unintentionally imparted upon every signal during formation and transmis-
sion. These features are attributed to the slight variations and imperfections
in the Radio Frequency (RF) front end; thus, SEI is being proposed as a phys-
ical layer security technique. Most SEI work assumes the targeted emitter
is a passive source with immutable and difficult-to-mimic signal features.
However, Software-Defined Radio (SDR) proliferation and Deep Learning
(DL) advancements require a reassessment of these assumptions because DL
can learn SEI features directly from an emitter’s signals, and SDR enables
signal manipulation. This paper investigates a strong adversary that uses SDR
and DL to mimic an authorized emitter’s signal features to circumvent SEI-
based identity verification. The investigation considers three SEI mimicry
approaches, two different SDR platforms, the application of matched filtering
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before SEI feature extraction, and selecting the most informative portions of
the signals’ time-frequency representation using entropy. The results show
that “off-the-shelf” DL achieves effective SEI mimicry. Additionally, SDR
constraints impact SEI mimicry effectiveness and suggest an adversary’s
minimum requirements. Our results show matched filtering results in the
identity of all authorized emitters being correctly verified at a rate of 90% or
higher, the rejection of all other authorized emitters–whose IDs are not being
verified–at a rate of 97% or higher, and rejection of forty-five out of forty-
eight SEI mimicry attacks. Based on the results presented herein, future SEI
research must consider adversaries capable of mimicking another emitter’s
SEI features or manipulating their own.

Keywords: Specific emitter identification (SEI), ID verification, security,
SEI mimicry, adversary, RF fingerprint.

1 Introduction

Specific Emitter Identification (SEI) was introduced nearly thirty years ago to
enable electronic warfare systems to detect, characterize, and identify radar
systems of the same type by exploiting intra-pulse modulation features [16].
These features are a byproduct of “unintentional modulation on pulse” and
attributed to the systems, sub-systems, and components (e.g., power ampli-
fier) comprising a radar’s Radio Frequency (RF) front-end. SEI is appealing
because (i) it is a passive technique, which means that the targeted emitter
maintains its intended mission and generates signals without external stimu-
lation; (ii) it exploits the distinct, unique, and organic features unintentionally
imparted to the transmitted signal by the emitter’s RF front-end; (iii) it can
quantitatively measure those exploited features present within the signal; and
(iv) it can exploit persistent features across time, location, and environments.

The success of radar SEI led to its extension to the identification of
wireless communications emitters in an attempt to augment digital security
measures such as encryption and MAC address filtering. Current literature
shows that SEI can achieve serial number discrimination (i.e., emitters of the
same manufacturer and model), which is the most challenging SEI case. Of
particular interest are Deep Learning (DL) based SEI works because they
show learning and exploitation directly from the signal’s baseband, discrete-
time In-Phase, and Quadrature (IQ) samples [5, 13, 17–19, 23, 25, 29, 30].
Direct feature learning opens the door for an emitter to manipulate those
features before transmission to prevent or inhibit SEI.
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Traditionally, SEI assumes the emitters are passive sources and exploited
SEI features are immutable and difficult-to-mimic [11, 32]. These assump-
tions imply that an emitter is unwilling or unable to develop and implement
effective SEI countermeasures. However, recent DL advances and Software-
Defined Radio (SDR) flexibility necessitate investigation into whether or not
and the degree to which these assumptions hold. We are interested in the ease
and degree to which an emitter can inhibit or thwart SEI by masquerading as
another emitter through SEI mimicry. Early SEI mimicry investigations are
presented in [3, 14, 24, 26]. The authors of [3] investigate defeating transient-
based SEI techniques using signal replay; however, they replay the signals
using a high-end arbitrary waveform generator and at an unspecified high
Signal-to-Noise Ratio (SNR). The authors of [24] present FIRNet, a Deep
Neural Network (DNN) based system purpose-built to mimic the signal
features in another emitter’s signals to inhibit or defeat a DL-based SEI
process. In [24], all emitters are USRP N210 SDRs, even the authorized
emitters, which do not reflect typical communications systems whose user
equipment is unlikely to be SDRs. This also makes it easier for the adversary
to mimic the authorized emitters’ SEI features because emitters of the same
manufacturer and model (i.e., only different serial numbers) exhibit the
greatest similarity in SEI features. In [26], the authors investigate replay and
Generative Adversarial Network (GAN) based signal feature spoofing versus
a Deep Learning (DL) based SEI process; however, the approach suffers
from two key drawbacks. First, the work is conducted in simulation only,
and second, the adversary’s receiver must be located near the emitter whose
signals are being collected to ensure the channel conditions are the same as
those experienced by the SEI process’s receiver. Lastly, the authors of [14]
use online learning to manipulate the adversary’s IQ samples to mimic the
signal features of the authorized emitters and achieve a high success rate (i.e.,
90% or better) at SNRs of 15 dB and above. Similar to the authors of [24], the
authors of [14] use Analog Devices Active Learning Module (ADALM) Pluto
SDRs for the adversary and authorized emitters. Thus, their work suffers the
same concern mentioned for [24]. Our work in [22] and that presented herein
does not suffer any of these highlighted drawbacks. Additionally, our work
in [22] differed from these works and extended SEI mimicry understanding
in the following ways.

• Assesses the effectiveness of SEI mimicry in degrading or defeating an
identity (ID) verification-based SEI process while previous works target
classification-based processes.
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• Uses “off-the-shelf” algorithms to perform SEI mimicry while previous
efforts use purpose or tailored algorithms specifically designed for SEI
mimicry. We aim to determine the ease at which SEI mimicry can be
implemented.

• Addresses an adversary capable of mimicking SEI features using one of
two SDR platforms of differing Size, Weight, Power, and Cost (a.k.a.,
SWaP-C) to determine how SDR capabilities impact SEI mimicry
performance.

• Assesses SEI mimicry performance using an adversary that employs
signal replay, a Multi-Layer Perceptron–AutoEncoder (MLP-AE), or
Convolutional–Generative Adversarial Network (C-GAN) to mimic the
SEI features present within the signals of another emitter.

