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Abstract

Machine Learning (ML) classifiers are pivotal in various applied ML
domains. The accuracy of these classifiers requires meticulous training,
making the exposure of training datasets a critical concern, especially con-
cerning privacy. This study identifies a significant trade-off between accuracy,
computational efficiency, and security of the classifiers. Integrating classical
Homomorphic Encryption (HE) and Differential Privacy (DP) highlights the
challenges in parameter tuning inherent to such hybrid methodologies. These
challenges concern the analytical components of the HE algorithm’s privacy
budget and simultaneously affect the sensitivity to noise in the subjected ML
hybrid classifiers.

This paper explores these areas and proposes a hybrid model using a basic
client-server architecture to combine HE and DP algorithms. It then examines
the sensitivity analysis of the aforementioned trade-off features. Additionally,
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the paper outlines initial observations after deploying the proposed algorithm,
contributing to the ongoing discourse on optimizing the balance between
accuracy, computational efficiency, and security in ML classifiers.

Keywords: Machine learning, homomorphic encryption, differential pri-
vacy, data security, sensitivity analysis, privacy budget, training dataset,
hybrid algorithms, hybrid model.

1 Introduction

Recent scholarly investigations, including those by Li and Micciancio at
Eurocrypt 2022 [1], have elucidated that the traditional formulation of secu-
rity strategies under chosen plaintext attacks falls short in securing approx-
imate homomorphic encryption against diverse adversaries. This research
delves deeper into this domain, exploring the extent of attacks and infor-
mation deviation measurable in a dynamic setup utilizing machine learning
methodologies. It is discerned that the information disseminated, retained,
and transacted via cloud platforms is susceptible to vulnerabilities owing to
the involvement of multiple parties.

To address the vulnerabilities inherent in cloud systems mentioned above,
this study explores a range of innovative cryptographic methods, termed
Privacy-Preserving Technologies (PPTs). These technologies aim to aug-
ment utility by leveraging advanced technologies like cloud computing
and machine learning, while maintaining stringent privacy standards. The
employed methodology involves post-processing the decryption function
output with a mechanism that aligns with a suitable differential privacy (DP)
concept, introducing noise proportional to the worst-case error expansion of
the homomorphic computation.

In various implementations of privacy-preserving mechanisms, evaluat-
ing the distribution of injected and corresponding noises is crucial, even post
typical homomorphic encryption noise analysis, due to the potential insignifi-
cance of the noise relative to the message. The stability of privacy, analyzed in
conjunction with the HE-DP amalgamation and pertinent protocol, is crucial
for “Approximate Fully Homomorphic Encryption”. The term ‘approximate’
implies the intentional retention of noise as the least significant bits of the
final output during decryption.

The primary objective of integrating HE-DP schemes is to strengthen
machine learning applications by providing an additional layer of security
against unconventional adversaries. This research establishes a correlation
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between noise in Homomorphic Encryption and Differential Privacy, explor-
ing this relationship when noise in Homomorphic Encryption is considered
as a database-dependent output perturbation. We introduce groundbreaking
findings on the guarantees of Differential Privacy through this database
addition.

The rest of this paper is organized as follows: Section 2 reviews related
works and introduces the mathematical frameworks essential for developing
effective machine learning models. Section 3 provides a comprehensive
overview of the proposed algorithmic scheme, followed by experimental
results in a simulated environment in Section 4. Section 5 presents a model
for sensitivity analysis for the mentioned algorithm, and Section 6 concludes
with a summary of the contributions, innovations, and potential risks of this
scheme, along with potential extensions of these models.

