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Abstract

The current network behavior features have high latitude and complex com-
ponents, making it difficult for existing temporal analysis techniques to
perform temporal analysis and anomaly detection. To this end, a multi-scale
decomposition module based on improved empirical mode decomposition
is proposed and combined with generalized likelihood theory to construct
a time series analysis model. The dataset decomposition experiment showed
that the improved empirical mode decomposition proposed in the study had
certain advantages in the decomposition performance of the three datasets,
but it was difficult to judge the difference between normal time series and
time series data with anomalies only from the perspective of periodicity.
The validation experiment of anomaly detection in the time series analysis
model showed that applying data augmentation effectively improved the
detection performance of the time series analysis model. Compared with
other methods, the proposed time series analysis model had an increase
in true class rate of 1.23%–5.13%, and a decrease in false positive class
rate of 19.05%–4.00%. Feature selection effectively improved the anomaly
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detection ability of temporal analysis technology, and the true class rate of
temporal analysis technology based on feature selection increased by 1.27%–
8.96%. Ranking temporal data according to feature importance for anomaly
detection effectively increased the effectiveness of anomaly detection. The
True Positive Rate (TPR) value of anomaly detection for temporal data with
the highest feature importance was as high as 0.93. The results indicate that
improved empirical mode decomposition can effectively meet the temporal
data decomposition of high latitude network behavior characteristics, and
the proposed temporal analysis model has better applicability and efficiency
in temporal data anomaly detection. The temporal analysis model based on
improved empirical mode has a more accurate recognition rate and lower
false alarm rate in dealing with temporal data anomaly detection in different
network environments, and has certain practical value in the field of network
security behavior anomaly detection.

Keywords: Empirical mode decomposition, generalized likelihood ratio,
time series data analysis, data augmentation, channel integration, TPR.

1 Introduction

With the development of network technology, the internet has become an
essential part of people’s daily lives, and people are becoming increasingly
dependent on the internet. The Internet not only affects people’s work,
learning, and social interaction, but also has been widely used in fields such
as medicine, industry, and military [1]. However, while the internet brings
convenience, it is also accompanied by the leakage of personal privacy,
virtual property, etc. The increase in the size of network users has led to an
increasingly complex network topology. Therefore, effective implementation
of network security protection has become an urgent problem to be solved
[2, 3]. The application and development of digital computers have driven the
application value of time series data. Using network behavior characteristics
as time series data to detect network conditions has become an important
means of network security behavior anomaly detection [4, 5]. However,
the characteristics of network behavior are generally characterized by high
latitude and complex components, and current research methods are difficult
to fully meet the needs of effective temporal analysis [6]. In this context,
research proposes to improve empirical mode decomposition (EMD) based
on optimizing the complete set of adaptive noise, and combines Improved
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
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(ICEEMDAN) with Generalized Likelihood Ratio Test (GLRT) to design a
time series analysis model for multi-scale decomposition and multi-channel
analysis. The time series analysis model, which is decomposed and detected
through signal processing theory, will be used for network time series data
detection, in order to achieve the analysis and anomaly detection of network
behavior characteristic data in different network environments, thereby pro-
viding guarantees for the normal operation of network security and providing
new ideas for the development of the field of network behavior analysis.

The overall structure of the study consists of four parts: The first part
summarizes the relevant research achievements and shortcomings of time
series analysis models and empirical mode decomposition at home and
abroad. In the second part, a time series analysis model based on improved
empirical mode decomposition was studied and designed. The third part
conducted experiments and analysis on the proposed ICEEMDAN and time
series analysis model. The fourth part summarizes the experimental results
and points out future research directions.

