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Abstract

Network security issues have become crucial with the boost of Internet of
Things technology. To detect lightweight network intrusion, this research
improves the population initialization mode of given the genetic algorithm
given the Pearson correlation coefficient and constructs a feature selection
model. In view of the one-dimensional convolutional neural network model,
it introduces the gated cyclic unit neural network model. It uses pruning
operations to realize the lightweight of the model and build an intrusion
detection model. The results showed that the accuracy, detection rate, and
time average of the improved genetic algorithm were 79.55%, 90.32%, and
189.4 s, which were 14.87%, 30.35%, and 33.05% higher than the tradi-
tional genetic algorithm model, respectively. The intrusion detection model
has achieved an accuracy of 95.0%, and the loss function value is 0.15.
Compared with other deep learning models, it is more robust and performs
better in intrusion detection. The average accuracy of the model testing after
lightweight is 88.6%, the average detection rate is 98.12%, and the average
testing time is 82 s, which improves the model’s performance compared to
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before lightweight. This study could markedly enhance the accuracy and
detection rate of lightweight network intrusion detection, with higher detec-
tion efficiency and better performance, and possesses an essential influence
in improving network security.

Keywords: Lightweight network, intrusion detection, Pearson correlation
coefficient, genetic algorithm, one dimensional convolutional neural network.

1 Introduction

With the boost of the Internet, network security issues have become more
essential. Intrusion detection (ID) systems have emerged as one of the critical
technologies for protecting network security. Recently, deep learning technol-
ogy has reached excellent success in various aspects and is gradually being
applied in the field of ID [1]. Compared with traditional ID systems, deep
learning-based ID systems can automatically learn and extract advanced fea-
tures, thereby better capturing the complex patterns and changes of network
intrusion behavior. However, because network ID is faced with large-scale
and high-dimensional (HD) network traffic data, ID systems given deep learn-
ing often need huge network models and complex computing resources to
ensure the accuracy and reliability of detection [2]. Resource-constrained sce-
narios, such as Internet of Things devices and embedded systems, traditional
deep learning models cannot meet practical needs. Traditional deep learning
models cannot meet practical needs in some resource-constrained scenarios,
such as Internet of Things devices and embedded systems. Therefore, this
study aims to design and study a lightweight network ID system given deep
learning to meet the requirements of network security in resource constrained
scenarios. This study employs a novel approach to feature selection, inte-
grating the Pearson correlation coefficient with a genetic algorithm. This
integration optimizes the feature selection process in network ID through
genetic operations, including natural selection, crossover, and mutation. This
combination provides a new optimization path for feature selection. The
construction of lightweight network ID models is impeded by the problem
of gradient disappearance in one-dimensional (OD) convolutional neural
networks (CNN). The introduction of a gated loop unit addresses this issue,
reducing the number of parameters in the model through pruning technol-
ogy. This design effectively reduces model complexity and computational
requirements while maintaining model performance.

This study is divided into four parts. The first part is domestic and foreign
scholars’ research on lightweight networks and ID models. In the second part,
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the Feature selection model is constructed by improving the genetic algorithm
(GA) in view of the Pearson correlation coefficient (PCC). Given the OD
CNN model, it introduces the gated cyclic unit neural network model to build
an ID model. The third part tests and analyzes the model, while the fourth
part summarizes the article and proposes shortcomings.

2 Related Work

A lightweight network is a kind of network that improves the volume and
speed of an ordinary network. Some scholars have studied the privacy protec-
tion of lightweight networks. R S Miyanaji et al. [3] found that most existing
networks require a large amount of memory and computation for continuous
authentication. To improve this issue, this study presented a protocol between
nodes and servers in the Internet of Things. The proposed method offered
privacy protection through anonymous nodes, Forward secrecy without asyn-
chronous encryption, and key agreement. Compared with the review protocol,
the computation time of nodes and servers in authentication was reduced by
16.8% and 8.7%, with a communication cost of 1902 bits.