2 Research Motivation

Several recent research endeavors have played a crucial role in aligning the
potentials and impacts of homomorphic encryption and differential privacy,
serving as the motivation for this study. Xiangyun Tang et al. [1] were
pioneers in establishing a well-defined interchangeable property for ML clas-
sifiers and ML models in alignment with HE and DP. They introduced Heda,
an innovative amalgamation of HE and DP, conceived as a flexible switch
to manage the privacy budget and precision parameter tuning to balance
the inherent trade-offs Homomorphic encryption is a crucial cryptographic
technique that enables computations to be performed directly on encrypted
data, thus removing the need for decryption. It serves as a robust solution
for preserving the privacy and confidentiality of sensitive information while
allowing computations on such encrypted data [5]. This method ensures data
security even during processing, reducing dependence on trusted third parties
and minimizing the risk of exposing sensitive information to potential threats.
As described in [6], a homomorphic map preserves structure, meaning an
operation on plaintexts corresponds to an operation on ciphertexts. This
implies that altering the sequence of operations preserves the outcome post-
decryption, i.e., ‘encrypt-then-compute’ and ‘compute-then-encrypt’ yield
equivalent results.

Aligned with the trend of parametric models, Bossuat et al. (2022) [3]
optimized their model of approximate homomorphic encryption, reducing the
occurrences of failures and enhancing precision through distributed and ran-
dom encapsulation, initiated with bootstrapping. Preliminary investigations
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Figure 1 Homomorphic map [6].

have uncovered additional hybrid cryptographic techniques, such as Lat-
tigo [4], which integrates intriguing multiparty primitives with the HE
protocol in lattice-based cryptography.

Motivated by these advancements, this paper pursues the design and
validation of a refined HE-DP model, incorporating sensitivity analysis to
ensure balanced noise insertion to mitigate various trade-offs. The motivation
is driven by the desire to explore and amplify the synergistic capabilities
of homomorphic encryption and differential privacy, contributing to the
progressing field of cryptographic research.

2.1 Classical Homomorphic Encryption

Homomorphic encryption is a crucial cryptographic technique that enables
computations to be performed directly on encrypted data, thus removing the
need for decryption. It serves as a robust solution for preserving the privacy
and confidentiality of sensitive information while allowing computations on
such encrypted data [5]. This method ensures data security even during
processing, reducing dependence on trusted third parties and minimizing
the risk of exposing sensitive information to potential threats. As described
in [6], a homomorphic map preserves structure, meaning an operation on
plaintexts corresponds to an operation on ciphertexts. This implies that alter-
ing the sequence of operations preserves the outcome post-decryption, i.e.,
‘encrypt-then-compute’ and ‘compute-then-encrypt’ yield equivalent results.

There are different types of homomorphic encryption schemes, each with
its own properties and capabilities [7]:

• Partially Homomorphic Encryption [8]: This type of homomorphic
encryption allows computation on either addition or multiplication oper-
ations, but not both simultaneously. For example, the Paillier encryption
scheme is partially homomorphic under multiplication, while the El
Gamal encryption scheme is partially homomorphic under addition.
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• Somewhat Homomorphic Encryption (SHE): Somewhat homomor-
phic encryption schemes support a limited number of both addition
and multiplication operations. However, the computation capabilities are
constrained even if they still provide practical utility. Examples of SHE
include the Gentry-Halevi encryption scheme and the BFV encryption
scheme [9].

• Fully Homomorphic Encryption (FHE): Fully homomorphic encryp-
tion schemes allow for arbitrary computations on encrypted data,
including both addition and multiplication operations. FHE is the
most powerful form of homomorphic encryption but comes with more
complexity and computational overhead. Example of FHE is BGV
encryption scheme [10].

2.2 Relevant Mathematical Perspectives

The proposed model envisages the combination of a given approximate FHE
scheme with the tool of differential privacy. The construction can be given as
follows:

• Given an approximate FHE scheme, we modify the decryption function
by post processing its output (similar to decrypted messages) with an
appropriate chosen Differential privacy model.

Here, we can consider two levels:

• Approximate FHE with a static noise: this instance describes that
bound can be truly computed as a function of homomorphic encryption.
Finally, this could be used on the input cipher text.

