
The Homology Determination
System for APT Samples Based

on Gene Maps

Rui-chao Xu1, Yue-bin Di1, Zeng Shou1, Xiao Ma2,3,
He-qiu Chai4 and Long Yin4,∗

1State Grid Liaoning Electric Power Supply Co., Ltd., Shenyang 110003, China
2NARI Group Corporation (State Grid Electronic Power Research Institute),
Nanjing 210061, China
3Beijing Kedong Electric Power Control System Co., Ltd., Beijing 100192, China
4Software College, Northeastern University, Shenyang 110169, China
E-mail: 2110499@stu.neu.edu.cn
∗Corresponding Author

Received 28 November 2023; Accepted 21 March 2024

Abstract

At present, there are fewer types of homology determination methods for
advanced persistent threat (APT) samples detection, and most existing deter-
mination schemes have problems such as high cost, low accuracy, and
difficulty in identifying unknown APT samples. Therefore, we proposed a
homology determination system for APT samples based on gene maps by
integrating deep learning and gene maps. Firstly, we extract the software gene
features from the samples uploaded by the user and apply the TF-IDF algo-
rithm to clean the extracted software genes. The Word2Vec algorithm is used
to vectorize all the genes to construct the gene sample vectors. And we use a
LSTM-based classifier to detect APT attack samples. Finally, the K-nearest
neighbor algorithm is used to determine the homology of gene-sharing APT

Journal of Cyber Security and Mobility, Vol. 13 4, 751–774.
doi: 10.13052/jcsm2245-1439.1348
© 2024 River Publishers

752 R.-c. Xu et al.

samples. The detailed construction process of the scheme is given in this
paper, including APT sample gene extraction, cleaning, clustering, sample
detection, and homology determination. Experimental validation showcases
our model outperforming existing methodologies with an accuracy of 95%,
precision of 94%, and recall of 95%. When compared to previous models,
the superiority of our approach is evident. These results underscore our
model’s high efficiency and accuracy, confirming its potential for significant
application in the field of cybersecurity.

Keywords: APT sample, gene map, homology determination.

1 Introduction

Advanced persistent threat (APT) is a type of attack that uses highly stealthy,
organized, and threatening attack methods to carry out persistent cyber
attacks against a specified target. Among all types of cyber attacks, APT
attacks have the highest threat level and are more difficult to detect [1–3].
In 2009, a large-scale APT attack dubbed Operation Aurora targeted multiple
high-profile companies, including Google, Adobe Systems, and Rackspace.
The aim was to harvest sensitive corporate data and user account information.
In 2010, a cyber weapon known as Stuxnet targeted Iranian nuclear facilities.
The malware is a sophisticated worm that was designed to infiltrate and com-
promise industrial systems, specifically the Siemens SIMATIC WinCC/PCS
7 control systems used in Iran’s nuclear program. Stuxnet reportedly damaged
or destroyed approximately 1,000 centrifuges. Another notable example is
the 2016 U.S. Democratic National Committee (DNC) hack, where APT28
(Fancy Bear) and APT29 (Cozy Bear) were involved in stealing sensi-
tive data, internal communications, and emails. According to QiAnXin’s
Global Advanced Persistent Threat (APT) 2021 Annual Report [4], a large
number of IP addresses within China have generated high-risk communica-
tions with dozens of offshore APT groups in 2021, and their number and
damage are growing at an alarming rate. APT attacks on government depart-
ments, health and medical sectors, and high-tech enterprises in China are
prominent.

Facing the explosive growth of APT attacks, APT detection and traceabil-
ity research has received increasing attention. Although many universities,
research institutes, and enterprise organizations have proposed various mea-
sures to address the problem, new types of APT attacks have emerged, and the
emergence of packing, obfuscation, sandbox evasion, and other technologies

The Homology Determination System for APT Samples 753

have made traditional detection methods face serious challenges, and it has
become unrealistic and inefficient to rely solely on manual work to iden-
tify and classify malicious code samples. Motivated by this situation, we
focus on explore the deep-rooted patterns and features of APT codes and
to analyse and detect unknown APT samples efficiently and accurately using
machine learning, deep learning, and other related technologies. The main
contributions of our study are listed as follows.

(1) We employ a multi-faceted approach that integrates TF-IDF for feature
reduction, word2vec for vector construction, a three-layers LSTM mod-
ule for sequential data handling, and KNN for homology determination.