2 Related Works

With the rapid development of internet technology, various aspects of human
life, work, and social interaction are closely related to the internet. Efficient
network security protection has gradually risen to become an important topic
amongst researchers around the world. Zhao et al. proposed a generative
adversarial network based on three change encoders to enhance the security
and stability of system maintenance, resulting in a system log anomaly
detection model with a detection rate increase of 27.8% compared to other
models [7]. Sun et al. proposed an intrusion detection model based on
attention mechanism to address the lack of security mechanisms in controller
Local Area Networks (LANs) in vehicle network protocols, thereby achiev-
ing effective detection of controller LANs in different vehicles without the
need for communication matrices [8]. Deng et al. designed a detection model
that combines structural learning methods with graph neural networks to
detect and explain deviations and anomalies between sensors, accurately cap-
turing the correlation between sensors and allowing users to infer the cause
of detected anomalies [9]. Jain et al. studied integrated technologies based
on distributed machine learning to improve the current network security
detection mechanism, and obtained a network attack detection model with
a detection rate of up to 93% [10]. Hosseinzadeh et al. proposed a method for
anomaly detection in network security by applying Support Vector Machine
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(SVM) to intrusion detection and security attacks, thereby achieving an
effective combination of machine learning, artificial intelligence technology,
and vector machine classifiers in network security detection [11].

Fourier transform and other time-frequency decomposition technologies
have driven the development of data analysis, and the importance of signal
decomposition technology has gradually increased. Studying it has become a
new trend in the current computer field [12]. Mousavi proposed the introduc-
tion of adaptive noise technology on the basis of fully integrated empirical
mode decomposition to solve the problem of signal nonlinearity and stability
in bridge expansion and complex structures, thereby achieving effective
bridge damage detection only when determining the location and severity of
damage classification [13]. In order to improve the automatic detection effect
of epileptic seizures, Li et al. designed an epileptic seizure detection method
that combines empirical mode decomposition of long-term scalp computer
images and common spatial patterns. This improved the detection sensitivity
by 97.34% on the basis of segmentation and effectively improved the recog-
nition and participation of EEG channels in epileptic seizures [14]. Krishnan
et al. proposed a nonlinear signal quantization method based on randomness
measure to improve the recognition of human psychological states in human-
machine interface models, resulting in a classifier with an accuracy rate of
up to 93.3% for recognizing human speech emotions [15]. Dwivedi et al.
proposed a method that combines empirical mode decomposition based on
stationary wavelet transform with integrated empirical mode decomposition
to solve the problem of interpreting the original electrocardiogram signal of
power signal infection. This approach achieved better signal-to-noise ratio
enhancement while removing noise [16]. Long et al. proposed a method
that combined empirical mode decomposition and wavelet thresholding to
solve the problems of low recognition accuracy, low positioning accuracy,
and weak detection effect on distant objects in unmanned target detection
systems. This effectively removed seismic signal noise and preserved the
target effective signal [17].

Overall, the current research on anomaly detection in network security
behavior mainly focuses on the detection and protection of network devices,
and there is relatively little research on the analysis and detection of network
behavior feature data. The research on information decomposition technology
mainly focuses on medical, military and other fields, and the research on
empirical mode decomposition in network security detection is relatively
shallow. Therefore, the study proposes the use of adaptive noise complete
set technology to improve empirical mode decomposition, and combines
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its multi-scale decomposition module with GLRT to construct a time series
analysis model. At the same time, the research innovatively integrates modal
components into multiple channels after multi-scale module decomposition,
and ranks temporal data according to importance features for anomaly detec-
tion. The research aims to improve the anomaly detection ability of temporal
analysis technology in network operation by constructing multi-scale decom-
position and multi-channel analysis models, providing theoretical support
for network security, and promoting the practical application value of infor-
mation decomposition technology in anomaly detection of network security
behavior.

3 Time Series Analysis Model Construction Based on
Improved Empirical Mode Decomposition

By analyzing temporal data and understanding its potential changes, infor-
mation mining and anomaly detection can be ultimately achieved. Therefore,
this study proposes to construct a temporal analysis model based on improved
empirical mode and apply it to anomaly detection of network behavior
features. The study of analyzing the temporal data characteristics of network
features to determine the current network situation is of great significance for
maintaining the normal operation of network security and reducing abnormal
losses.

3.1 Multi-Scale Decomposition Module Construction Based on
Improved Empirical Mode Decomposition

In order to decompose the network behavior characteristics into channels
of different time scales, research proposes to use signal decomposition to
reasonably separate the variation patterns of their aliasing. Signal decompo-
sition refers to the decomposition of data signals based on the time scale of
signal sequences, and empirical mode decomposition (EEM) is the core of
this decomposition method [18]. The process of EEM decomposing temporal
data signals is shown in Figure 1.