• Approximate FHE with a dynamic noise. In this case, the bound can be
computed by the decryption function. In turn, the decryption function
allows the input, the cipher text and secret key.

We deploy the proposed model HDP (Homomorphic Differential Pri-
vacy), where we analyze a DP model while adding Gaussian dynamic noise
to the input. Hence, let Π = (KeyGen,Ence,Dec,Eval) be an FHE scheme
with a plain text space:

Ṡ ⊊ s, where S̃ ⊆ Z̃ is normal space with normal ∥·∥ operator.
We also consider a policy to add Gaussian noise with this text space

and normal ∥·∥ operator. We also assume a standard deviation norm to add
Gaussian noise at later stage to test the level of privacy. Therefore, for any
deviation ∂ > 0, n ∈ N , the Kullback-Leibler Differential Privacy [16] could
be a dynamic method to add the noise. However, for the presented model we
follow standard gaussian noise insertion mechanism.
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2.3 Mathematical Assumptions and Existing Libraries

2.3.1 Gaussian noise: maintaining privacy and preserve
statistical properties

Gaussian noise can be used as a mechanism to add differential privacy to
a dataset. Gaussian noise is a type of random noise that follows a normal
distribution, and it can be added to numerical data in order to mask the
original values while still preserving the statistical properties of the data.

In the context of differential privacy, Gaussian noise can be added to the
data in order to make it more difficult to identify individual records or extract
sensitive information from the dataset. The amount of noise added can be
controlled by adjusting the standard deviation of the Gaussian distribution
with higher standard deviations resulting in more noise and greater privacy
protection. However, adding too much noise can make the data less useful for
analysis or modelling. So, it is important to strike a balance between privacy
and utility when using this technique. For the use case, a standard deviation
of 0.1 is used for generating noises. This value can be increased further but
will result in a significant decrease in terms of accuracy.

2.3.2 Suitable & most appropriate encryption libraries
All HE schemes have common steps: key generation, encryption, decryption
and homomorphic operations on the ciphertexts.

Mathematically, the security of Paillier assumes to be synchronized with
the hardness of factoring.1 Referring a pair of ciphertext (c1; c2) is (m1; m2)
under the same Paillier encryption, with M as public key, then

c1 × c2 = [[(1 +M)m1+m2rNmodM2]], where (m1 + m2) < N.

In the context of this project, the Paillier encryption scheme is chosen
as the preferred homomorphic encryption technique for several elaborated
reasons as explained in the next section.

2.4 Paillier Cryptosystem: Scheme and Properties

The Paillier cryptosystem is a public key cryptosystem used for encryption
and decryption of data. The cryptosystem is asymmetric, meaning that it
uses two keys: a public key and a private key. The public key is used
for encryption while the private key is used for decryption. The Paillier

1Definition: Any computational adversary given as input N, the product of two random
n-bit prime numbers, shall not be able to factor it.
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Table 1 Summarizes the most implemented and studied schemes by the cryptographic
community
Library ZAMA1 SEAL [17] Paillier [8]
Encryption Homomorphic

encryption with
limited operations

Fully Homomorphic
Encryption (FHE)
capabilities

Partial Homomorphic
Encryption with
limited support

Encryption
Mechanism

Efficient performance
with optimized
resource usage

High-performance
encryption operations

Moderate performance
due to limited
homomorphic
operations

Geolocation Limited support for
geolocation tasks

No specific support for
geolocation

Suitable for
geolocation tasks,
enabling homomorphic
geofencing

Geo-fencing Limited support for
geofencing algorithms

No specific support for
geofencing algorithms.

Possible to implement
geofencing algorithms
with custom methods.

General
Limitations

Limited support for
complex homomorphic
operations

Requires more
computational
resources.

Limited support for
complex homomorphic
operations.

https://www.zama.ai/.

cryptosystem has several unique properties, including its ability to perform
homomorphic addition and scalar multiplication, which means that it
can perform addition and multiplication operations on ciphertexts without
the need to decrypt them as first step. This property makes it useful for
privacy-preserving computations.