• Considers the presence or lack of signal energy, which is motivated by
our published work in [30].

• Considers the presence or lack of “decoy” emitter signals to aid the
ID verification process in discerning the adversary from the autho-
rized emitter being mimicked. A decoy emitter is an SDR of the same
manufacturer and model as that used by the adversary.

Despite these contributions, the work in [22] showed that SDR SWaP-C does
impact SEI mimicry effectiveness. When the adversary employs a higher
SWaP-C SDR, the SEI process is not able to verify the identities of three
authorized emitters without also incorrectly identifying the adversary as an
authorized emitter when a decoy emitter’s RF fingerprints are part of the ID
verification process’ training set. Even when the adversary uses an SDR of
lower SWaP-C, the SEI process still requires using a decoy emitter’s RF
fingerprints to correctly reject the adversary’s mimicked SEI features. To
address the ID verification process’ susceptibility to SEI mimicry, we extend
our previous work in [22] in the following ways.

• Investigates matched filtering of the signals to maximize the SNR before
RF fingerprint generation.

• Investigates using entropy to identify the most informative sub-regions
to generate RF fingerprints from. These sub-regions are extracted from
the two-dimensional (2D) Time-Frequency (TF) representations of the
authorized emitters’ signals.

Our results show “off-the-shelf” DL algorithms, and SDR enables SEI
mimicry; however, adversary success is impacted by (i) the use of decoy emit-
ter signals, (ii) energy normalization, and (iii) SDR SWaP-C constraints. The
integration of matched filtering before Gabor-based RF fingerprint generation
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allows (i) the IDs of all authorized emitters to be verified at a rate of 90% or
higher, (ii) the rejection of all other authorized emitters–whose IDs are not
being verified–at a rate of 97% or higher, and (iii) rejection of forty-five out
of forty-eight SEI mimicry attacks at a rate of 93% or higher.

This paper is organized as follows: Section 2 describes the threat model;
Section 3 explains ID verification versus classification, the Signal of Interest,
RF fingerprint generation, Relief-F feature selection, and Support Vec-
tor Machines (SVM); Section 4 describes the signal collection, detection
and post-processing steps; Section 5 presents the results and the paper is
concluded in Section 6.

2 Threat Model

The threat model extends our model in [20] whose adversary (a.k.a., Eve)
uses simple software tools to falsify its digital credentials (e.g., MAC address)
to gain unauthorized network access by digitally posing as an authorized
(a.k.a., Alice) device and being incorrectly authenticated by the network
monitor (a.k.a., Bob). As in [20], Eve is not an authorized network device
and does not have inherent access to the network or the network’s devices.
Lastly, the network’s communication links and hardware are not initially
compromised.

This work aims to determine the ease at which Eve can implement
SEI mimicry using “off-the-shelf” technologies and gauge attack success.
Therefore, Eve is implemented using commercial SDRs, compute resources,
and open-source DL algorithms. Two SDR platforms are used to deter-
mine SWaP-C impacts on SEI mimicry effectiveness. The SDRs are: Ettus
Research’s Universal Software Radio Peripheral (USRP) B210 (∼$4,000 per
unit) and Great Scott Gadget’s HackRF One (∼$470 per unit) [4, 10]. The
B210 SDR gives Eve a distinct advantage over the HackRF One SDR because
it can receive its own transmitted signals. The HackRF One SDR is a half-
duplex system, so a second SDR is needed to receive the signals transmitted
by the first, which increases Eve’s complexity. Eve uses one of three SEI
mimicry attacks.

• Replay-based SEI Mimicry: Eve collects, saves, and re-transmits the
signals of an authorized emitter. Eve may adjust its transmit power and
CFO behavior to modify the replayed signals, but this work does not
assess them.

• AE-based SEI Mimicry: Eve collects a set of signals transmitted by
the targeted, authorized emitter. The MLP-AE is implemented using a
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hidden layer of size one hundred, and a targeted Mean Squared Error
(MSE) of 1× 10−6 [29].

• GAN-based SEI Mimicry: Eve collects its signals and those of a tar-
geted, authorized emitter. The GAN is trained by assigning the targeted
emitter’s collected preambles to Class #1 of the GAN’s discriminator
D and its preambles to Class #2. Class #2 is the GAN’s generator G
input during training. The G’s weights are updated to learn the mapping
needed to modify the SEI features–present in Eve’s signals–to match
those of the targeted emitter (a.k.a., Class #1) at the G’s output. How
often the D assigns the G’s output to Class #1 determines the mapping’s
success. The D is a basic, three-layer CNN trained to discriminate
Class #1’s signals from those of Class #2 modified by the G. The G and
D are iteratively updated until the D can no longer discern a Class #1
signal from those output by the G. Ideally, the G learns to remove
Class #2’s inherent SEI features and insert Class #1’s.

When training the AE and GAN networks, the energy of each collected
preamble is normalized to unity to ensure the corresponding DL network
learns the correct feature distributions without signal energy biasing the
process. Only the collected preambles’ raw IQ samples are used during
training. AE- and GAN-based SEI mimicry is implemented by passing the
Wi-Fi preamble’s IQ samples through the trained AE and G. The resulting
outputs are stored for later transmission by Eve.

Eve uses SEI mimicry with a falsified digital credential to increase the
chances that Bob incorrectly authenticates it. Bob uses the digital credential
and SEI features to verify the ID of the to-be-authenticated device. Lastly,
Eve conducts the attack at an SNR of 9 dB because this is an SNR at which
SEI processes typically struggle to differentiate one from another, and Wi-Fi
is still capable of supporting communications.