From Figure 1, it can be seen that first, all the extreme points of the time
series signal are found, and then fitted using the cubic spline interpolation
method to obtain the upper and lower envelopes. Based on the mean of the
upper and lower envelopes, the fitted mean envelope is obtained. Secondly,
the local components are obtained by subtracting the mean envelope from
the original signal. Whether the local quantity meets the Intrinsic Mode
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Figure 1 EEM decomposition process.

Functions (IMF) is determined, and if it does not, the signal again is input
until the condition is met to end the iteration. If the conditions are met, the
current local quantity is treated as an IMF component and removed from the
original signal to obtain the residual term. Decomposition is started again
using the residual term as the input signal until the conditions are met. If the
residual terms generated by decomposition do not meet the predetermined
assumptions, EMD decomposition stops. Therefore, the final temporal signal
expression is shown in formula (1).

st =
n∑

i=1

imf it + rt (1)

In formula (1), st represents the timing data signal. imf it represents an
IMF component. rt represents a residual term. However, EMD may expe-
rience modal aliasing when faced with noise signals and indirect signals.
Therefore, research proposes to improve EMD using an optimized adap-
tive noise complete set to obtain an improved ICEEMDAN. The improved
ICEEMDAN decomposition process is shown in Figure 2.

As shown in Figure 2, a set of white noise is first added to the original
data, a new sequence is obtained based on the given time series data, and
the first set of residual values and modal components are calculated. Next,
white noise will be continued to be added and local mean decomposition
will be used to calculate the second set of residual values and the second
modal component. The obtained multiple sets of IMF components will be
averaged to obtain the final IMF component. The calculation formula for the
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new sequence is shown in formula (2).

xi = x+ βi−1E(wi) (2)

In formula (2), xi represents the calculated new sequence of numbers.
E represents an IMF component of a signal’s EMD decomposition. wi

represents Gaussian white noise. The calculation formula for the first set of
residual values is shown in formula (3).

Ri=1 = (N(xi)) (3)

In formula (4), N represents the local mean of the input signal. The
formula for calculating the first set of modal components is shown in
formula (4).

di=1 = x−Ri=1 (4)

In formula (4), di=1 represents the first set of modal component formulas.
The residual values of the second and subsequent groups are shown in
formula (5).

Ri+1 = Ri + βiE(wi) (5)

The formula for calculating the second and subsequent modal compo-
nents is shown in formula (6).

di+1 = Ri − (N(Ri + βiE(wi))) (6)

On this basis, the study utilizes ICEEMDAN to construct a multi-scale
decomposition module, which is used to analyze the preprocessed feature
data with the highest importance. The specific steps are shown in Figure 3.

As shown in Figure 3, a series of data with the highest importance is input
into ICEEMDAN for scale decomposition. By adding the decomposed white
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Figure 3 The process of ICEEMDAN multi-scale decomposition module.

imf11 imf12 imf1N

imf21 imf22 imf2N

r1 r2 rN

imf11 imf12 imf1N

imf21 imf22 imf2N

r1 r2 rN

ICEEMDAN

M L

Overlay low-
frequency 

components 
exceeding L

Output the last 
channel

Output channel

Figure 4 Channel integration process.

noise, the IMF component is calculated. The IMF component has different
time scales and frequency characteristics, and the low-frequency IMF com-
ponent can affect the analysis results. Therefore, the study also introduces
channel integration technology to process the ICEEMDAN decomposition
results. The processing method is shown in Figure 4.

From Figure 4, it can be seen that when the decomposed IMF component
exceeds the pre-set number of channels, channel integration will stack the
residual term and the low-frequency IMF component exceeding the number
of channels as the last channel, reducing the impact of low-frequency IMF
components on model performance and ensuring the integrity of temporal
data information.

3.2 Multiscale Decomposition and Time Series Analysis Model
Based on Improved Empirical Mode Decomposition

In order to improve the detection ability of time series analysis, a multi-
scale decomposition and generalized Likelihood Ratio Test (MDGLRT) is
constructed by combining GLRT with improved ICEEMDAN. GLRT is
a multi-channel temporal detection technology that obtains multi-channel
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temporal data sets by deploying multiple sensors [19, 20]. The expression
formula for the temporal data set is shown in formula (7).

X =


x11 x21 · · · xn1

x12 x22 · · · xn2
...

...
. . .