F Algarni [4] found that object programming languages create security
vulnerabilities that exploited for launching attacks. To protect Internet of
Things systems from intrusions, a security method for protecting the opera-
tion of Internet of Things systems from memory heap infiltration and address
modification attacks is proposed. The results showed that this method can
effectively resist hacker intrusion by encrypting object garbage collection at
runtime to prevent targeted attacks.

P Krishnakumar [5] believed that while the Internet of Things is widely
used, the relevant problems are increasingly emerging due to the need for
more human intervention. To ensure data security in the Internet of Things,
it used an extreme method called lightweight encryption, mainly focusing
on encryption, hashing, and authentication technologies. The results indi-
cated that this method effectively protects privacy in lightweight networks.
V Dahiphale et al. [6] believed that since most Internet of Things devices
operate on 8-bit controllers with limited storage and computing power,
lightweight passwords need to be utilized on both the sending and receiving
ends to achieve encryption and decryption. In light of the aforementioned
considerations, a novel architectural framework for the hardware implemen-
tation of ANU cryptography is put forth, accompanied by an analysis of
the associated outcomes. The experimental results proved that ANU pass-
word is the best choice for achieving security in systems with minimal
resources.
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The deep learning neural network model was extensively utilized in net-
work intrusion, which can markedly enhance the detection rate of ID. Some
scholars have related research results given this. To enhance the precision of
identification, Z X Ran [7] proposed a two-step network identification model,
drawing inspiration from the GoogLeNet inception model and the deep con-
volutional neural network (CNN) model. This model employs the GoogLeNet
inception model to address the binary classification of network packets and to
extract the original data characteristics and traffic characteristics of network
packets. Furthermore, it utilizes the depth CNN to recognize features. The
results showed that the model’s accuracy reached 99.63%. To build an effec-
tive traffic classification method, A H Azizan et al. [8] evaluated the decision
tree (DT), random forest (RF), and support vector machine (SVM) classi-
fiers, and proposed a network ID model in view of these machine learning
techniques. The outcomes showcased that the average accuracy (AA) of the
SVM classifier is 98.18%, the AA of the DT is 96.50%, and the AA of the RF
is 96.76%. To establish a real-time detection and dynamic defense security
system, X Luo [9] constructed an adaptive network ID and defense system
model in view of an automatic fuzzy rule generation strategy. The experiment
showcased this method has adaptability and scalability. X Li et al. [10] found
that the Krill group algorithm is an efficient Swarm intelligence algorithm
that possesses excellent function. A special improved Krill swarm algorithm
was presented in response to the issue of low ID efficiency and high false
alarm rate resulting from the increase in HD data. The results showed that the
model markedly maintains high accuracy.

In conclusion, although deep learning neural networks are frequently
employed in network identification, they are less frequently utilized in
lightweight network identification. Moreover, existing deep learning net-
works are prone to the problem of parameter redundancy. Therefore, this
research is in view of OD CNN, and improved by GA and PCC. In addition,
it uses pruning method to reduce the number of parameters, which has
important reference value in the field of lightweight network ID.

3 Construction of Lightweight Network Intrusion Detection
System based on Feature Selection and Artificial
Intelligence Technology

To achieve accurate identification in lightweight networks, this chapter is
divided into two sections, which together constitute a model. The first section
employs a traditional GA in conjunction with PCC in order to enhance the
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initialization of the population and construct a feature selection model. The
second part, in view of the OD CNN model, introduces the gated Recurrent
neural network model and uses pruning operations to build a lightweight ID
system.

3.1 Construction of Genetic Algorithm Feature Selection Model
on the Ground of Pearson Correlation Coefficient

PCC is a commonly used statistic utilized to measure the strength and
direction of the linear relation in two variables. It represents the degree of
linear correlation between two variables, with values ranging from −1 to
1 [11]. Covariance is a metric used to measure the correlation between two
variables, and the PCC is the covariance of standardized random variable
values. Therefore, the PCC calculation formula is shown in Equation (1).