(2) The proposed method can efficiently process large datasets, flexibly
adapt to APT evolution, and maintain a high classification accuracy with
less reliance on labeled data.

(3) Experimental validation showcases our model outperforming existing
methodologies with an accuracy of 95%, precision of 94%, and recall of
95%, which proves the superiority of our approach by comparing with
other APT codes detection approaches.

2 Related Works

The analysis and classification of malicious software, particularly Advanced
Persistent Threats (APTs), have been extensively studied, with methodologies
evolving from statistical analysis to sophisticated machine learning and deep
learning techniques. This section provides a systematic review of the pro-
gression of these methodologies and highlights our novel contributions to the
field. Early approaches to APT analysis focused on feature extraction through
statistical methods. For instance, researchers decomposed APT source code
post-decompilation and categorized features into different levels of granular-
ity [5]. They utilized Term Frequency (TF) to prioritize APIs, illustrating the
importance of feature selection in classification tasks. However, the dataset
used in these studies, which will be described comprehensively in Section 5.1,
is often limited in scope, and our work aims to address this by incorporating
a more diverse and extensive collection of APT samples.

Graph-based analyses, such as downloader graphs and functional depen-
dency graphs, have been employed to distinguish between benign and
malicious code, with Kwon et al. [6] and Garbervetsky et al. [7] using these
to analyze download patterns and function call dependencies, respectively.
However, the dynamic nature of APTs poses challenges, as mutations can
alter structural patterns. Our research introduces a novel gene mapping

754 R.-c. Xu et al.

technique that enhances the robustness of graph-based methods against these
APT mutations. In the realm of machine learning for APT classification,
Rosenberg et al. [8] showed the determination of homology, while Pascanu
et al. [9] and Miller et al. [10] used recurrent neural networks and SVM
classifiers. These methods often rely on extensive labeled data, a require-
ment our approach reduces by applying the K-Nearest Neighbors (KNN)
algorithm, allowing for effective classification with fewer labeled samples.
Adding to the graph-based analysis landscape, Huang et al. [11] proposed a
multi-granularity fusion feature based on biological gene concepts for binary
code traceability. Similarly, Zhao et al. [12] introduced a malware homology
identification method using subgraphs of the Function Dependence Graph
(FDG) as genes. While insightful, these methods have limitations, such as
the complexity of selecting key APIs and scalability issues. Moreover, the
structural changes from malware mutations and the computational demands
of FDGs pose significant challenges. Our approach aims to address these
limitations, offering a scalable solution less prone to the overfitting risks
associated with previous methods when analyzing new APT samples.

Deep learning has brought significant advancements in APT classifica-
tion. Zhao et al. proposed a texture fingerprint-based clustering method to
analyse the homology of malicious code [13]. The method analyses binary
malicious programs without source code analyses their image texture fin-
gerprint information and clusters their fingerprint information. Sun et al.
proposed a malware feature images generation method combining malicious
code analysis, RNN and CNN to identify malware families [14]. Zhang
et al. proposed a DNN architecture applying multiple Gated-CNNs to extract
features of API calls and execute dynamic malware analysis [15]. Li et al.
proposed a malware classification model with RNN to classify variants of
malware by using long-sequences of API calls [16]. Chaganti et al. proposed
a DL based Bi-GRU-CNN model to detect the IoT malware and classify the
malware families using ELF binary file byte sequences analysis [17, 18].
Do et al. [19] proposed a combined deep learning model that leverages
MLP, CNN, and LSTM networks for APT attack detection through network
traffic analysis, achieving an impressive accuracy range of 93% to 98%
in experiments. However, these approaches often rely on large volumes of
labeled data, which are scarce for APTs, and may not effectively adapt to the
dynamic nature of APT tactics that evolve to evade detection.

In summary, our research leverages the strengths of existing methods
while introducing novel strategies to overcome their limitations. The pro-
posed method, described in greater detail in the following sections, presents a

The Homology Determination System for APT Samples 755

significant step forward in the detection and classification of APTs, enhancing
the cybersecurity landscape.

3 System Design

This chapter outlines the design of the APT homology determination system,
detailing its functional components within the context of its architecture.
Building upon the architecture, the system comprises several key functions
that are central to the APT homology determination process.