D(E(A) + E(B)) = A+B

Or
D(E(A)× Scaler) = A× Scaler

In the above depiction, A and B and Scalar are actual numbers. E (. . . )
is the Paillier encryption function. D (. . . ) is the Decryption operation. The
system is semantically secure, which means that an attacker cannot learn
any information about the plaintext from the ciphertext. For the study, the
Paillier Cryptosystem is leveraged by HE-DP algorithm to ensure secured
data transfer and computations with privacy. In the following section, two
separate high level descriptions of HE-DP (e.g. client & server architecture)
are presented (See Figure 2).

https://www.zama.ai/
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Client-Side Algorithms:
Process:
1: Generate Paillier public-private key pair using the Paillier Cryptographic Scheme
2: Save the public-private key as a JSON
3: Create a PaillierPublicKey object pub key with the value of ’n’ from the public key
4: Create a PaillierPrivateKey object priv key with pub key, p, and q from the private key.
5: For each data in the dataset, do
6: Add Gaussian noise at randomized intervals
7: Encrypt the data with pub key
8: End for
9: Convert the encrypted data to JSON
10: Append pub key with JSON
11: Send the JSON to the SERVER side
12: While no JSON prediction from the server, do
13: Wait
14: End while
15: If pub key of the response matches the generated pub key
16: For data in JSON prediction, do
17: Decrypt the data with priv key
18: End for
19: End if
This algorithm outlines the steps involved in securing and transmitting data from the client’s
side using the Paillier Cryptographic Scheme.

Server-Side Algorithms
Process:
1: While there is no JSON request from the client, wait
2: End while
3: Load trained weights from the base model
4: For each data in the JSON request, do
5: If the data is equal to pub key, then
6: Create a PaillierPublicKey object pubkey with the value of ’n’ from pub key
7: Else
8: Convert data to Paillier EncryptedNumber objects
9: Calculate the prediction by taking the dot product of loaded weights and
EncryptedNumber objects
10: Assign the result to prediction and append pub key (JSON)
11: End if
12: End for
13: Send the result JSON to the CLIENT side
This algorithm demonstrates the server-side operations upon receiving encrypted data from
the client, utilizing the Paillier Cryptographic Scheme for secure data processing.
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Figure 2 Client-server HEDP interaction schema.

2.5 Experimental Validation and discussion on Results

Combining homomorphic encryption and differential privacy provides an
even more powerful tool for secure machine learning. By combining these
two techniques, it is possible to perform computations on encrypted data
while also ensuring that the privacy of the individuals in the data set is
protected.

In this paper, a novel measurement is proposed and an evaluation of the
performance of Homomorphic Encryption with Differential Privacy (HEDP)
has been done on a Breast Cancer Wisconsin dataset.

2.5.1 Proposed HEDP : architecture, process and code
walkthrough

Based on the dataset, the objective is to predict whether the type of cancer
is Malignant or Benign based on the attributes provided in the dataset. It
is to be kept in mind that the flow of machine learning model training and
prediction should proceed in such a manner that it preserves both privacy
and security. To ensure the maximum security and privacy, HEDP algorithm
is proposed. The methodology starts by training a base model on a publicly
available dataset. This dataset can be used by any organization or individual
who wishes to train a ML model. However, if the dataset is sourced from
a sensitive organization, then privacy-preserving measures need to be taken.
This is where differential privacy comes in.

Gaussian noise is added to the sensitive data to preserve privacy. The
amount of noise added depends on a privacy parameter, which is set by the
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organization or individual providing the sensitive data. Once the privacy-
preserving modifications are made to the dataset, the base model is trained
on this modified dataset. This base model is used by any client who wants
to make predictions on their own sensitive data. However, the client does
not wish to reveal their sensitive data to the party (company offering ML
services). To further enhance the privacy, Homomorphic Encryption is added
into the mix, particularly the Paillier encryption scheme. The client generates
a Paillier public-private key pair and uses the public key to encrypt their
data. The public key is then attached along with the data and sent to the ML
company over a secure network.