Pearson(X,Y ) = Cov(X,Y )/σXσY

=
N∑
i=1

(xi − x̄)(yi − ȳ)

NσXσY

=
1

N

N∑
i=1

(
xi − x̄

σX

)(
yi − ȳ

σY

)

=
1

N

N∑
i=1

xi − x̄

(∥X − X̄∥2)
yi − ȳ

(∥Y − Ȳ ∥2)
= Cov(SX , SY )

(1)

In Equation (1), X and Y represent the initial random variables. xi and
yi represent standardized random variables. x̄ and ȳ represent the mean
of variables. The relationship between covariance and variable variance is
shown in Equation (2).

|Cov(SX , SY )| ≤ D(SX)D(SY ) = 1 (2)

In Equation (2), Cov(SX , SY ) represents the covariance of the initial
random variable; D(SX)D(SY ) represents the variance of the initial random
variable. It can be proven that the PCC has a value range of [−1,1]. When
PCC = 1, it indicates that the two variables are totally positively correlated.
When the PCC is −1, it suggests that the two variables are completely
negatively correlated. When PCC = 0, it indicates that there is no linear
relation between two variables, and the two variables are independent and
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Figure 1 Schematic diagram of various operations of genetic algorithm.

not affected by each other [12]. The closer the absolute value of the PCC
is to 1, the stronger the linear relationship between the two variables. GA
is an optimization algorithm that simulates biological evolution. It searches
for the optimal solution or problems close to the optimal solution by sim-
ulating Natural selection, genetic mutation, crossover, and other operations.
The schematic diagram of each operation is illustrated in Figure 1.

In traditional GA, the selection of the initial population is usually ran-
domly generated. Still, this randomly generated initial population may have
problems, such as not fully covering the search space, resulting in a slow
Rate of algorithm convergence or falling into a locally optimal solution.
In GA, each feasible solution is encoded into an OD vector, and the PCC
can be extended to measure the correlation between two random vectors [13].
Therefore, it adopts PCC to improve the population initialization of GA and
strengthen the optimization. Initially, a certain number of chromosomes are
randomly generated as the initial population. It randomly generates a chromo-
some and compares it with the PCC values of each chromosome in the initial
population [14]. The study sorted the PCCs obtained from the calculation,
selecting individuals with lower correlation with other individuals as a part
of the initial population given the size of the correlation coefficients. It will
choose individuals as part of the initial population, and others can continue
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to join the initial population to ensure population diversity. If the initial
population does not meet the requirements, the selection step can be repeated
until the initial population meets the set requirements. This study uses the
random tournament selection method to select the initial population of a GA
in view of PCC. This method simulates a competition by randomly selecting
individuals for comparison and selecting individuals who perform better in
the competition to form the initial population [15]. Firstly, it sets the scale
of a competition and randomly selects individuals from the initial population
as a group of competition groups. This study evaluates individuals within the
competition group and determines their strengths and weaknesses in view of
a fitness function. The fitness function is calculated as shown in Equation (3).

fitness(x) = a× calc Acc(X) + (1− a)×

(
m∑
i

Xi

)−1

(3)

In Equation (3), X represents the chromosome of any feasible solution.
Xi represents the selection of chromosome for the i-th feature in the dataset.
calc Acc(X) denotes the accuracy calculation function of the classifier. a
represents a weighted real number used to balance accuracy and number
of features. In view of the evaluation results, it selects the best performing
individual within the competition group as a part of the initial population
until it meets the population requirements. This study uses a single point
crossover operator as a method to improve the crossover operation of GA.
This method generates new individuals by randomly selecting a crossover
point, cutting the chromosomes of two individuals at that crossover point,
and exchanging gene fragments with each other [16]. This method employs
a random selection process to identify a specific location on the chromosome
as the intersection point. At this point, two parent individuals are divided
into two gene fragments. Gene fragments from the two parent individuals are
then exchanged, resulting in the generation of two new individuals. These
new individuals are subsequently incorporated into the next generation’s
population as offspring. The improved GA employs the basic bit mutation
operator as the mutation operation method. This operator randomly selects
one or more bits for mutation, inverts or randomly transforms the gene
bits in the chromosome into other effective genes. This method randomly
selects one or more gene loci in chromosomes, mutates the selected gene
loci, and adds the mutated individuals as offspring to the next genera-
tion population. The flowchart of the GA in view of PCC is shown in
Figure 2.
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Figure 2 Model construction flow chart.