3 Background

3.1 ID Verification versus Classification

Most SEI processes use classification to discriminate between emitters [16].
A decision is made in classification using a one-to-many comparison. For
instance, assume a new RF fingerprint (a.k.a., a collection of SEI features
extracted from an emitter’s signal)–whose originating emitter is unknown–
is collected and input into a classification-based SEI process trained to
discriminate between six known emitters. The classifier compares the new
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RF fingerprint with each of the six learned classes and assigns the new RF
fingerprint to the emitter whose class model results in the “best” match. This
decision uses a predetermined criterion and is made no matter how poor the
match is, thus representing a vulnerability that an adversary can exploit to
circumvent classification-based SEI security mechanisms. This is due to the
classifier’s forced assignment of every incoming RF fingerprint to one of the
six classes, even if those RF fingerprints are from a seventh, unknown emitter.

The work in [2] introduced ID verification to eliminate this vulnerabil-
ity. ID verification performs a one-to-one comparison between a previously
unseen RF fingerprint and the stored, learned model of the emitter whose dig-
ital credential is claimed by the unseen RF fingerprint’s originator. Since the
comparison is one-to-one, the SEI process is not forced to make a class (a.k.a.,
originating emitter) assignment when the RF fingerprint poorly matches the
stored, learned model. In addition to the work in [2], the works in [20,21] also
successfully demonstrated the effectiveness of ID verification in defeating
adversaries that falsify their digital IDs in an attempt to circumvent traditional
network security approaches (e.g., MAC address filtering); however, none of
them considered an adversary capable of employing SEI mimicry.

3.2 Signal of Interest

All results are generated using IEEE 802.11a Wireless-Fidelity (Wi-Fi)
preambles. IEEE 802.11a Wi-Fi signals consist of sixty-four Orthogonal
Frequency Division Multiplexing (OFDM) sub-carriers transmitted within
the 5 GHz Industrial, Scientific, and Medical (ISM) band. The IEEE 802.11a
Wi-Fi frame’s first 16µs are occupied by a preamble, which is used for carrier
frequency and phase correction, equalization, and synchronization [12]. The
802.11a Wi-Fi preamble consists of ten Short Training Symbols (STS),
designated s1 through s10, a Guard Interval (GI), designated sG, and two
Long Training Symbols (LTS), designated sL1 and sL2, as shown in Figure 1.
IEEE 802.11a Wi-Fi is used because (i) it is an IoT communications proto-
col [31], (ii) OFDM is used in the 802.11ac, 802.11ad, 802.11ax, 802.11p,
and Long Term Evolution (LTE) standards, (iii) it is used in prior SEI
work [5,22,23,29,30], and (iv) access to a set of Commercial-Off-The-Shelf
(COTS) IEEE 802.11a Wi-Fi emitters.

3.3 RF Fingerprint Generation

RF fingerprints are generated from the TF representations of each emitter’s
preambles. The TF representation is the normalized, magnitude-squared
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Figure 1 The structure of the IEEE 802.11a Wi-Fi preamble that occupies the first 16 µs of
every transmitted signal [12].

coefficients calculated by the Gabor Transform (GT) [8],

Gmk =

MN∆∑
n=1

s(n)W ∗(n−mN∆)exp
−j2πkn/kG , (1)

where Gmk are the complex-valued Gabor coefficients, s(n) = s(n+lMN∆)
is the periodic input signal, W (n) = W (n− lmN∆) is the Gaussian window
function, l is the period of the signal or window, the window is shifted
N∆ samples between calculations, m = 1, 2, . . . ,M for M total shifts,
k = 1, 2, . . . ,KG − 1 for KG ≥ N∆, and mod (MN∆,KG) = 0 is
satisfied [1]. In this work, KG is greater than N∆ because it results in an
oversampled GT, which is advantageous when processing signals collected
at low SNR values.

The magnitude of the complex-valued coefficients, Gmk, is calculated,
the resulting magnitude surface squared, and normalized such that all values
are in the range of zero and one. The resulting TF representation is,

|Gmk|2 =
|Gmk|2 −min{|Gmk|2}

max{|Gmk|2} −min{|Gmk|2}
. (2)

Generation of an RF fingerprint starts by dividing the TF representation
into NR two-dimensional sub-regions (a.k.a., patches) that are each com-
prised of NT ×NF values where NT and NF are the length of the sub-region
along the time and frequency dimension, respectively. A given sub-region
is selected, reshaped into a 1 × NT · NF vector, and variance, skewness,
and kurtosis statistics are calculated. The statistics of subsequent sub-regions
are calculated and appended to those from all preceding sub-regions. After
all sub-regions statistics are calculated, the statistics are calculated over the
entire TF representation and added to the end of the RF fingerprint. An
illustration of the RF fingerprint generation process is shown in Figure 2.
For the results in Section 5, the RF fingerprints are generated using NT = 53
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Figure 2 Gabor-based RF fingerprint generation is detailed in [21] and adopted for time-
frequency-based SEI.

and NF = 4 for a total of NR = 212 sub-regions per TF representation and
Nf = 639 features per RF fingerprint. The RF fingerprint generation process
is detailed in [6, 20, 21].

3.4 Relief-F Feature Selection

Relief-F is an improved Relief algorithm that accounts for noise, missing val-
ues, and more than two classes [15]. Each RF fingerprint feature’s quality is
iteratively determined by calculating the within-feature dimension distances
between a randomly chosen RF fingerprint and each of its Nk nearest in-class
and out-of-class neighbors. The value of Nk is empirically chosen for each
authorized emitter without knowledge of Eve’s signals or RF fingerprints. For
a given iteration, each feature’s weight value is updated using the calculated
distances in conjunction with the weight’s previous value, the prior proba-
bility of the emitter from which the chosen RF fingerprint is drawn, and the
prior probability of the emitter’s class from which the nearest out-of-class
neighbor is drawn.

3.5 Support Vector Machines

All results are generated using SVMs, which are non-probabilistic, linear
two-class classifiers. An SVM maps the RF fingerprints into a space that
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maximizes the margin between the classes. The trained SVM maps previously
unseen RF fingerprints into the same space, and their predicted class is
selected based on the side of the margin on which they fell. SVMs perform
non-linear classification using a kernel that maps the RF fingerprints into a
higher-dimensional feature space. As in [20], ID verification is performed by
a non-linear SVM using a Radial Basis Function kernel.