Once the ML component receives the encrypted data, it uses the public
key to extract Paillier encrypted objects. Then it performs machine learning
computations on the Paillier objects using the already trained base model to
predict the output. The output is an encrypted prediction. This is because
the encrypted data is encrypted with Paillier cryptosystem, which is a homo-
morphic encryption scheme. Any sort of addition and scalar multiplication
done on this encrypted data is the same as doing the same operations on the
decrypted data.

The encrypted prediction is sent back to the client. The client then
decrypts it with their Paillier private key and gets their result.

2.6 Scopes of Implementations

In this experiment, the dataset used is Breast Cancer Wisconsin. The Breast
Cancer Wisconsin (Diagnostic) dataset is a widely utilized dataset in machine
learning and data mining research. It was initially created by Dr. William
H. Wolberg, a physician at the University of Wisconsin Hospital at Madison,
Wisconsin, USA. The data was gathered by examining fine needle aspirates
(FNA) of breast masses, each of which was labeled as either malignant or
benign.

This dataset encompasses features computed from a digitized image
of a fine needle aspirate (FNA) of a breast mass. These features describe
various characteristics of the cell nuclei, such as radius, texture, perimeter,
area, smoothness, compactness, concavity, symmetry, and fractal dimension.
These attributes aid in characterizing the cell nuclei as either benign or
malignant. The dataset is publicly available, for the demonstration purposes,
it is assumed that the data received is pre-processed by injecting Gaussian
noise.

To increase the strength of the Gaussian noise added to the dataset, it is
required to increase the value of the standard deviation (sigma) parameter of
the Gaussian distribution used to generate the noise. This parameter controls
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the spread of the distribution, so higher values of sigma will generate noise
with greater magnitude. Different values of sigma can be experimented to
find the optimal level of noise for the specific use case. However, it is
crucial that that adding too much noise may adversely affect the accuracy of
the given machine learning model. The following sub-section describes the
deployment process for both client and server architecture, which is essential
for experimental validation.

2.6.1 Client-Side Code Walkthrough
The following lists of functions describe the client-side deployment:

• storeKeys( ): This function generates public and private keys based on
the Paillier Homomorphic Encryption Scheme, and saves the keys in a
JSON file named client public private keys.json.

• Content of client public private keys.json
• getKeys( ): This function reads the client public private keys.json file

and creates public and private key objects using the Paillier module.
• serializeData( ): This function takes in the public key object and data

as inputs, encrypts the data using the public key, and returns a serialized
JSON object. The encrypted data is stored as a list of tuples with the
ciphertext and exponent.

The encrypted data which is sent to the server looks like the following:

• load prediction(): This function reads a JSON file named predic-
tion.json and returns its contents as a dictionary.

• Data contents of prediction.json

The load prediction() function then loads a pre-generated encrypted pre-
diction from the server and decrypts it with the private key of Paillier scheme.
The resultant answer is a Regressed Result (more about why is it not a binary
result in the server-side code walkthrough: computeData() function). The
regressed result is passed through a Sigmoid function which squeezes the
regressed result strictly between 0 and 1. The scheduled schema is :

0 □ Benign Cancer
1 □ Malignant Cancer

2.6.2 Server-side code walkthrough
Firstly, a base model is trained on the privacy-preserved data (in our case).
There will not be much difference in training the base model. The process is
the same. Once the model is trained, the trained weights are saved and used
for homomorphic computations.
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The trained weights contain the weights fitted by the model on the breast
cancer dataset. The following lists of responsible functions are mandatory:

• getData(): retrieves the encrypted data from the client and loads it into
the system.

• computeData( ): This function utilizes trained weights to perform a dot
product with encrypted Paillier objects. This is a homomorphic scalar
multiplication, which is a valid operation on the Paillier encryption
scheme. However, the result is not in binary format and requires con-
version to binary using the sigmoid function. It is important to note that
Paillier Encryption Scheme is a Partially Homomorphic Scheme due to
the fact that it cannot handle division homomorphism.