3.2 Construction of Network Intrusion Detection System on the
Ground of Deep Learning Neural Network Model

CNN deep learning model, which is composed of convolution layer (CL),
pooling layer (PL), full connection layer, etc., uses convolution operation as
the core to achieve feature extraction and classification [17]. The CL is the
main module of CNN, which performs convolution operations on the input
image by using a set of learnable filters. These filters locally connect each
small region of the input image in a sliding window manner to extract local
features. The relevant calculation is showcased in Equation (4).

ylj = f

(∑
i∈M

yl−1
i × wl

ij + b′i

)
(4)

In formula (4), f serves as the Activation function. M serves as the set
of input feature vectors. yl−1

i represents the i-th vector of the output of the
l − 1-th CL. wl

ij serves as the weight of the convolutional kernel (CK). b′i
represents the offset value. ylj serves as the output of the layer l CNN after
being convolved by the i CK. The bias operation is shown in Equation (5).

w = kout × kz × kin + bias (5)

In Equation (5), kin serves as the quantity of input channels in the CL. kz
denotes the CK length of the CL. kout means the quantity of output channels.
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Layer 1 Layer 2
Figure 3 Sliding window execution mode.

bias serves as the quantity of offset terms. Convolutional operations can
capture features such as edges, textures, and shapes in images. The sliding
window execution mode is shown in Figure 3.

Compared with the traditional CNN, the OD CNN model has lower
environmental requirements and higher efficiency. Moreover, most devices in
the Internet of Things environment have weak computing power and limited
memory space, and the sampled data is mostly OD features. Therefore,
the OD CNN model has more advantages when dealing with lightweight
networks. OD CNN is a deep learning model applied to serial data or time
series data. It extracts local features in the input sequence by applying
OD convolution operations and performs classification or regression tasks
through pooling operations and full connection layers [18]. The output feature
map of the OD convolution operation will have the same sequence length as
the input sequence, but may reduce or expand the dimension of the feature.
Fill operations and stride parameters can be used to control the size of the
feature map. The filling operation can add additional elements on both sides
of the input sequence to maintain the same length of the output feature map as
the input sequence. The stride parameter determines the distance the sliding
window moves on the input sequence, and the filling operation calculation
formula is presented in Equation (6).

dimout = 1 +
dimin +2sizepadding − sizekernel

s
(6)



1138 Li He

In Equation (6), dimout represents the dimension of the output, dimin

denotes the input dimension. sizepadding means the filling size, sizekernel
represents the size of the CK. s serves as the convolution step size of the
convolution kernel. The PL is used for downsampling the output of the
CL, usually using either maximum pooling or average pooling to reduce
the dimensionality of the feature map and diminish the quantity of model
parameters. The calculation formula for PL is showcased in Equation (7).

zlj = β(down(ylj) + b) (7)

In Equation (7), β, b denote scalar parameters. ylj means the data after
convolution of the l layer CNN. down(ylj) represents the down sampling
Choice function. Pooling operation helps to extract spatial invariance of
images, while also reducing computational complexity and memory require-
ments. In OD CNN, there is a flattening layer. The relevant calculation is
demonstrated in Equation (8).

FLOPS fc = sizeb × (dimin +1)× dimout (8)

In Equation (8), sizeb represents the batch quantity. This layer flattens
the multidimensional feature map into an OD vector and inputs it into a
fully connected system. The fully connected layer is utilized for mapping
the output of CL and PL to specific categories, performing weight calculation
and nonlinear transformation under the sigmoid function, and obtaining the
final output result. The calculation formula for the fully connected layer is
presented in Equation (9).

ylj =
∑

wl
j ∗ xl−1

i + bij (9)

In Equation (9), wl
j denotes the connection weight. bij represents the

offset value; xl−1
i means the characteristic value. ylj represents the output

result. To solve the problem of gradient explosion or disappearance in OD
CNN, it introduced gated recurrent unit neural network (GRU) for building
an OD CNN in view of 1D CNN rated recurrent unit neural network (1D
CNN-GRU) [19]. The relevant diagram of the GRU framework structure is
demonstrated in Figure 4.