3.1 Gene Extraction

A software gene is a binary series of segments that express the behavior or
function of the software. In the context of this system, a software gene is a
combination of one or several basic blocks. A basic block is a sequence of
code executed sequentially, starting with an entry statement and ending with
an exit statement, which is executed by entering only at the entry and exiting
only at the exit. If the last instruction of a basic block is a library function
call (except for the exit class), the basic block is merged with the next basic
block immediately adjacent to the physical address; when further merging is
not possible, the resulting block of code is a software gene. The APT sample
gene extraction process for this system is shown in Table 1.

The gene obtained from the above steps is the complete assembly code.
To make the subsequent operations such as gene cleaning and similarity
calculation more efficient, this paper uses the opcode sequence to represent
the gene, as shown in Figure 1.

3.2 Gene Clean

The extracted genes also have a large number of genes that are not related to
the core function of the malicious code, so it is also necessary to remove
a large amount of noise from the software genes to better obtain genes
that can characterize a certain class of APT features. In this paper, the TF-
IDF (term frequency-inverse document frequency) algorithm is used for the
classification process. The main idea of the algorithm is that if a word appears
in an article with a high TF frequency and rarely in other articles, the word
or phrase is considered to have a good category differentiation ability and is
suitable for classification.

In this system, the TF-IDF algorithm is used to select genes with high fre-
quency in a certain family sample and low frequency in other family samples

756 R.-c. Xu et al.

Table 1 Pseudocode of gene extraction algorithm
Input: EXE
Output: Software genes
algorithm:
Begin

function list← r2.cmdj(’aflj’) # Retrieve all functions using radare2
basic blocks← empty list # Initialize list for basic blocks
genes← empty list # Initialize list for genes
For each function in function list Do

r2.cmd(’s{}’.format(function)) # Jump to current function in radare2
basic blocks← r2.cmd(’pdbj @@b’) # Get basic blocks for the function
For each basic block in basic blocks Do

gene← empty list # Initialize list for a single software gene
For each code in basic block Do

If code is a library function call Then
gene.append(code) # Add the code to the current gene
genes.append(gene) # Add the current gene to the set of genes
gene← empty list # Reset the gene list

Else
gene.append(code) # Add the code to the current gene

End If
End For
genes.append(gene) # Add the last gene to the set of genes

End For
End For
Return genes

End

of the APT sample as the characteristic genes of that family. For gene x in a
particular APT sample, the TF value is calculated as shown in Equation (1).

TF (x) =
A(x)

A
(1)

A(x) is the number of APT samples of that class containing gene x; A is the
total number of APT samples of that class.

Calculate the IDF value as shown in Equation (2).

IDF (x) = log
N + 1

N(x) + 1
+ 1 (2)

N is the total number of APT types and N(x) is the number of APT types
containing gene x in a given family sample set.

The Homology Determination System for APT Samples 757

Figure 1 Software gene diagram.

The higher the TF-IDF value obtained by solving Equation (3).

TF − IDF (x) = TF (x) ∗ IDF (x) (3)

The better the gene can characterize that class of APT traits. In this paper,
the TF-IDF values of all genes of each sample were found and ranked. The
top 400 genes were selected as the characteristic genes for that sample.

3.3 Gene Cluster

In APT sample analysis, functionally similar APT sample genes will to some
extent also present morphologically similar sequences, and therefore highly
similar genes can be considered as genes that are essentially functionally
identical and can be grouped into one category. Based on this property of
software genes, this system uses the Word2Vec algorithm to vectorize the
gene sequences represented by the opcode, and in turn, uses the cosine
distance to calculate the cosine similarity of the two vectors.

After obtaining the word vectors using Word2Vec, we chose to compare
the similarity of two genes using the gene distance measure, followed by
clustering all genes in the database using the UPGMA (Unweighted Pair
Group Method with Arithmetic Mean) clustering algorithm. The UPGMA
algorithm constructs a rooted tree (dendrogram) that reflects the presence of
a pairwise similarity matrix (or dissimilarity matrix) in the structure. At each
step, the two closest clusters are combined into a higher-level cluster. Any
two clusters of size A and B are the average of the distances d(x,y) of all
objects x in A and all objects y in B. Thus, the distance between any two

758 R.-c. Xu et al.

clusters is defined in Equation (4).

d(A,B) =
1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y) (4)

For this system, genes with similar functions often have similar
sequences, so closely related genes are grouped together to reduce dimension-
ality. The clustering algorithm relies on defining distance, accomplished here
using the Smith-Waterman algorithm, a method for local sequence alignment
that identifies the most similar subsequence between two sequences. This
algorithm is beneficial for gene sequences, where only specific portions may
be similar. It’s highly accurate and accommodates insertions or deletions
common in gene sequences, though it’s computationally intensive, especially
for long sequences. In our system, pre-processed genes are normalized into
shorter sequences, mitigating computational costs for clustering. The main
design idea is as follows.