Even mimicking the division with multiplicative inverse results in inac-
curate encrypted notation. Therefore, to obtain accurate results, the sigmoid
function is employed on the client side. The serialization of output function
will follow:

• computeAndSerializeData( ): formats the encrypted results along with
the respective public key.

• save prediction( ): saves the prediction in prediction.json file. This is
the predicted result sent to the client for decryption.

2.7 Performance Analysis: Proposed HEDP versus Standard
Algorithms

The analysis comprises of the plot for Accuracy vs Iterations.

Figure 3 Accuracy versus iteration plot.
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In Figure 3, it is demonstrated that the observed loss is not significant
since the training and prediction methods did not use any lossy encryption
schemes. The accuracy decline in HEDP can be attributed to the noisy
dataset used for training. However, it is noteworthy that the model per-
formed remarkably well, considering the fact that it was trained entirely
using privacy-preserving techniques. During the execution phase, the CPU
consumptions from both the sides (client and server) were observed.

2.7.1 The client-side plot

Figure 4 CPU utilization with time occupancy (client side).

Observations:

– The initial spike was due to Paillier encryption, where the client gener-
ated Paillier public, private keys and then used it to encrypt the data it
intended to send to server.

– The sudden spike at the end is attributed to decryption (using private key
to decrypt the result) as well as the sigmoid operation on the received
result. Here, the maximum CPU utilization observed is 25%.

2.7.2 Server-side plot
Observations

– The server is idle initially. In Figure 5, as soon as it received the data,
the computational process kicked in (graph peaks consistently after 35s
mark).
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Figure 5 CPU utilization with time occupancy (server side).

– The computational process is heavy as it is evident in the plot. It rapidly
consumed around 100% of CPU utilization for homomorphic operations
on encrypted data.

– Thus, maximum CPU Utilization reaches to 100%.

2.8 Standard Algorithm (Linear Regression without HEDP) CPU
Plot

The following plot demonstrates the CPU utilization of the standard algo-
rithm [15], which was trained on the same server.

Figure 6 Standard CPU utilization without HEDP scenario.
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Observations

– In Figure 6, the training process lasted only a few seconds (7s).
– The peak CPU utilization is around 40%. This is much lesser than the

HEDP counterpart.
– The CPU utilization drops quickly after the training process is complete,

as there is no data transmission over the network involved.

2.9 Sensitivity Analysis

Motivated by the phenomenal work by Tabitha Ogilvie [21], where the theme
has been throughly investigated that dependence of HE noise on the under-
lying data as a critical barrier to privacy, and derive new results on the
Differential Privacy under the constraints of native noise impact on HE.

This work is pivoted on the central facts e.g. sensitivity, noise variance
and message dependence and therefore the paper pointed out the extent to
which the noise growth in homomorphic encryption can provide differential
privacy to the output. Finally, the paper solicits properly account for message
dependence, the privacy leakage is much higher, and also it has been found
that message dependence dominates noise growth. The base of the paper
inspired the sensitivity analysis derivation in more simplistic way for this
present work.

Sensitivity analysis [12] is expressed as the relation to the Laplace mech-
anism privacy budget and the justified sensitivity to regulate the amount of
noise addition. Therefore, every HEDP algorithm should deduce suitable
mathematical expression to fix privacy budget formula and accommodate
most likelihood sensitivity procedure for DP mechanism.

Without the loss of generality, we assume that to guarantee the efficacy
of Differential Privacy if considered homomorphically, then it is expected to
consider only the privacy measure of terminal output.

In few cases, the entropy of terminal output follows:

[α+N(0, ∂2)]. (1)

where α is the “true” output of the algorithm. Thus, an initial approach may
attempt to ensure ρ is large enough to mask the difference (α − α′) over
adjacent databases.