GRU is improved in view of the long short-term memory network
(LSTM) model. LSTM contains forgetting gates, input and output gates [20].
The expression of forgetting gates is expressed in Equation (10).

fi = σ(Wf • [ht−1, xt] + bf ) (10)
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Figure 4 Schematic diagram of GRU frame structure.

In Equation (10), ht−1 serves as the output of the previous unit, xt denotes
as the output of the current unit, σ represents the sigmoid function. Wf means
weight, bf represents deviation. The content of updates and substitutions is
determined by the sigmoid function and tanh function in the input gate, and
the state of the LSTM unit is updated by combining the results of the two
functions, as shown in Equation (11).{

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)
(11)

In Equation (11), C̃t represents the content replaced by the tanh function.
The final update status formula is shown in Equation (12).

Ct = ft × Ct−1 + it × C̃t (12)

In Equation (12), Ct−1 denotes the unit status before the update. Ct

represents the updated status. In the output gate, the sigmoid function and
tanh function determine the content of the output and obtain the final output
of the output gate, as shown in Equation (13).{

ot = σ(Wo[ht−1, xt] + bo)

ht = ot × tanh(Ct)
(13)

In Equation (13), ot represents the content that determines the output. ht
denotes the final output. In GRU, only the update and reset gates are included,
which diminish the number of parameters compared to LSTM and can better
preserve the information of the data in the time dimension. The updated door
calculation formula is shown in Equation (14).

Zt = σ(WzXt +WzHz−1 + bz) (14)
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Figure 5 Flow chart of 1D CNN-GRU model construction.

In Equation (14), Wz denotes the weight parameter. bz represents the
deviation parameter. The calculation formula for resetting the door is shown
in Equation (15).

rt = σ(WrXt +WrHt−1 + br) (15)

In Equation (14), Wr represents the weight parameter. br denotes the
deviation parameter. Pruning operations are used to select and reject the
weights in the model to achieve lightweight detection. This is visible in
Equation (16).

st = f(t) = sf + (si − sf )

(
1− t− t0

n∆t

)3
, t ∈ {t0, t0 +∆t, . . . t0 + n∆t}

(16)

In Equation (16), t0 represents the initial step, si denotes the initial
pruning rate. sf represents the sparse value of the target. The flowchart for
constructing the 1D CNN-GRU model is shown in Figure 5.

4 Performance Test and Analysis of Improved Genetic
Algorithm Feature Selection Model and Intrusion
Detection Model

To evaluate the performance of the ID model, this section is divided into two
for testing. The first tests the GA in view of Pearson coefficient improvement.
The second tests the 1D CNN-GRU ID model in view of an improved GA.

4.1 Performance Test of Improved Genetic Algorithm Feature
Selection Model

To determine the optimal classifier and weight real number a, the detection
performance of the algorithm is compared under different classifiers. In the
performance test of feature selection model, the DT, RF and Adaboost model
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Figure 6 Accuracy of different classifiers under different weights.

are studied for comparison test, and the values of a are 0.5 and 0.7. The
experimental environment is a Windows 10 OS, with an Intel Core i7 CPU
and a 32GB GPU. It uses Python software for encoding and selects the
UNSW-NB15 dataset for the database. The UNSW-NB15 dataset is provided
by the Network Research Laboratory at the University of New South Wales,
Australia. It contains more than 150,000 network traffic samples, including
normal traffic and various types of network attack traffic, such as DoS
attacks, remote to local attacks, local to remote attacks and 26 different
types of network attack. The use of the UNSW-NB15 dataset can ensure the
universality of experimental results. A total of 10 experiments are conducted
to average the accuracy of different classifiers under different weights, as
shown in Figure 6.