...

x1L x2L · · · xnL

 =


xT1

xT2
...

xTL

 (7)

In formula (7), T represents the set of times. L represents a multidimen-
sional dataset collected at a time node. Since the rows and columns of the time
series data contain the time series data and the spatial information contained
by different sensors respectively, the formula obtained by quantizing the
matrix columns is shown in formula (8) [21, 22].

z = vec(XT ) (8)

In formula (8), z represents the matrix obtained by quantifying the
columns of the temporal data matrix X . According to the calculation, the
covariance matrix of matrix Z is obtained, as shown in formula (9).

Y = E[zzH ] =


Y11 Y H

21 · · · Y H
L1

Y21 Y22 · · · Y H
21

...
...

. . .
...

YL1 YL2 · · · YLL

 (9)

In formula (9), H represents conjugate transposition. The matrix Y
collects the spatiotemporal information of the data within the matrix X ,
but GLRT has assumptions in the process of detecting temporal signals.
Therefore, the assumption is defined as the null hypothesis and the alternative
hypothesis binary hypothesis. The expression formula for both is shown in
formula (10). {

φ : z ∼ CN(0LN , Yφ), Yφ ∈ ℜφ

ϕ : z ∼ CN(0LN , Yϕ), Yϕ ∈ ℜϕ

(10)

In formula (10), φ represents the null hypothesis. ϕ represents alterna-
tive hypothesis. Yφ and Yϕ represent two different covariance matrices. ℜφ

represents the space where the covariance matrix does not contain relevant
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spatiotemporal feature structures. ℜϕ represents the space where the parti-
tioned diagonal covariance matrix is located. The physical significance of the
binary hypothesis is that under the null hypothesis, the covariance matrix is a
zero matrix when two time series data are unequal, indicating that there is no
spatiotemporal correlation between the two time series data, thus indicating
that ϕ does not have this property [23–25]. Signal detection requires multiple
samples to obtain a better probability representation. Therefore, based on the
vectorized temporal signal matrix, the joint probability density of the samples
is obtained, as shown in formula (11).

p(z[1], . . . , z[M ];Y ) =
1

πLNM det(Y )M
exp{−Mtr(Y −1Ŷ } (11)

In formula (11), p(z[1], . . . , z[M ];Y ) represents the joint probability
density of the vectorized matrix. M represents the total number of indepen-
dent copies of the timing signal. Ŷ represents the sample covariance matrix,
which is calculated as shown in formula (12).

Ŷ =
1

M

M−1∑
m=0

Z[m]zH [m] (12)

In formula (12), m represents the number of individual independent
copies. According to the above calculation formula, the expression of the gen-
eralized likelihood ratio of time series samples under the binary assumption
is shown in formula (13).

γ = det(Ŷ −1
0 Ŷ1)

M exp{−Mtr[(Ŷ −1
0 − Ŷ −1

1 ]Ŷ } (13)

In formula (13), γ represents the generalized likelihood ratio. Ŷ0 and Ŷ1
represent the maximum likelihood estimates of the sample under different
assumptions, respectively. Due to the fact that time-domain GLRT is not
affected by linear transformation, its expression after linear transformation
is shown in formula (14).

γ
1
M = det(Ŷ −1

0 Ŷ1) = det(Ĉ) (14)

In formula (14), Ĉ represents a coherent matrix, and its specific calcula-
tion expression formula is shown in formula (15).

Ĉ =
D̂− 1

2

Ŷ D̂− 1
2

(15)
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In formula (15), D̂ represents a diagonal matrix. According to the above
formula, the overall structure of the MDGLRT proposed in the study is shown
in Figure 5.

From Figure 5, it can be seen that MDGLRT is mainly composed of
two parts: a multi-scale decomposition module and a multi-channel timing
analysis module. Firstly, the preprocessed network behavior features are used
as temporal signals for multi-scale decomposition. Secondly, the obtained
IMF components are integrated into channels. Finally, the network features
are classified and detected for any anomalies.

4 Time Series Analysis Model Validation Based on
Improved Empirical Mode Decomposition

The MDGLRT proposed in the study used multi-channel detection of tem-
poral data, fully utilizing the correlation between the spatiotemporal features
present in temporal data. By mapping network temporal data to channels at
different time scales, the changes in temporal data at each scale were analyzed
to extract anomalous temporal data. Therefore, by validating models on mul-
tiple different datasets and comparing their performance with some current
temporal analysis techniques, it was beneficial to promote the innovation of
temporal analysis techniques and improve their practical value in network
security behavior detection.