Given two opcode representations of the gene sequences A = a1, a2, . . .,
an and B = b1, b2, . . . , bm, where ai and bi are both opcodes, the highest
score of the subsequence consisting of the first i elements of A and the
subsequence consisting of the first j elements of B is recorded using a matrix
starting from the starting elements of the two sequences, and the formula is
given in Equation (5).

Hij = max

{
Hi−1,j−1 + δ(i, j),maxk≥1{Hi−k,j −Wk},

maxi≥1{Hi,j−k −Wl}, 0

}
(5)

1 ≤ i ≤ n, 1 ≤ j ≤ m. Wk is the weight of the score deducted for
mismatches of subsequences of length k. δ(i, j) is the score value added when
ai and bj in the sequence are matched successfully, and when the value is set
to 1, Hnm is exactly equal to the length of the longest common subsequence
of sequences A and B. The distance dAB between sequence A and sequence
B is defined in Equation (6).

dAB = max{n,m} −Hnm (6)

Based on the gene distance measure, this paper adopts an optimized UPGMA
clustering algorithm to cluster similar genes and then map them into a
sample vector to achieve dimensionality reduction, while clustering makes
the correlation of each dimension lower, which meets the requirements of
machine learning for sample vectors. By iteratively executing the UPGMA

The Homology Determination System for APT Samples 759

algorithm to cluster the highly correlated genes, the dimensionality of sample
vectors is gradually reduced and more suitable to be processed by the classical
machine learning algorithms. In this paper, the number of clusters is set to
256, resulting in 256 clusters. For all genes in a sample, check whether a gene
in one of the clusters exists, and if so, dispose of the corresponding vector
position by 1, otherwise set it to 0, thus constructing a sample vector of length
256. This provides the input for subsequent machine-learning algorithms.

3.4 Detection

After the sample vectors are constructed, a multi-layered neural network
architecture is employed for classification. Initially, a one-dimensional
convolution-based neural network is used to process the input vectors. The
one-dimensional convolutional layers are adept at capturing local dependen-
cies and patterns within the sample vectors.

Following the convolutional layers, the architecture integrates a three-
layer LSTM module to effectively model the sequential dependencies inher-
ent in the APT sample data. A schematic diagram of the complete neural
network structure, including the convolutional layers and the three-layer
LSTM module, is illustrated in Figure 2.

The first LSTM layer has 256 units and processes the initial feature
representation derived from the convolutional layers. It captures the initial
temporal relationships within the data. The output of the first LSTM layer is
then fed into the second LSTM layer, which consists of 128 units. This layer

Figure 2 Neural network architecture diagram.

760 R.-c. Xu et al.

Figure 3 LSTM unit.

further refines the temporal features and abstracts more complex patterns
from the lower-level representations. Finally, the third LSTM layer with 64
units receives the output from the second layer and continues the process of
temporal feature extraction. This hierarchical structure allows the network to
capture temporal dependencies at different scales and levels of abstraction.

The output of the third LSTM layer is then directed towards a fully
connected layer, which serves as the classifier. The fully connected layer
transforms the high-level features learned by the LSTMs into a vector of
length 2, representing the probabilities that a given sample is an APT or
non-APT. This output is used to implement the APT detector.

The LSTM-based APT detector contains a series of basic LSTM units
forming the memory storage layer that stores the summary of the behavior of
the processed APT samples. Figure 3 shows the architecture of LSTM unit.

In each LSTM unit, the hidden output vector is passed from the LSTM
cells to the fully connected (FC) layer and optimized using the Softmax
function. The following recursive Equation (7) describe how these LSTM
cells work.

ft = σ(Wufut +Whfht−1 + bf)

it = σ(Wuiut +Whiht−1 + bi)

ot = σ(Wuout +Whoht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wucut +Whcht−1 + bc)

ht = ot ⊙ tanh(ct)

(7)

The Homology Determination System for APT Samples 761

Where σ(x) is the sigmoid function, x⊙ y is element-wise product, ut is
input vector, Wui∼hc are linear transformation matrices, bi, bf , bo, bc are the
bias vectors, it, ft, ot are the gating vectors, ct is the cell memory state vector,
ht is the state output vector.