4 Methodology

4.1 Signal Collection, Detection, and Post-Processing

The SEI process and Eve perform signal collection, detection, and post-
processing.

4.1.1 The SEI Process
All signals are transmitted at 5.805 GHz and collected using a Tektronix
Real-time Spectrum Analyzer (RSA) 5126B and ultra wide-band antenna.
The authorized devices are eight TP-Link Archer T3U USB 802.11a Wi-
Fi-compliant emitters. The TP-Links transmit a 2GB binary file to an SFTP
server. This ensures a sufficient transfer time with many transmissions from
the TP-Link under test. All signals are sampled at 200 MHz and collected
at an antenna incident SNR of 9 dB–average value calculated across all col-
lected signals–by placing all emitters eight feet away from the RSA’s antenna.
The entire collection record is filtered using a fourth-order elliptic filter with a
passband ripple of 0.5 dB, a stopband attenuation of 20 dB, and an 8.865 MHz
cutoff frequency. Individual IEEE 802.11a Wi-Fi frames are detected and
removed from the collection record using an empirically selected amplitude-
based threshold. Each IEEE 802.11a Wi-Fi frame’s preamble is detected
using cross-correlation of the entire frame with an ideal preamble, Carrier
Frequency Offset (CFO) correction performed, downsampled to 20 MHz and
stored for later use. One thousand preambles are collected for each emitter.

4.1.2 The Adversary
Eve continuously observes the 5.805 GHz Wi-Fi channel and collects all
signals using a USRP B210 or HackRF One SDR. A sampling rate of 40 MHz
and 20 MHz is used by the USRP B210 and HackRF One, respectively. For
each targeted emitter, Eve records four seconds worth of communication
using the OSMOCOM source block in GNU Radio. When collecting its
signals, Eve transmits an ideally generated Wi-Fi frame. The B210 SDR is
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capable of full-duplex communications; thus, Eve can receive its transmitted
signals. The HackRF One is a half-duplex SDR; thus, a second HackRF
One SDR is used to collect the signals transmitted by a HackRF One-based
Eve. Each recording is saved as a complex Float32 binary file (a.k.a., the
I and Q channels are saved using 16-bit floating point precision) because
the maximum resolution of the Digital-to-Analog Converter (DAC) is 12
bits; there is no need to record the data at single or double precision. Eve
loads the binary file(s) into MATLAB® to perform preamble extraction,
CFO correction, and energy normalization (i.e., the preambles are of unit
energy) as described in Section 4.1.1. Before constructing a specific mimicry
attack, all B210 SDR collected preambles are downsampled to 20 Mhz from
40 Mhz. The DL architectures are trained using 1, 000 collected preambles
for the AE- and GAN-based SEI mimicry attacks. Once Eve has applied the
prepared SEI mimicry approach to one of its preambles, the OFDM payload–
constructed using a random sequence of bits–is appended to the preamble,
and the resulting frame is saved as a complex Float32 binary file. The saved
frame is transmitted via GNU Radio using the OSMOCOM sink block.

4.2 SEI Feature Enhancement Techniques

Two SEI feature enhancement techniques are implemented to improve RF
fingerprint-based ID verification performance in the presence of an SEI-
mimicking adversary. These techniques are explained in the following two
sections.

4.2.1 Matched Filter Processing
The author of [27] defines a matched filter as a conjugated, time-reversed
copy of a known signal sequence often used for symbol detection in
correlation-based receivers. Matched filters are linear filters that optimize the
SNR for additive, stochastic noise channels. A received symbol or symbols
are defined as,

r(t) = s(t) + n(t), (3)

where s(t) is the original, known transmitted symbol or symbols, and n(t) is
the additive, stochastic noise. The matched filter’s impulse response is,

h(t) =

{
s∗(T − t), 0 ≤ t ≤ T

0, otherwise
, (4)

where T is the symbol or symbols duration [27].
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Figure 3 Representative illustration showing, from left to right, matched filtering of a col-
lected preamble’s ten short training symbols using hS , guard interval using hG, and two long
training symbols using hL. The output of these matched filters is sequentially concatenated
to form a matched filtered preamble whose RF fingerprint is then generated using the process
described in Section 3.3.

As described in Section 3.2 and shown in Figure 1, the IEEE
802.11a Wi-Fi preamble is comprised of thirteen symbols: ten STS
[s1(t), s2(t), . . . , s10(t)], one GI sG(t), and two LTS [sL1(t), sL2(t)]. Ideally,
the ten STS are all the same, and the two LTS are copies of one another; thus,
three matched filters are constructed. The first matched filter is constructed
by extracting a single STS from an ideal IEEE 802.11a Wi-Fi preamble
(i.e., one that is free from SEI features, channel, and other impairments
or distortions) and its corresponding matched filter, hS , generated using
Equation (4). The GI and LTS matched filters are generated following the
same process and designated hG and hL, respectively. For a sampling rate of
20 MHz, hS , hG, and hL are comprised of 16, 32, and 64 complex-valued
coefficients. Matched filtering is performed by convolving each of a received
preamble’s thirteen symbols with their corresponding matched filter. Figure 3
provides a representative illustration of a received preamble’s ten STS, GI,
and two LTS being matched filtered using hS , hG, and hL, respectively. The
thirteen matched-filtered symbols are sequentially concatenated in the order
corresponding to their unfiltered counterparts. Lastly, each matched filtered
preamble is normalized to be of unit energy.
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4.2.2 Entropy-Informed Sub-Region Selection
Inspired by the work in [7, 28], which uses entropy to identify the most
informative regions of a painting or Gabor-based representation of an IEEE
802.11a Wi-Fi preamble, we investigate using entropy to select the most
informative NR sub-regions from the GT-based images generated from the
preambles’ TF representation as described in Section 3.3. The TF represen-
tation ¯|Gmk|2 is converted to a grayscale image ÎG. The entropy-informed
sub-region selection differs from the approach in [28] in that the selected
sub-regions can overlap, are chosen using an exhaustive search in which
consecutive sub-regions only differ by one row or column of pixels, and the
total number of sub-regions selected is set to 212. The latter point is important
because it facilitates direct comparison with the results generated using the
RF fingerprint generation process described in Section 3.3.