4.1 Verification of Multi-Scale Decomposition Module Based on
Improved Empirical Mode Decomposition

In order to verify the decomposition performance of the multi-scale decom-
position module based on the ICEEMDAN proposed in the study, the
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Table 1 Ranking of feature importance after preprocessing of three datasets
CICIDS-2017 dtasets UNSW-NB15 MAWILab

Importance Feature Importance Feature Importance Feature
Ranking Name Ranking Name Ranking Name

1 IP-OUTBPS 1 SYN-FROM-
PEERS

1 RST-TO-PEERS

2 IP-INBPS 2 OTHERIP-
FROM-PEERS

2 UDP-FLOWS

3 TCP-OUTBPS 3 TCP-FLOWS 3 UDP-FROM-
PEERS

4 TCP-INBPS 4 RST-FROM-
PEERS

4 DNS-FROM-
PEERS

5 RST-FROM-
PEERS

5 UDP-OUTBPS 5 SYN-TO-PORT-
PEERS

6 SYN-TO-
PEERS

6 TCP-FROM-
PEERS

6 TCP-FROM-
PEERS

7 UDP-TO-
PEERS

7 AVGLEN-IN-
TCPFLOW

7 IP-INBPS

8 PKTS-PER-
TCPFLOW

8 TCP-TO-
PEERS

8 TCP-TO-
PEERS

9 TCP-FROM-
PEERS

9 OTHERIP-
FROM-PEERS

9 OTHERIP-TO-
PEERS

10 RST-TO-PEERS 10 AVGLEN-OUT-
UDPFLOW

10 RST-FROM-
PEERS

CICIDS-2017 dataset, UNSW-NB15 dataset, and MAWILab dataset were
selected for performance verification. Firstly, the three datasets were prepro-
cessed separately, and the training and testing sets were sorted based on the
importance of the preprocessed data features for ICEEMDAN decomposi-
tion. The feature importance ranking of the three datasets after preprocessing
is shown in Table 1.

Based on the ranking results of importance, the top ten important features
were selected as the experimental dataset to verify the effectiveness of the fea-
ture selection algorithm. Continuous normal data in the dataset was selected
as the original dataset, and the data subset of the most important feature was
decomposed into ICEEMDAN. The decomposition results of the training and
testing sets of the CICIDS-2017 dataset are shown in Figure 6.

From Figure 6, it can be seen that ICEEMDAN multiscale decomposi-
tion decomposed normal time series data and time series data containing
anomalies onto multiple channels. The comparison between the training
set and the test set showed that the larger the IMF component, the more
significant the fluctuation of its decomposition curve. This indicated that the
ICEEMDAN proposed in the study had good decomposition performance for
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Figure 6 Decomposition results of training and testing sets for the CICIDS-2017 dataset.
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Figure 7 Decomposition results of training and testing sets for the UNSW-NB15 dataset.

temporal data. The decomposition results of the training and testing sets of
the UNSW-NB15 dataset are shown in Figure 7.

From Figure 7, it can be seen that the IMF components of the training
and testing sets obtained from the UNSW-NB15 dataset after ICEEMDAN
decomposition in different cycles were determined based on the IMF compo-
nents at the format component scale. The channel fluctuations under different
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Figure 8 Decomposition results of training and testing sets for the MAWILab dataset.

IMF components in the test set were significantly higher than those in the
training set, which may be due to the fact that the test set had more data than
the training set and may contain abnormal temporal data. The decomposition
results of the training and testing sets of the MAWILab dataset are shown in
Figure 8.

From Figure 8, it can be seen that the decomposition results of the
MAWILab dataset were different from the multi amplitude fluctuations of the
first two datasets, and the channel fluctuations were more stable after the IMF
component was greater than 2. Overall, IMF components at different time
scales had different periods, but it was difficult to determine the difference
between normal time series and time series data with anomalies based solely
on the period. Therefore, it was necessary to extract the intrinsic correlation
of IMF components through multi-channel time series analysis technology.
Therefore, the study further determined the channel based on the IMF com-
ponents at each time scale and integrated the channels, and enhanced the data
of the integrated channel data (DA+MDGLRT). Finally, by enhancing the
dataset, the normal data GLRT values of the three datasets were calculated,
and the temporal data under each time window was detected.