Each LSTM cell information memory updating, forgetting, and out-
putting its state is determined by the gating vectors it, ft, ot. Then cell state
ct and output ht are changed according to Equation (7), and whether the cell
state is reset or restored is determined according to the state of the forgotten
gate vector ft. The other two gating vectors, it and ot, operate similarly to
adjust the input and output.

3.5 Homology Determination

Malicious samples originating from the same APT group tend to have par-
tially similar behavior or functions and genes can express behavior indirectly,
so the number of genes shared by samples belonging to the same team tends
to be larger. This paper employs the K-nearest Neighbor (KNN) algorithm
for APT homology determination. It classifies samples based on the majority
class of the k most similar samples in the feature space. The algorithm
depends solely on the nearest sample’s category for classification. Similarly,
if most of the k nearest neighbor samples belong to a category, the sample is
classified accordingly.

KNN’s performance depends on K and distance definition. Small K
values are sensitive to noise, while large K values may include distant
samples, potentially biasing predictions. Uneven sample distribution can lead
to significant errors. This paper measures proximity using shared gene count,
considering samples closer if they share more genes, aligning with gene
association mapping principles.

4 Evaluation

4.1 Environment and Dataset

The experimental environment for system testing in this paper is shown in
Table 2 below.

The dataset of APT malicious samples used in the experiments is shown
in Table 3 below. Special needs to be pointed out is that the dataset central
to our study stands out for its direct use of original executable files from
APT samples, offering a high-fidelity reflection of real-world scenarios.

762 R.-c. Xu et al.

Table 2 System test experiment environment

Hardware/Software Config Detail

Hardware CPU Inter(R) Core(TM) i5-8300H

Memory 16GB

OS Window 10, Ubuntu16.04

Software Programming Languages Python3.7, React

Development environment Visual Studio Code

Table 3 System test dataset

Config Detail Test Dataset

APT 1 405 40

APT 10 244 24

APT 19 32 3

APT 21 106 10

APT 28 214 21

APT APT 29 281 28

APT 30 164 16

DarkHotel 273 27

Energetic Bear 132 13

Equation Group 395 39

Gorgon Group 961 96

Winnti 387 38

Common Malware 957 320

These raw samples were processed through our system to create a detec-
tion and classification framework that mirrors the challenges encountered
in actual cybersecurity environments, where APT samples often lack labels
and are scarce. By deliberately choosing a dataset that embodies these con-
straints, our model is rigorously tested and validated under conditions that
cybersecurity systems face, enhancing its practical relevance and robustness.

The dataset is from the APT Malware Dataset [23]. We use 3594 samples
from 12 APT groups to build the APT gene database and map APT gene
associations and use these APT samples and 957 common malicious samples
for training the detection model. The system was tested using 355 samples
from 12 APT groups and 320 common malicious samples. The trained APT
detection model was first used to make predictions and test the performance
of the model. Finally, the samples detected as APT are added to the genetic
profile, and the changes in the genetic profile are demonstrated.

The Homology Determination System for APT Samples 763

4.2 Detection Performance

Based on the neural network classifier detection model implemented in
the previous section, this section uses the dataset shown in Table 3 for
model training. The training set consists of 3876 samples, including 3239
APT samples and 637 non-APT samples, and the test set consists of 675
samples, including 355 APT samples and 320 non-APT samples. The test
metrics include Accuracy, Precision, and Recall, which are calculated by
Equations (8).

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(8)

Where TP is the number of positive samples predicted as a positive class
by the detection module; TN is the number of negative samples predicted as a
negative class by the detection module; FP is the number of negative samples
predicted as a positive class by the detection module; and FN is the number
of positive samples predicted as a negative class by the detection module.

Firstly, a fully connected neural network-based classifier was constructed
for experiments in this paper. The training environment and the deep learning
framework used are shown in Table 4.

The training parameters for the proposed detection model (the LSTM
model) and the other contrast neural network detection models are shown in
Table 5, using the Adam optimizer and setting the initial learning rate to 10-4,
with the loss function using Cross Entropy Loss. There is a little difference
between the input training data among these detection models, in which the
input training data processed by DNN1, DNN2, 2D-CNN, VGG, and ResNet
are the grayscale image features generated from the input malware samples,
while the 1D-CNN and LSTM use the API features of samples.