In this work, we consider failure probability δ of DP under the real
variance of HE model, where sensitivity δf could vary with the value of
variance in proportion with a monotonically increasing function. However,
the variance of an algorithm’s output could be more prominent numerically
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when it is evaluated homomorphically (this behavior is dependent on the
input data). Therefore, the proposed algorithm presented here is to model the
output from the database with proper noise distribution. Thus, this sensitivity
analysis comprises of database and noise analysis.

The following core theorem can be described as:
Let ε (privacy budget for the proposed HE-DP algorithm including client

and server side deployment) ∈ (0, 1) be arbitrary. For c2 > 2 ln (1.25/δ),
the Gaussian Mechanism is (ε, δ)-differentially private whenever ∂ ≥ cdf /ε,
where δf is the sensitivity.

We consider two databases PD (Pilot database) and RD (Reference
database) and let A be the algorithm output when we use PD as input
database, and A′ when we use Reference database RD′.

Our strategy will be to show the ratio of probability density functions as:

FPD

FRD
A(α)/fA′(α) > eε, (2)

except with probability at most δ as α follows the distribution of the proposed
HEDP algorithm A.

2.10 Exceptions in the Proposed HEDP Model

In the proposed model with HE, the multiplication will be automatically be
the part of plain texts and thus it will impress on the variance of (α − α′).
Therefore, we assume polynomial model as Pσ2

1σ
2
2 and thus added entity

with plaintexts t1 and t2 can be expressed as:

Pσ2
1σ

2
2 + σ2

1∥t1∥
2 + σ2

2∥t2∥
2, (3)

Therefore, for the given homomorphic encryption, input database should
be influential with respect to the given entropy followed:

[α+N(0, ∂2)]. (4)

As we consider (α−α′) over adjacent databases, therefore to tune with the
consulting databases focused for training, the objective is to fix the Gaussian
mechanism for the proposed HEDP algorithm in such a way that the variance
∂ will depend on the combined value of (ε, δ) and it will be evaluated as the
following:

2ln

(√
prob1

prob2

)
> 1 (5)
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the value of ε also varies with noise scale. If we consider κ as coefficient
which will support to express the agreement of the binary outcome of the
two training databases, where the noise ε is added to achieve the differen-
tial privacy for different mathematical operations relevant to homomorphic
encryption.

However, to find out the ratio of the probability of given noise function,
we follow the following formula:

FPD

FRD
= exp

(
∥γ − α′∥2

2∂2
− ∥γ − α∥2

2∂2

)
(6)

= exp

(
1

2∂2
+ (∥γ − α+ κ∥2 − ∥γ − α∥2)

)
(7)

= exp

(
1

2∂2
+ 2(γ − α) · κ+ ∥κ∥2)

)
(8)

It signifies that the database for training the database with deliberate noise
needs a Pilot database (PD), where the proposed algorithm A and its variance
A′ will be functional to another parallel refernce database with a relational
expresssion as: A ∼ N(α,Σ), here Σ can find its contemporary diagonal
element Σ′.

Thus,

FPD

FRD
=

PD∏
i=1

∂RD

∂PD
exp

1

2

(
γi − α′

i

∂RD

)2

−
(
γi − αi

∂PD

)2)
(9)

Hence, with log sensitivity and iterations for the variance, we will be
interested to evaluate maximum likelihood probability and we can rewrite
the expression as:

FPD

FRD
=

PD∏
i=1

1

ζi
exp

1

2

PD∑
i=1

ζ2

 (γi−αi)

∂i
− κi

2

−

 (γi−αi)

∂i

2

(10)

This is in tune with polynomial model of Pσ2
1σ

2
2 for HE multiplication.

It also highlights that in the present simplistic model rescale and squaring
have not been addressed. After inclusion of these components of noise
growth the maximum likelihood probability of log variance could be changed
accordingly.
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Figure 7(a) & 7(b) Sensitivity observation of proposed HEDP.