4.2 Verification of Anomaly Detection in Time Series Analysis
Model Based on Improved Empirical Mode Decomposition

In order to validate the anomaly detection performance of the temporal
decomposition model proposed in the study, based on the decomposition
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Figure 9 Comparison of anomaly detection results of different methods for three datasets.

results of ICEEMDAN on the training and testing sets of three datasets,
the detection performance of the model on temporal data was evaluated
using two statistical indicators: false positive rate (FPR) and TPR [26, 27].
Meanwhile, SVM, K-NearestNeighbor algorithm (KNN), and Multilayer
Perceptron (MLP), which are the current commonly used temporal analysis
techniques, are introduced to compare the detection performance with the
proposed method of the study [28–30]. The anomaly detection results of the
three datasets are shown in Figure 9.

From Figure 9(a), it can be seen that the TPR value of DA+MDGLRT
obtained after data augmentation in the dataset CICIDS-2017 was the highest
among all methods, and the FPR value was the lowest among all methods.
This indicated that data augmentation effectively improved the anomaly
detection ability of the time series analysis model. The lower the FRP value,
the lower the false alarm rate of the detection method. The higher the TPR
value, the more effective the detection method was for anomaly detection.
The TPR value of MDGLRT was reduced by 1.20% compared to SVM, but
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results in three datasets.

its FPR value was lower than SVM, indicating that MDGLRT had certain
advantages in false probability performance. In the UNSW-NB15 dataset
in Figure 9(b), the TPR value of DA+MDGLRT was the highest among
all methods, while the detection rate of MDGLRT was better than SVM
and MLP. In the MAWILab dataset in Figure 9(c), MDGLRT with data
augmentation still showed efficient detection performance, while MDGLRT
without data augmentation had significantly lower detection and false positive
rates than KNN. Overall, the MDGLRT proposed in the study had certain
detection accuracy in detecting abnormal results, and its false probability
was lower compared to other methods, making the detection results relatively
more effective. On this basis, the study introduced feature selection subsets
into three methods: SVM, KNN, and MLP to compare anomaly detection
results. The specific results are shown in Figure 10.

From Figure 10, it can be seen that the TPR values of SVM, KNN, and
MLP methods all increased to varying degrees after feature selection for
detection, while the FPR values relatively decreased. This indicated that fea-
ture selection before anomaly detection in temporal data effectively improved
the detection performance of temporal analysis techniques. However, overall,
the detection rate and false alarm rate of DA+MDGLRT with data aug-
mentation were still superior to the three methods after feature selection.
In addition, the study further applied the importance ranking features to
anomaly detection, and the anomaly detection results of the three datasets
are shown in Table 2.

From Table 2, it can be seen that sorting the features of temporal data
by importance before anomaly detection resulted in a detection effect that
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Table 2 TPR value under feature importance ranking
CICIDS-2017 datasets UNSW-NB15 MAWILab