A GT image’s most informative NR = 212 sub-regions are selected using
Claude Shannon’s definition of entropy [9],

ϵ(ι) = −
255∑
j=0

fι[j] log(fι[j]), (5)

where the intensity of a pixel is j, ι is the intensity random variable, and fι[j]
is the probability that a given pixel intensity level is within the GT image.

Entropy-informed sub-region selection uses only the GT images gen-
erated from the authorized emitters’ preambles. In other words, the decoy
emitters’ and adversary’s preambles or their TF representations are never
used to select the sub-regions. Sub-region selection begins by randomly
selecting 900 preambles from the 1,000 collected for each authorized emitter
following the process in Section 4.1.1. The TF representation of each ran-
domly chosen preamble is generated per Section 3.3. However, instead of
dividing the TR representation into NR non-overlapping, two-dimensional
sub-regions, the sub-regions are selected from the TF representation using a
two-dimensional sliding window that permits overlap between sub-regions.
Algorithm 1 describes the process followed in selecting the top NR entropy-
ranked sub-regions from a preamble’s GT image ÎG. This algorithm is
followed for a given authorized emitter’s 900 randomly selected preambles.
The entropy values returned across all 900 images are then organized from
highest to lowest. The sub-regions associated with the top NR entropy values
across all 900 images–without duplication–are the sub-regions from which
RF fingerprints are generated for that authorized emitter and all other emitters
when the ID of the selected authorized emitter is being verified. This ensures
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Algorithm 1 The algorithm followed to select the NR top entropy-ranked sub-regions for
each authorized emitter.

Input: ÎG, NT , NF ,M,KG, NR

Output: IT , IF

Calculate Nτ =

⌊
M

NT

⌋
Calculate Nκ =

⌊
KG

NF

⌋
Define ϵmin = −∞
Define E(j)← −∞, j = [1, 2, . . . , NR]
Define IT (i, j)← 0, i = [1, 2, . . . , Nτ ]
Define IF (l, j)← 0, l = [1, 2, . . . , Nκ]
form = 1 to Nτ do

Sub-region time indices τp = {(m− 1) + 1 : (m− 1) +NT }
for k = 1 to Nκ do

Sub-region frequency indices κp = {(n− 1) + 1 : (n− 1) +NF }
Sp = ÎG(τp, κp)
Calculate entropy ϵ(Sp) using Eq. (5)
if ϵ(Sp) > ϵmin then

[ϵ̂, ĵ]← argmin
j

E(j)

E(ĵ) = ϵ(Sp)
ϵmin ← argmin

j
E(j)

IT (i, ĵ = τp
IF (l, ĵ = κp

end if
end for

end for

the ID verification process is authorized emitter-centric, thus preserving its
one-to-one nature. This process is repeated for the remaining authorized
emitters.

ID verification results are generated considering two cases: (i) removing
the Relief-F feature selection step and performing ID verification using the
RF fingerprints generated using the entropy-selected NR = 212 sub-regions,
and (ii) performing Relief-F feature selection on the RF fingerprints gener-
ated using the entropy-selected NR = 212 sub-regions before performing ID
verification.

5 Results

All results are generated by randomly partitioning the RF fingerprints into
a training and a “blind” test data set. The training set consists of the eight
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Table 1 Identity Verification Outcomes (adopted from [21])

System Declaration

Actual ID Authorized Adversary

Authorized True Verification (TVR) False Reject (FRR)

Adversary False Verification (FVR) True Reject (TRR)

authorized emitters’ RF fingerprints; thus, Eve’s signals or RF fingerprints are
never used in the feature selection and SVM training processes. The number
of retained features ranges from four to six-hundred thirty-eight in steps of
two between consecutive values. The training set consists of nine hundred
RF fingerprints per authorized emitter, and the remaining one hundred is
assigned to the “blind” test set. An SVM is trained for each authorized emitter
using ten-fold cross-validation. The model associated with the smallest error
across all folds is stored and used for blind testing and assessing each SEI
mimicry attack’s effectiveness. Figure 4 provides the process for verifying
an emitter’s identity. The four outcomes in Table 1 are adopted from [21].
From the SEI process’ perspective, it is desirable to ID authorized emitters
at a True Verification Rate (TVR)≥90% while achieving a False Verification
Rate (FVR)≤10% when processing RF fingerprints extracted from the signals
of the remaining authorized emitters–whose ID’s are not being verified–and
each of Eve’s SEI mimicry attacks.

An SVM model is trained for each number of retained features and autho-
rized emitter, but only one is used to represent each authorized emitter. The
“best” SVM model is chosen using our approach in [20]. The approach in [20]
is advantageous because SVM model selection uses only knowledge of the
authorized emitters’ RF fingerprints to achieve a TVR≥90% and FVR≤10%
while simultaneously achieving effective adversary rejection performance
without any knowledge of the adversary’s RF fingerprints.

Additionally, this work also considers signal energy and whether or not
a “decoy” emitter’s RF fingerprints are included with the training set. We
consider the “organic” and “unity” energy cases of [30] for signal energy.
Organic energy means that the energy of each preamble is unchanged from
that at its point of collection. For the unity energy case, the energy of every
preamble is normalized to 1 J. In this work, a “decoy” emitter is of the
same manufacture and model as the emitter employed by Eve. So, in this
case, the decoy emitter is either a USRP B210 or a HackRF One SDR that
differs in serial number from Eve’s. When a decoy emitter is employed, its
RF fingerprints are included with those of the remaining authorized emitters
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Start

RF Fingerprint & Claimed Digital ID

SEI Process

RF Fingerprint
assigned to the
class matching
its digital ID?