Here, ζi is the relation between diagonal entries for the pilot and refer-
ential database, subjected for the training and sensitivity κ should be in the
appropriate range of variance of (α− α′).

Following the formulated Equations (8), (9) and (10) above, the validation
of sensitivity analysis for proposed HEDP algorithm can be done. We observe
that there are two phases to measure the trend of the system: (a) log variance
with iterations. (b) log sensitivity with iterations.
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Significantly, in the first plot [Figure 7(a)], it is observed that log variance
inclines towards positive training value after certain number of iterations.
Thus, training accuracy with noise becomes more consistent with positive
value as it grows up with number of iterations. However, proposed HEDP
in Figure 7(b) demonstrates to attain a peak value with log sensitivity scale
−7 in 40th iterations. The curve flattens more as it grows up with a greater
number of iterations. It signifies that trade-off between accuracy and com-
putational speed up in the proposed model becomes stable with the present
use-case. However, to find out more robust sensitivity, the value of Gaussian
noise, the noise variance and dependency analysis have also to be performed
on the HEDP algorithm.

2.11 Conclusion and Scope of Further Research

In this paper, a rudimentary algorithm for combining homomorphic encryp-
tion and differential privacy is proposed to demonstrate an effective strategy
towards the precession, computational efficiency and privacy budget trade-
off. It is emphasized with the deployment of such a proof-of-concept demon-
strated with an elementary client-server architecture, which could position
suitable justification of library compatibility for HE environment. We observe
that, in DP, the main challenge is to reduce the tradeoff between privacy
and accuracy. To address this challenge, future research can explore the
development of more robust mechanisms that add less noise while providing
more privacy guarantees. This is indicative for complete sensitivity analysis
of such HEDP protocol to perform noise analysis and to check message
dependency.

Additionally, it is possible to propose different relaxations for DP in the
context of distributed paradigm or to boost DP using other techniques like
anonymization, subsampling or cryptography. For HE, the major component
is to reduce the tradeoff between privacy and computational complexity.
To address this challenge, the research should focus on accelerating HE
primitives while identifying algorithmic approaches to reduce the complexity
of certain operations, such as division. By improving the efficiency of HE,
privacy can be maintained while mitigating the computational overhead.
Furthermore, the combination of HE and DP is also an interesting direction.
However, combining these techniques is not trivial, as it requires reducing
the tradeoff between computational complexity, model accuracy, and privacy.
As suggested in the work of Sébert et al. [14], combining these two tech-
niques may offer a way to protect the raw data from all the participants in the
distributed process.
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There are few research initiatives where a private routing protocol that
can be used to communicate anonymously between different networks.
For example, the protocol mentioned in the paper can be applied in a variety
of Internet of Things scenarios: from Wireless Sensor Networks, to intercon-
nected IoT systems composed of different devices or infrastructures. Finally,
this protocol achieves context privacy by using homomorphic encryption,
tunneling, and the spatial Bloom filters [18].

In the context of more searchable encryption, it is evident that online
social networks and IoT applications can be orchestrated with specialized
encryption techniques. The approach facilitates a more controlled means
for data dissemination in a public OSN. Predicting trust in an online social
network is a challenging task due to the lack of physical connectivity and
complete factual information. A selective inconspicuousness method is pro-
posed. It first identifies the personally identifiable information from tweets
and user bio, anonymizes it, and transfers the crucial data via the cloud,
from where authorized users can retrieve them via the proposed searchable
encryption mentioned in the paper [19].

Furthermore, considering the advancements made by Ameur et al. (2022)
in developing a secure and non-interactive k-NN classifier using symmetric
fully homomorphic encryption, it would be intriguing to explore the adap-
tation of a hybrid version of this classifier using homomorphic encryption
and differential privacy. Such an adaptation could optimize the classifier’s
performance and facilitate a scalable deployment of k-NN on encrypted data,
thereby enhancing data security in statistical database systems.
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