Feature Name TPR Feature Name TPR Feature Name TPR

IP-OUTBPS 0.91 SYN-FROM-
PEERS

0.82 RST-TO-PEERS 0.93

IP-INBPS 0.84 OTHERIP-FROM-
PEERS

0.79 UDP-FLOWS 0.89

TCP-OUTBPS 0.82 TCP-FLOWS 0.76 UDP-FROM-
PEERS

0.87

TCP-INBPS 0.71 RST-FROM-
PEERS

0.73 DNS-FROM-
PEERS

0.79

RST-FROM-
PEERS

0.63 UDP-OUTBPS 0.69 SYN-TO-PORT-
PEERS

0.74

SYN-TO-PEERS 0.58 TCP-FROM-
PEERS

0.64 TCP-FROM-
PEERS

0.68

UDP-TO-PEERS 0.53 AVGLEN-IN-
TCPFLOW

0.59 IP-INBPS 0.62

PKTS-PER-
TCPFLOW

0.49 TCP-TO-PEERS 0.57 TCP-TO-PEERS 0.58

TCP-FROM-
PEERS

0.44 OTHERIP-FROM-
PEERS

0.56 OTHERIP-TO-
PEERS

0.42

RST-TO-PEERS 0.32 AVGLEN-OUT-
UDPFLOW

0.51 RST-FROM-
PEERS

0.47

was directly proportional to the importance of the features. Among them,
the detection rate of the first important feature in the CICIDS-2017 dataset
increased by 184.38% compared to the tenth, the detection rate of the first
important feature in the UNSW-NB15 dataset increased by 60.78% compared
to the tenth, and the detection rate of the first important feature in the
MAWLab dataset increased by 97.87% compared to the tenth. This indicated
that the higher the importance of data features, the higher their TPR value, and
the better the anomaly detection results. It can be seen that sorting temporal
data features according to their importance had a certain auxiliary effect on
improving the detection ability of temporal analysis technology.

5 Result and Discussion

The period of the channel is closely related to the distance and the storage
capacity of the information, and the IMF component of smaller period is used
as the input of the data enhancement module. Multi-channel decomposition
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of the time-series data in the dataset to obtain the IMF component is helpful
to accurately obtain the threshold value for detecting anomalies, so as to
effectively detect the information in the channel. The study performed multi-
channel decomposition on three datasets, and the results showed that the
larger the IMF component is, the more obvious the fluctuation of its decom-
position curve is. This was also confirmed by Chen et al. who performed
a time series analysis of periodic fluctuation using EMD and gray-wave
prediction model [31].

However, the detection of anomalous time series is not effectively
achieved based on the IMF component alone. Therefore, the study further
utilizes the proposed multiscale decomposition module with the time-series
analysis model for performance testing in three datasets and compares it with
the current popular methods. The results show that the proposed method of
the study is more superior in terms of FPR and TPR. The reason for this
result may be due to the fact that the kernel function of SVM and the setting
of the relevant parameters affect its anomaly detection performance. Sharmila
et al. conducted a time series study using three algorithms, SVM, KNN, and
Gradient Boosting Decision Tree, and found that the unimproved SVM and
KNN algorithms were slower to analyze the temporal analysis, which led
to poorer anomaly detection results [32]. This is consistent with the results
obtained from the study.

The use of improved empirical modal decomposition of time-series sig-
nals and the construction of the MDGLRT model in combination with GLRT
show some superiority in performance validation, though. However, it has
different performance effects in different datasets. In the dataset with less
normal time series data, the proposed preprocessing method can significantly
improve the detection results of the algorithm, but its performance is average
without data enhancement, which may be due to some limitations of the
proposed method itself. However, overall, the ICEEMDAN-based MDGLRT
model is still significantly better than the current popular methods.

6 Conclusion

In order to conduct temporal analysis of high latitude and complex network
behavior characteristics, a multi-scale decomposition module is proposed
based on improved empirical mode decomposition, and combined with
GLRT to construct an MDGLRT model. The validation of the multi-scale
decomposition module shows that ICEEMDAN has certain advantages in
decomposing the three datasets, but it is difficult to judge the difference
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between normal time series and time series data with anomalies only from the
cycle. It is necessary to extract the intrinsic correlation of its IMF component
through multi-channel time series analysis technology. The validation exper-
iment of anomaly detection in the time series analysis model showed that
applying data augmentation effectively improved the detection performance
of MDGLRT. The TPR values of MDGLRT in the three datasets increased
by 1.23% −5.13% compared to other methods, and the anomaly detection
effect was the best in the CICIDS-2017 dataset. Feature selection effectively
enhanced the anomaly detection ability of time series analysis technology
and reduced its false alarm rate and false probability. Ranking temporal data
according to feature importance for anomaly detection effectively increased
the effectiveness of anomaly detection. The TPR value of anomaly detection
for the most important feature in the three datasets was as high as 0.93.
The above results indicate that the multi-scale decomposition module and
temporal analysis model proposed in the study have superior applicability and
efficiency, and have a more accurate recognition rate and lower false alarm
rate for anomaly detection of temporal data in different network environ-
ments. However, there are still certain shortcomings in the research, as there
are differences in detection and false alarm rates among different datasets,
and the information with different features in temporal data has not been
extracted. In the future, research will further explore the MDGLRT model’s
anomaly detection of temporal data in multi column features.
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