The comparison results on performance metrics (etc. accuracy, precision,
and recall rate) among the different detection models are listed in Table 6.

Table 4 Detection model test environment
Environment Detail
Test environment Anaconda3-5.3.1, Python3.7
framework Pytorch1.11

764 R.-c. Xu et al.

Table 5 The Training parameters of different detection models
DNN1 1D CNN LSTM 2D CNN

Models [18] DNN2 [18] [15, 16] (Our Model) [14, 17] VGG ResNet

Dense 1024,1 1024,512,256,1 1024,1 1 1024,1 4096 2048
Dropout 0.01 0.01,0.01,0.01,0.01 0.5 0.1 0.5 0.5 –
Activation ReLU ReLU, ReLU, ReLU ReLU – ReLU ReLU ReLU
Batch size 64 64 64 32 64 64 64
Epochs 200 200 200 200 200 200 200
Pool size – – 2 – 2 2 2
Kernel size – – 3 – 3 3 3
Number of
Filters

– – 64 – 64 64 64

Table 6 The comparison of performance metric results of different detection models
DNN1 1D CNN LSTM 2D CNN

Models [18] DNN2 [18] [15, 16] (Our Model) [14, 17] VGG ResNet
Accuracy 0.73 0.77 0.92 0.95 0.87 0.86 0.94
Precision 0.75 0.79 0.91 0.94 0.84 0.91 0.92
Recall 0.74 0.81 0.93 0.95 0.85 0.89 0.91

The proposed detection model of the LSTM network has achieved the best
scores on both accuracy, precision, and recall rate. The scale of the model
architecture of the LSTM network is also more concise than the other neural
network detection models.

The comparison results of model training accuracy and loss among the
different detection models are shown in Figure 4. With the increasing epochs
of model training, the average accuracy/loss of the proposed LSTM detection
model is higher/lower than the other detection models within the range of
25 to 200 epochs. The results show the best evaluation performance of the
proposed LSTM-based detection model on APT samples identification and
source classification, by which we can easily recognize the samples from the
known APT groups or the common malware.

4.3 Homology Determination Evaluation

Based on the homology determination model implemented in the previous
section, the system tested the homology determination on a gene pool formed
by 3239 APT samples using the 335 APT samples in Table 3. The core
parameter of the KNN algorithm is the value of K. The system tested the
effect of the value of K on the accuracy of homology determination, and its
relationship with the accuracy is shown in Figure 5.

The Homology Determination System for APT Samples 765

Figure 4 The accuracy and loss comparison among different detection models.

Figure 5 The impact of K value on classification results.

The false positive rate (FPR) and false negative rate (FNR) are calculated
based on the confusion matrix generated from the classification results. The
confusion matrix, as depicted in the appended Figure 6, elucidates the dis-
tribution of true positives, false positives, false negatives, and true negatives
for each APT category. The FPR is determined by dividing the number of
false positive occurrences by the sum of the false positives and true negatives,
thereby offering insight into the frequency at which non-homologous samples
are erroneously classified as homologous. Conversely, the FNR is obtained by
dividing the number of false negative instances by the sum of false negatives

766 R.-c. Xu et al.

Figure 6 The confusion matrix.

and true positives, providing an understanding of the system’s tendency to
misclassify homologous samples as non-homologous.

Upon examination, it was observed that the FPR was notably higher
for APT-19. This can be attributed to the inherent limitations of the KNN
algorithm, where the classification decision is based on the majority voting
among the nearest neighbors. APT-19, having a smaller representation in the
dataset, is more susceptible to being overshadowed by other categories with
larger sample sizes. Consequently, the FPR for APT-19 reflects the system’s
challenge in robustly classifying sparsely represented categories.

This comprehensive evaluation framework, inclusive of FPR and FNR
metrics alongside accuracy, allows for a more nuanced understanding of the
system’s capabilities and limitations, thus facilitating informed operational
decision-making when deploying the system in real-world scenarios.

4.4 APT Gene Association Map

According to the method described in the previous section, the gene associ-
ation map within each APT group was mapped in this paper. Figure 7 shows
the association map within the APT-1 organization, which can visually show
that there is obvious gene sharing between malicious codes originating from

The Homology Determination System for APT Samples 767

Figure 7 Gene association map of APT-1.