Figure 6 shows that when a is 0.5, the AA values of DT, RF, and
Adaboost are 74.5%, 70.8%, and 78.6%, respectively. When a is 0.7, the AA
values of DT, RF, and Adaboost are 79.7%, 74.2%, and 83.4%, respectively,
indicating that the Adaboost model possesses the most excellent accuracy.
Three classifiers are trained to further determine the selection of classifiers,
and the results are shown in Figure 7.

Figure 7 shows that DT and RF both fell into two local optima during
training, and the Adaboost model converges after 20 iterations, with the best
optimization ability. Therefore, the Adaboost classifier is used for testing.
For testing the feature selection model of the GA with improved PCC,
according to the results in Figure 6, the threshold of Pearson coefficient in
the experiment is set to 0.4, the population size is set to 50, and the quantity
of iterations is set to 200. The classifier is selected as Adaboost, with a weight
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Figure 8 Algorithm iteration curve before and after improvement.

set to 0.7, a crossover probability set to 1.0, and a mutation probability set to
0.1. The algorithm iteration curve before and after improvement is shown in
Figure 8.

Figure 8 shows that the pre improved GA model briefly fell into a local
optimal solution, while the improved GA model did not. Moreover, the
figure also shows that the improved GA model converges earlier than the
pre improved GA model, achieving the best fitness value. Therefore, the
PCC enhances the diversity of the population and enhances the optimization.
To further demonstrate the performance advantages and disadvantages of
the two models, the accuracy and time of ID feature extraction of the two
algorithms are compared, and a total of 5 tests are conducted. The outcomes
are showcased in Table 1.

Table 1 shows that the AA of the GA model is 69.25%, while the AA of
the improved GA model is 79.55%, an improvement of 14.87%. The average
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Table 1 Test indicator results of two models
Pre Improvement Change in

Test Indicators Repetitions GA (%) GA (%) Amplitude (%)
Accuracy 1 70.15 80.15 14.26%

2 69.55 78.59 13.00%
3 68.27 79.68 16.71%
4 69.17 79.43 14.83%
5 69.09 79.88 15.62%

Average value – 69.25 79.55 14.87%
Detection rate 1 70.15 89.44 27.50%

2 69.81 89.83 28.68%
3 69.13 90.51 30.93%
4 68.59 90.75 32.31%
5 68.77 91.08 32.44%

Average value – 69.29 90.32 30.35%
Time (s) 1 290 192 −33.79%

2 288 190 −34.03%
3 294 188 −36.05%
4 297 194 −34.68%
5 289 183 −36.68%

Average value – 291.6 189.4 −35.05%

detection rate of the GA model is 69.29%, and the improved GA model has
an average detection rate of 90.32%, an increase of 30.35%. The average
testing time of the GA model is 291.6 s, while the improved GA model has an
average testing time of 189.4 s, reducing time consumption by 33.05%. The
improved GA model using PCC has significantly improved computational
efficiency and accuracy. This proves that the improved GA Feature selection
mechanism in view of PCC has better performance.

4.2 Performance Testing of Intrusion Detection Models

The performance of ID model affects the actual efficiency and effect. The 1D
CNN-GRU model is coded using Python in this study, and the model is tested
under the Windows operating system. Other parameters are set as shown in
Table 2.

During the performance test of ID model, the fully connected neural
network (FCNN) and recurrent neural network (FCNN) models are selected
for this study. RNN, LSTM, and GRU are compared with the 1D CNN-
GRU ID model designed in the study, using the data set UNSW-NB15. The
accuracy results are presented in Figure 9.
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Table 2 Experimental parameter setting table
Experimental Environment and Parameters Environment and Parameter Settings
Operating system Windows 10
CPU Intel(R)Core (TM)-7-10700
RAM 16G
Keras 2.3.1
Tensor Flow 2.0
Learning rate 0.01
Epoch 100
Dropout 0.01
Optimizer Adam
Activation function Sigmoid
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Figure 9 Accuracy test results of different models.