ID is Verified

Reject Emitter

Output

Stop

yes

no

Figure 4 Flowchart of the process used to verify an emitter’s identity (ID) or reject that
emitter due to the SVM-based ID verification decision not matching the emitter’s provided
digital ID. It is important to note that when the emitter under test is an authorized emitter
(a.k.a., Alice), a “ID is Verified” decision increases the TVR. In contrast, a “Reject Emitter”
increases Alice’s FRR. For the case of Eve, an “ID is Verified” decision increases the FVR
while a “Reject Emitter” increases Eve’s TRR.
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whose IDs are not verified and designated as “Others” in Figure 5. and
Figure 6.

5.1 Results: SEI Mimicry Using a B210 SDR

All B210-based SEI mimicry attacks and authorized emitter ID verification
results are shown in Figure 5. Each sub-figure row corresponds to a specific
signal energy case, while the columns correspond to the decoy status. It is
important to note that a verification rate of 50% represents a guess by the SEI
process because it employs a two-class SVM model.

When considering organic signal energy without decoy emitter RF fin-
gerprints present in the training set, see Figure 5(a), Eve is capable of
diminishing the SEI process’ ability to distinguish Eve from the targeted,
authorized emitter. Eve can mimic the SEI features of four authorized emitters
at an FVR of at least 16% and as high as 46% using SEI mimicry. GAN-based
proves to be the most effective in terms of the highest achieved FVR values.
Interestingly, replay-based mimicry attacks are the second most effective
regarding the number of FVR values above 10%.

For organic signal energy with decoy emitter RF fingerprints present
in the training set, Figure 5(b), the inclusion of decoy emitter RF finger-
prints does diminish SEI mimicry effectiveness when compared with the
corresponding organic signal energy without decoy emitter cases, Figure 5(a).

Unit signal energy without decoy emitter RF fingerprints, and a B210-
based Eve ID verification results are shown in Figure 5(c). All authorized
emitter IDs are verified at a TVR≥90%–the lowest TVR is 96% for Emit-
ter #8–while also correctly rejecting all “Others” and nineteen of Eve’s
twenty-four SEI mimicry attacks at an FVR≤10%. Replay- and GAN-based
SEI mimicry attacks are the most effective regarding the number of attacks
with an FVR>10% and the highest FVR values. The number of successful
mimicry attacks is consistent with the organic signal energy without decoy
emitter case, Figure 5(a). Unlike organic energy, ID verification performance
changes very little when signal energy is unity.

Unit signal energy with decoy emitter ID verification results are shown in
Figure 5(d). The results in Figure 5(d) are poorer for Emitter #1, Emitter #2,
and Emitter #3 when compared with their results in Figure 5(b). Suggesting
that organic signal energy may aid the latter SEI process’s ability to discern
Eve from these three emitters. Overall, Eve’s GAN-based approach is the
most successful SEI mimicry attack. This is unsurprising as it is the most
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(a) Organic energy without decoy.
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(d) Unit energy with decoy.

Figure 5 B210-based SEI Mimcry: Authorized emitter whose ID is being verified (◦), the
remaining authorized emitters (□), replay- (×), AE- (∗), and GAN-based (+) SEI mimicry
attacks. The numbers in parentheses along the x-axis are the number of Relief-F retained
features associated with the authorized emitter whose ID is being verified. “Others” are
authorized emitter whose ID is not being verified.

sophisticated and ensures optimal SEI feature manipulation through the D’s
and G’s combative relationship.

5.2 Results: SEI mimicry using a HackRF One SDR

All HackRF-based SEI mimicry attacks and corresponding authorized emitter
ID verification results are shown in Figure 6 and whose organization is
consistent with Figure 5.

Figure 6(a) shows ID verification and SEI mimicry attack rejection results
for the organic signal energy without decoy emitter case. All but two SEI
mimicry attacks are detected without violating the FVR=10% requirement.
Compared to the results in Figure 5(a), these results suggest that a lower
SWaP-C SDR reduces SEI mimicry attack effectiveness. The HackRF SDR
results in less successful mimicry of Emitter #2. Replay- and GAN-based
mimicry dropped from 16.4% and 46.3% to 11.4% and 18.6%, respectively.
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(a) Organic energy without decoy.
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(b) Organic energy with decoy.
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(c) Unit energy without decoy.
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(d) Unit energy with decoy.
Figure 6 HackRF One-based SEI Mimcry: Authorized emitter whose ID is being verified
(◦), the remaining authorized emitters not being verified (□), replay- (×), AE- (∗), and GAN-
based (+) SEI mimicry attacks.

Figure 6(b) presents the organic energy with decoy emitter ID verification
results. Integration of decoy emitter RF fingerprints within the SVM training
process allows all–replay, AE, and GAN–of Eve’s SEI mimicry attacks to be
detected at an FVR of 10% or better while achieving a TVR>90%. None of
Eve’s attacks exceed an FVR of 5%. These results show that ID verification
is robust against a HackRF One-based Eve regardless of signal energy status
so long as a decoy emitter’s RF fingerprints are used during SVM training.

Unit signal energy without decoy emitter RF fingerprints, and HackRF
One-based Eve ID verification results are shown in Figure 6(c). All autho-
rized emitter IDs are verified at a TVR≥90%–lowest TVR is 91% for
Emitter #4–while also correctly rejecting all “Others” and all but one SEI
mimicry attacks with an FVR≤10%. The one SEI mimicry attack with an
FVR>10% is when Eve replays Emitter #2’s signals, which has an FVR
of 14.5%. However, ID verification and adversary rejection are improved
over the B210-based results shown in Figure 5(c) that wrongly verified
Eve as an authorized emitter five separate times and at FVR∈{20, 35}%.
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Compared with the organic case results in Figure 6(a), the results show that
removing signal energy makes ID verification more resilient to SEI mimicry
and reinforces our previous findings in [30].

Unit energy with decoy ID verification results are shown in Figure 6(d).
Eve’s SEI mimicry attack is defeated (i.e., FVR≤10%) regardless of the
authorized emitter being mimicked. These results are consistent with the
organic signal energy results shown in Figure 6(b), thus showing the benefit
of using decoy emitter RF fingerprints. Although signal energy does not
appear to be a factor in defeating Eve when decoy emitter RF fingerprints
are or are not used, it is worth noting that Eve’s signal energy was not altered
during the attacks.