Figure 8 Gene association map among the APT groups.

the same APT group, reflecting that the samples borrow more from each other
and contain many similar behaviors and functions.

Based on the gene association mapping within the APT group, we plot the
gene association mapping between APT groups. For any two different APT
groups, if the number of shared genes present is greater than a set threshold,
a line is used to label between the two APT groups, and the thickness of the
line reflects the number of samples with shared genes. The complete gene
association map is shown in Figure 8. It can be seen that most of the groups
were associated with each other, but the association was weak.

768 R.-c. Xu et al.

There were strong genetic associations between APT-28, APT-29, and
Energetic Bear groups, with APT-28 and APT-29 sharing the strongest degree
of genes. It reached 4.2 in the evaluation index of this paper. Understanding
correlations among APT groups benefits users in several ways:

(1) Enhancing Defensive Strategies: By comprehending APT attackers’
behavioral tendencies and TTPs, users can strengthen their defenses.
For example, if certain APT groups prefer specific malware or attack
methods, users can proactively implement countermeasures.

(2) Rapid Response: Knowing the relationships among APT groups helps
users swiftly identify and respond to combined attacks. If two groups
have collaborated before, unusual activity in one may indicate an
impending attack, prompting a quicker response.

(3) Strategic Decision Making: Insights into APT group interconnections
assist users in making informed strategic decisions. For instance, if users
are frequently targeted by certain APT groups, they may allocate more
resources to defend against these threats.

5 Conclusions

APT attacks pose significant threats to enterprise and national network secu-
rity. This paper addresses the limitations of traditional feature code matching
technology, which struggles to identify new malware. It proposes a scheme
for malware identification through genetic mapping, drawing inspiration from
biological genetics to correlate malware and conduct homology analysis. The
paper designs a homology determination system for APT samples. Initially,
the system extracts APT sample genes by merging basic blocks of software
code, applies the TF-IDF algorithm to screen for characteristic genes, and
constructs gene features using the word2vec algorithm. A three-layer LSTM-
based classifier detects APT samples, while the KNN algorithm determines
APT sample homology. Gene mapping facilitates the rapid and accurate
identification of APT attack characteristics, enhancing detection efficiency.
Experimental results demonstrate continuous enrichment of the APT gene
map during detection, enabling comprehensive APT association presentations
and sample detection capabilities. Users can interact with the gene map to
understand APT group associations and detect APT attacks by uploading
samples. This system resolves the challenge of accurately identifying APT
attack code presence and traceability in malware.

The Homology Determination System for APT Samples 769

References

[1] Chen Ruidong, Zhang Xiaosong, Niu Weina, Lan Haoyue. “A Research
on Architecture of APT Attack Detection and Countering Technology.”
Journal of University of Electronic Science and Technology of China,
2019, 48(6): 870–879.

[2] Xiong C L, Zhu T T, Dong W H, et al. “Conan: A Practical Real-
Time APT Detection System With High Accuracy and Efficiency.”
IEEE Transactions on Dependable and Secure Computing, 2022, 19(1):
551–565.

[3] Panahnejad M, Mirabi M. “APT-Dt-KC: advanced persistent threat
detection based on kill-chain model,” Journal of Supercomputing, 2022,
78(6): 8644–8677.

[4] QiAnXin Threat Intelligence Center. “Global Advanced Persistent
Threat Report.” https://ti.qianxin.com/uploads/2022/03/31/4217b2
48a07f1f1c42b4bba4168efb4e.pdf.

[5] Cen L, Gates C S, Si L, et al. “A Probabilistic Discriminative Model for
Malware Detection with Decompiled Source Code.” IEEE Transactions
on Dependable & Secure Computing, 2015, 12(4): 400–412.

[6] Kwon B J, Mondal J, Jang J, et al. “The Dropper Effect: Insights
into Malware Distribution with Downloader Graph Analytics,” the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
ACM, 2015:1118–1129.

[7] Garbervetsky D, Zoppi E, Livshits B. “Toward full elasticity in dis-
tributed static analysis: the case of callgraph analysis,” 11th Joint
Meeting of European Software Engineering Conference (ESEC)/ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), ACM, 2015: 442–453.

[8] Rosenberg I, Sicard G, David E O. “DeepAPT: Nation-State APT Attri-
bution Using End-to-End Deep Neural Networks,” 26th International
Conference on Artificial Neural Networks, Springer, 2017: 91–99.