Figure 9 shows that all five models converge within 100 iterations, and
the 1D CNN-GRU model in view of the improved GA achieved the optimal
accuracy value of 95.0%. FCNN, RNN, LSTM, and GRU achieved accuracy
values of 92.2%, 90.2%, 79.9%, and 71.3%, respectively. Therefore, the 1D
CNN-GRU model in view of improved GA has the best performance in ID
and can detect network intrusions with high accuracy. It compares the Loss
function of the five models, as shown in Figure 10.

Figure 10 shows that the value of Loss function of 1D CNN-GRU model
in view of improved GA is the smallest, 0.15, and the value of Loss function
of FCNN, RNN, LSTM, and GRU models is 0.17, 0.19, 0.42, and 0.47
respectively. Therefore, the 1D CNN-GRU model in view of improved GA
has better robustness and performance in ID. For testing the detection effect
after lightweight, the pre lightweight model and the post lightweight model
are compared for detection, and accuracy, detection rate, and time are used as
detection indicators. The results are shown in Figure 11.
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Figure 10 Loss values for five models.

3
Number of experiments

1

A
cc

ur
ac

y(
%

)

(a) Accuracy comparison chart

89.0

88.5

88.0

87.5

87.0

86.5

86.0

(b) Detection rate comparison chart

2 4 5 3
Number of experiments

1

D
et

ec
tio

n 
ra

te
(%

)

97.0
2 4 5

(c) Times comparison chart

3
Number of experiments

1

Ti
m

es
(s

)
100

80

60
2 4 5

97.2
97.4

97.6

97.8

98.0

98.2

120

140

160
180

After lightweight
Before lightweight

After lightweight
Before lightweight

After lightweight
Before lightweight

Figure 11 Test results before and after lightweight.

Figure 11(a) shows that the AA of model testing after lightweight is
88.6%, while the accuracy before lightweight is 88.1%. In Figure 11(b),
the average detection rate of the lightweight model test is 98.12%, while
the pre lightweight model test is 97.75%. In Figure 11(c), the average test
time of the model after lightweight is 82 s, while the time before lightweight
is 142 s. It demonstrates that the lightweight model reduces the number of
parameters and significantly reduces the detection time; While reducing the
computational burden, it also improves the detection accuracy of the model.

5 Conclusion

This study improves population initialization in GA in view of PCC in order
to accurately detect attackers in the Internet of Things. In 1D CNN, the
GRU model is introduced and a 1D CNN GRU model is constructed in view
of an improved GA. The results showcased that the AA of the GA model
reached 69.25%, and the AA of the improved GA model reached 79.55%, an
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improvement of 14.87%. The average detection rate of the GA model was
69.29%, and the improved GA model achieved an average detection rate of
90.32%, an increase of 30.35%. The average testing time of the GA model
was 291.6s, while the improved GA model had an average testing time of
189.4s, reducing time consumption by 33.05%. The improved GA model
using PCC had significantly improved computational efficiency and accuracy.
The 1D CNN-GRU model in view of improved GA achieved an accuracy
value of 95.0%, while FCNN, RNN, LSTM, and GRU achieved accuracy val-
ues of 92.2%, 90.2%, 79.9%, and 71.3%, respectively. The Loss function
value of 1D CNN-GRU model in view of improved GA was 0.15, and the
Loss function value of FCNN, RNN, LSTM, and GRU models was 0.17,
0.19, 0.42, and 0.47 respectively. Therefore, the 1D CNN-GRU model in
view of improved GA had better robustness and performance in ID. The
AA of the lightweight model testing was 88.6%, the average detection
rate was 98.12%, and the average testing time is 82s. The accuracy before
lightweight was 88.1%, the detection rate before lightweight was 97.75%, and
the time before lightweight was 142s. Therefore, the lightweight 1D CNN-
GRU model diminishes the quantity of parameters and significantly enhances
detection efficiency. There are shortcomings in this study, as the amount of
data in the dataset is insufficient. In future research, more datasets should be
selected for testing.
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