5.3 Results: SEI Feature Enhancement Techniques

Based upon the results presented and analyzed in Section 5.1 and Section 5.2,
the results presented and interpreted in this section are generated using
unit energy preambles and without a decoy emitter represented within the
SVM training set. This is because signal energy is an adversary exploitable
feature [30] while removing the ID verification process’ dependency on
decoy emitters. The latter is important because using a decoy emitter seems
impractical for real-world deployments.

Figure 7 shows the ID verification and rogue rejection results associated
with the matched filtering, Figure 7(c) and Figure 7(d), and entropy-informed
patch selection, Figure 7(e) and Figure 7(f), techniques for enhancing SEI
features. Figure 7(a) and Figure 7(b) are the same as those shown in Fig-
ure 5(c) and Figure 6(c), respectively to facilitate direct comparison between
them and the remaining results in Figure 7.

Matched filtered preambles ID verification and rogue rejection results are
shown in Figure 7(c) when Eve uses a B210 SDR to mimic the SEI features
of each of the authorized emitters. All authorized emitters have their IDs
verified at a TVR≥90% with the lowest TVR of 94% for Emitter #8 while
simultaneously rejecting all “Others” and all SEI mimicry attacks with a
FVR≤10%. These results are significant because they not only outperform
those shown in Figure 5(c) but also show that the SEI-based ID verification
process can correctly identify each of the authorized emitters while rejecting
all twenty-four SEI mimicry attacks launched by Eve without the need for
a decoy emitter’s RF fingerprints being part of the SVM’s training set.
Figure 7(d) shows the ID verification and rogue rejection results when using
matched filtered preambles, and Eve performs SEI mimicry using a HackRF
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ing the preambles [22].
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(c) B210 adversary and SEI using
matched filtered preambles.
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(d) HackRF adversary and SEI us-
ing matched filtered preambles.
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(e) B210 adversary and SEI using
entropy-informed patches.

1 (536)
2 (186)

3 (448)
4 (590)

5 (616)
6 (632)

7 (112)
8 (476)

0
FVR=10

20
30
40
50
60
70
80

TVR=90
100

(f) HackRF adversary and SEI us-
ing entropy-informed patches.
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(g) B210 adversary and SEI us-
ing matched filtered preambles and
entropy-informed patches.
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(h) HackRF adversary and SEI us-
ing matched filtered preambles and
entropy-informed patches.

Figure 7 Enhanced Feature SEI: Authorized emitter whose ID is being verified (◦), the
remaining authorized emitters (□), replay- (×), AE- (∗), and GAN-based (+) SEI mimicry
attacks. The numbers in parentheses along the x-axis are the number of Relief-F retained
features associated with the authorized emitter whose ID is being verified. “Others” are
authorized emitter whose ID is not being verified.
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One SDR. As with the B210-based Eve results in Figure 7(c), all authorized
emitters have their ID verified at a TVR≥90% with the lowest TVR of 97%
for Emitter #3 and Emitter #8 while simultaneously rejecting all “Others”
and twenty-one of the SEI mimicry attacks with an FVR≤10%. However,
when Eve mimics Emitter #2 using signal replay, an AE, or a trained GAN’s
G, the SEI process incorrectly verifies Eve as Emitter #2 at a false verification
rate of 22.7%, 44.4%, and 47.2%, respectively. One possibility for this poor
adversary rejection performance could be that the matched filtering process
increases the similarity between the SEI features in Emitter #2’s and those
in Eve’s mimicked signals. Another consideration is that the patch size
and location were selected to optimize classification and not ID verification
performance [6], so one possible solution is to optimize these values for
ID verification. Patch location is considered in the entropy-informed patch
selection approach. It is also worth noting that when considering Emitter #2
ID verification and rogue rejection performance in Figure 7(d) versus those in
Figure 7(c), the results contradict the findings in [22] that concluded that the
HackRF One’s lower SWaP-C made it easier for the SEI-based ID verification
process to discern Eve from the authorized emitter versus when Eve employs
the higher SWaP-C B210. This observation further justifies using multiple
SWaP-C SDRs in this and future SEI works.

Entropy-informed selected patches ID verification and rogue rejection
results are shown in Figure 7(e) when Eve employs a B210 SDR to perform
SEI mimicry of the eight authorized emitters. All eight authorized emitters
have their IDs verified at a TVR≥90% with the lowest TVR of 91% cor-
responding to Emitter #4. All of the “Others” are rejected as rogues at a
FVR≤10%; however, Eve is falsely verified (i.e., the FVR is greater than
10%) as an authorized emitter seven times out of the twenty-four SEI mimicry
attacks launched by Eve. Eve’s greatest success occurs when using a GAN to
mimic the SEI features in Emitter #3’s preambles, resulting in an FVR of
83.4%. Eve also achieves an FVR of 73.3% when replaying Emitter #8’s
preambles. When Eve employs AE-based SEI mimicry, FVRs of 11.6%,
13.4%, and 22.8% result when mimicking the SEI features of Emitter #1,
Emitter #4, and Emitter #8. The ID verification and rogue rejection results for
entropy-informed selected patches and a HackRF One-based Eve are shown
in Figure 7(f). The IDs of all authorized emitters are verified at a TVR≥90%,
with Emitter #4 achieving a TVR of 93%. All “Others” emitters are correctly
rejected at FVRs below 10%. Despite this success, Eve can still achieve FVRs
greater than 10% for five of its twenty-four SEI mimicry attacks. Unlike the
B210-based Eve, the greatest success occurs when replaying the preambles
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of an authorized emitter, specifically when Eve replays the preambles of
Emitter #2, Emitter #3, and Emitter #8 to achieve FVRs of 26.9%, 26.6%,
and 32.4%, respectively. Eve’s next most successful SEI mimicry attack
occurs when using an AE to mimic the SEI features present in Emitter #8’s
preambles, resulting in an FVR of 26.8%. When mimicking the SEI features
of Emitter #8, all three of Eve’s mimicry attacks are falsely verified above
the 10% threshold; however, none exceed 32.4%. Compared to the B210-
based Eve results in Figure 7(e), Eve’s SEI mimicry attacks are less successful
regarding the highest FVR achieved. This reaffirms SWaP-C’s impact on the
success of Eve’s SEI mimicry attacks.