[9] Pascanu R, Stokes J W, Sanossian H, et al. “Malware Classification
with Recurrent Networks,” 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing, IEEE, 2015: 1916–1920.

[10] Miller B, Kantchelian A, Tschantz M C, et al. “Reviewer Integration and
Performance Measurement for Malware Detection,” 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016: 122–141.

https://ti.qianxin.com/uploads/2022/03/31/4217b248a07f1f1c42b4bba4168efb4e.pdf
https://ti.qianxin.com/uploads/2022/03/31/4217b248a07f1f1c42b4bba4168efb4e.pdf

770 R.-c. Xu et al.

[11] Huang Y Z, Qiao M, Liu F D, et al. “Binary code traceability of
multigranularity information fusion from the perspective of software
genes,” Computers & Security, 2022, 114.

[12] Zhao B L, Zhang S, Liu F D, et al. “Malware homology identification
based on a gene perspective,” Frontiers of Information Technology &
Electronic Engineering, 2019, 20(6): 801–815.

[13] Zhao X L, Zhang Y M, L X H, et al. “Research on malicious code
homology analysis method based on texture fingerprint clustering,” 17th
IEEE International Conference On Trust, Security And Privacy In Com-
puting And Communications/12th IEEE International Conference On
Big Data Science And Engineering, IEEE, 2018: 1914–1921.

[14] Sun G, Qian Q. Deep learning and visualization for identifying malware
families. IEEE Transactions on Dependable and Secure Computing,
2018.

[15] Zhang Z, Qi P, Wang W. Dynamic malware analysis with feature engi-
neering and feature learning. In: Proceedings of the AAAI conference
on artificial intelligence, vol. 34, (01), 2020, p. 1210–7.

[16] Li C, Zheng J. API call-based malware classification using recurrent
neural networks. Journal of Cyber Security and Mobility, 2021;617–40.

[17] Chaganti R, Ravi V, Pham TD. Deep learning based cross architecture
internet of things malware detection and classification. Computers &
Security, 2022;102779.

[18] Chaganti R, Ravi V, Pham T D. A multi-view feature fusion approach
for effective malware classification using Deep Learning. Journal of
information security and applications, 2023.

[19] Do Xuan, C., Dao, M.H. A novel approach for APT attack detection
based on combined deep learning model. Neural Comput & Applic 33,
13251–13264 (2021). https://doi.org/10.1007/s00521-021-05952-5.

https://doi.org/10.1007/s00521-021-05952-5

The Homology Determination System for APT Samples 771

Biographies

Rui-chao Xu received the bachelor’s degree in electrical engineering and
automation from North China Electric Power University in 2001. He is
currently working as a senior engineer at the State Grid Liaoning Electric
Power Supply Co., Ltd. His research areas include power system automation
and network security.

Yue-bin Di received the bachelor’s degree in agricultural electrification and
automation from Shenyang Agricultural University in 2001. He is currently
working as a senior engineer at the State Grid Liaoning Electric Power Supply
Co., Ltd. His research areas include power system automation and network
security.

772 R.-c. Xu et al.

Zeng Shou received the bachelor’s degree in automation from University
of Science and Technology Beijing in 1997. He is currently working as a
senior engineer at the State Grid Liaoning Electric Power Supply Co., Ltd.
His research areas include power system automation and network security.

Xiao Ma received the bachelor’s degree in information science and engi-
neering from Northeastern University in 1998. He is currently working as a
senior engineer at the NARI Group Corporation (State Grid Electronic Power
Research Institute) and Beijing Kedong Electric Power Control System Co.,
Ltd. His research areas include industrial automation and network security.

The Homology Determination System for APT Samples 773

He-qiu Chai received the bachelor’s degree in software engineering from
Northeastern University in 2021, and studying for the master degree at
Northeastern University. His research areas include software security and
network security.

Long Yin received the master’s degree in software engineering from JiLin
University in 2016, and studying for the Ph.D. degree at Northeastern
University. His research areas include cryptography and network security.

	Introduction
	Related Works
	System Design
	Gene Extraction
	Gene Clean
	Gene Cluster
	Detection
	Homology Determination

	Evaluation
	Environment and Dataset
	Detection Performance
	Homology Determination Evaluation
	APT Gene Association Map

	Conclusions