Matched filtered preambles and Entropy-Informed Patch Selection The
final set of ID verification and rogue rejection results are generated by select-
ing the highest entropy-ranked sub-regions drawn from the GT images of
each emitter’s matched filtered preambles. ID verification and rogue rejection
performance results for a B210-based Eve are presented in Figure 7(g). Seven
of the eight authorized emitters are verified at a TVR≥90%. Emitter #4 has its
ID verified at a TVR of 88%. Despite Emitter #4’s TVR, Eve’s SEI mimicry
attacks are successfully rejected at FVRs lower than 10%. All ‘Others’ are
correctly rejected as rogue emitters at an FVR≤10%, and seventeen of Eve’s
SEI mimicry attacks are successfully rejected with FVRs lower than the
desired 10% rate. Eve’s most successful SEI mimicry attack occurs when Eve
replays Emitter #8’s preambles, resulting in an FVR of 81.3%. Eve’s GAN-
based SEI mimicry attack achieves the most occurrences of FVRs above
10%. These FVRs occur when mimicking the SEI features of Emitter #2,
Emitter #3, Emitter #6, and Emitter #8 with FVRs of 12.8%, 54.7%, 11.5%,
and 42.9%, respectively. Eve’s AE-based mimicry attack is successfully
rejected in seven of the eight attempts. An FVR of 15.7% is achieved when
Eve uses the AE-based approach to mimic the SEI features in Emitter #8’s
preambles. Eve’s attacks achieve an FVR above 10% when mimicking the
SEI features of Emitter #8, with the AE-based approach being the least
successful. Figure 7(h) shows the ID verification and rogue rejection perfor-
mance associated with a HackRF One-based Eve. Six of the eight authorized
emitters have their IDs verified at TVRs greater than 90%. Emitter #4 and
Emitter #5 are verified at TVRs of 88% and 89%. Again, Eve’s attacks are
successfully rejected at FVRs lower than 10% when mimicking Emitter #4’s
SEI features. The fifty-six ‘Others’ cases are successfully rejected at FVRs
below the 10% threshold. Eve’s most successful replay, AE, and GAN-based
attacks occur when mimicking the SEI features of Emitter #2, Emitter #8,
and Emitter #2 with FVRs of 47%, 35.7%, and 67.2%, respectively. The
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GAN-based mimicry of Emitter #2 is Eve’s most successful attack using a
HackRF One SDR. None of Eve’s Emitter #2 mimicking attacks are rejected
at FVRs lower than 26.9%, but none exceed the 67.2% achieved using
GAN-based mimicry. Eve achieves FVRs of 26.9%, 14%, and 35.7% when
mimicking the SEI features of Emitter #2, Emitter #5, and Emitter #8 using
an AE.

When considering the B210-based Eve results in Figure 7(e) and Fig-
ure 7(g) versus those in Figure 7(c), ID verification and rogue rejection
performance is poorer when using entropy-informed sub-region selection.
When considering the number of incidents in which the FVR exceeds the
10% threshold, this is also the case when comparing the HackRF One-based
Eve results in Figure 7(f) and Figure 7(h) with those in Figure 7(d). For the
B210 and HackRF One-based Eve, this could be because the SEI features
in the authorized emitters’ high entropy sub-regions are more similar to
those in Eve’s high entropy sub-regions, thus making it more difficult for
the corresponding SVM models to discern Eve from the authorized emitters.
These results suggest that only matched filtered preambles (i.e., without
entropy-informed selection) are needed to improve ID verification and rogue
rejection performance for the case when a decoy emitter’s RF fingerprints are
not present in the SVM training set.

6 Conclusion

SEI mainly treats emitters as passive devices unwilling or incapable of
developing and implementing countermeasures to inhibit or thwart SEI.
Additionally, SEI work has primarily assumed the exploited features are
immutable and challenging to mimic. However, the presented results show
that SDR’s flexibility and DL’s ability to learn SEI features directly from
discrete-time signals call into question the extent to which these assumptions
hold. This work investigates the adversarial use of “off-the-shelf” algorithms
and SDRs to inhibit or thwart ID verification by mimicking authorized emitter
SEI features. Our results show that effective SEI mimicry can be implemented
using “off-the-shelf” DL algorithms; however, adversary success can be
diminished using decoy emitter RF fingerprints and accounting for signal
energy. Matched filtering of the signals before SEI feature generation results
in the IDs of all authorized emitters being verified at a rate of 90% or
higher, the rejection of all other authorized emitters–whose IDs are not being
verified–at a rate of 97% or higher, and rejection of forty-five out of forty-
eight SEI mimicry attacks. This is an improvement over the thirty-nine out
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of forty SEI mimicry attacks that are correctly rejected 90% of the time
when using non-matched filtered, unit energy signals and without decoy
emitter signals or RF fingerprints present in the SVM’s training set. Based
on the results presented, the viability of SEI–as an effective, operational
security mechanism–rests on using strong adversaries within the research and
development process. Additionally, this work exposes the technological and
algorithmic entry levels required to implement an effective SEI-mimicking
adversary. Future research will investigate methods to improve SEI-based ID
verification in the presence of a strong adversary. This work will investigate
alternate machine learning algorithms that include but are not limited to deep
learning architectures. Future research will also consider alternate operating
conditions, including channel models that coincide with real-world situations
such as multipath and mobility. Lastly, the presented results are limited
to eight authorized emitters and two adversary SDRs (i.e., one B210 and
one HackRF One); thus, further research is needed when the number of
authorized emitters is more in line with a typical IoT deployment (e.g., 30
to 50 emitters).
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