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Abstract

The existing SQL injection security vulnerability identification technology
for Web applications has inherent flaws, which are relatively passive in
defense methods, and cannot deal with increasingly changeable attack meth-
ods. In order to improve the accuracy of SQL injection security vulnerability
identification of Web applications, this paper uses an improved skip-gram
model to realize unsupervised learning of the embedding process, converts
the information related to program functions contained in the vertices of the
basic block into feature vectors to obtain the ACFG vector of the basic block,
and measures the similarity of binary functions by evaluating the similarity of
feature vectors. The experimental results show that the technical processing
route proposed in this paper can effectively compare binary functions with
different architectures and optimization levels, and use the advantages of
neural networks to obtain higher accuracy and better analysis efficiency,
thereby effectively improving the identification effect of SQL injection secu-
rity vulnerabilities in Web applications. Therefore, it can play a certain role
in the security management of subsequent Web applications.
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1 Introduction

Although web application software has been widely used in many fields, it
is a relatively new type of application software compared to traditional web
network applications. In addition, the current part of web application platform
developers are still thinking in the traditional c/s architecture system devel-
opment routines [1]. In the original c/s architecture, clients often defaulted to
trusted users. Moreover, programmers who are accustomed to the traditional
development mode tend to ignore the sufficient and necessary verification
of the information input from the network client and filter out some user
inputs that are easy to cause abnormalities in time when developing software.
Therefore, such a stereotype of development thinking is easy to produce some
Web vulnerabilities that can be exploited by hackers in the development of
network platforms [2].

In this paper, some problems that need to be solved urgently in the current
Web vulnerability detection system are deeply discussed and studied. By
studying the causes of Web vulnerabilities, various attack approaches and
steps against vulnerabilities and combining with the current network security
forms, this paper focuses on the combination of efficiency and detection accu-
racy in the detection process of SQL injection vulnerabilities and the existing
problems. Finally, the reasons that affect the efficiency and accuracy of the
security detection system and solutions are obtained. Moreover, this paper
gives a brief introduction to the background of the subject, and expounds
the practical needs and feasibility of the scheme to improve and develop the
vulnerability scanning efficiency and detection rate. Then, based on the study
of the causes, principles, approaches and main detection technologies of Web
vulnerabilities, according to the research status of the detection methods
of various Web vulnerabilities including SQL injection vulnerabilities at
home and abroad, this paper puts forward a new solution according to the
development trend of current emerging technologies.

This paper aims to identify SQL injection security vulnerabilities of Web
applications through the similarity of binary codes. Moreover, this paper
uses the improved skip-gram model to realize unsupervised learning of the
embedding process, converts the information related to program functions
contained in the vertices of the basic block into feature vectors to obtain
the ACFG vector of the basic block, and evaluates the similarity of the
feature vectors. Measure the similarity of binary functions, and use the
advantages of neural networks to obtain higher accuracy and better analysis
efficiency, thereby effectively improving the identification effect of SQL
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injection security vulnerabilities in Web applications. Therefore, it can play a
role in the security management of subsequent Web applications.

2 Literature Review

In recent years, research on SQL injection vulnerability scanning has devel-
oped rapidly in China. The static analysis tool JDBC aiecker avoids attacks
from SQL injection statements from attackers by verifying the string content
entered by users in real-time environments [3]. However, if hackers use
similar normal types and syntax to disguise attack statements during injection
attacks, this method is difficult to effectively pre mine, and in addition, it
requires multiple modifications to the web source code. Reference [4] adopts
a dynamic debugging technique different from static analysis, constructs
a testing environment based on input flow analysis and input validation
analysis results, and tests user input to detect the existence of SQL injection
vulnerabilities. Compared to static analysis methods, dynamic debugging
techniques do not require frequent modifications to the coding structure.
However, the disadvantage of this method is that it relies on known SQL
injection vulnerability information, which comes from vulnerability libraries
previously identified by security experts and developers. For newly emerging
SQL injection attack methods that have not yet been added to the vulnerabil-
ity library, they cannot be detected in advance. Based on the advantages and
disadvantages of static analysis methods and dynamic debugging techniques,
reference [5] combines the two and designs and implements an SQL injection
vulnerability detection system that combines static and dynamic SQL queries.
Reference [6] proposes an SQL injection vulnerability detection based on
control flow graph comparison technology, where users can perform SQL
query detection while analyzing stored procedures and runtime. Based on the
study of SQL query statements running in the backend database of a site,
reference [7] designed a randomized SQL query statement based on proxy
mode between the backend database and the server by randomly inputting
instructions. However, this method also has obvious drawbacks, that is, once
the randomized selection of SQL query statements is successfully predicted
by hackers, the system can no longer be used to detect special statement
injection attacks targeting the backend database of web applications. Ref-
erence [8] proposes an intrusion detection method based on machine learning
for SQL injection attacks. The SQL statements in the database logs will
be used for machine learning, and the generated behavior pattern model
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will be compared with the SQL statement to be detected. If the difference
between the detection result and the predetermined pattern exceeds the pre-
determined threshold, the system will determine that the SQL statement has
injection behavior. Reference [9] studied and analyzed the current types of
SQL injection attacks and corresponding detection or protection measures,
implemented SQL injection detection technology based on static analysis,
and was able to mine easily hidden SQL injection points. Reference [10]
proposes a self-learning SQL injection attack filtering method, which can
automatically learn legitimate SQL statement structures to build its own
security detection knowledge base. When detecting vulnerabilities, it deter-
mines the existence of SQL injection vulnerabilities by matching the SQL
statements in the knowledge base. Reference [11] proposed a SQL injection
vulnerability detection mechanism based on hidden webpage crawling, and
implemented a scanning system aimed at improving webpage detection cov-
erage and SQL injection vulnerability detection capability. A network-based
vulnerability scanner implementation method was proposed, which provides
a better vulnerability coverage and can reduce false positives in the short
term.

At the same time, foreign researchers have also made significant con-
tributions to SQL injection protection, such as the encoding mechanism
introduced in reference [12], which can be deployed as a universal prevention
method in specific practices. The lack of a reasonable, complete, and stan-
dardized verification mechanism is an important reason for the emergence
of SQL injection attacks, so starting from the verification mechanism is an
important aspect of implementing SQL injection attack prevention.

The vulnerability mining scheme for binary code similarity comparison
only requires labeling the trigger location of the vulnerability to automati-
cally extract vulnerability features for vulnerability detection. This technique
utilizes neural networks to obtain binary code representations containing
vulnerabilities and target semantic information, and compares their simi-
larity [13]. According to the different contents of the comparison, existing
methods for binary code similarity can be divided into two types: function
matching and patch analysis. In patch analysis methods, MVP [14] (Matching
Vulnerabilities with Patches) adopts vulnerability signature and patch signa-
ture schemes, capturing the generation and repair of vulnerabilities through
patch signatures. A set of basic block trajectories within the function are
signed and represented, and patch semantics are applied to design trajectory
similarity to identify whether the target program has been patched. The patch
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based method mainly utilizes patch update information, which requires the
use of this method only when the patch is released. As software patches
are not released separately, and software version updates contain a large
amount of information, the usage scenarios of the above scheme are limited.
In function matching methods, to alleviate the issue of instruction differences
caused by comparing the same source function code in different architectures,
reference [15] uses intermediate representation based on LLVM (Low Level
Virtual Machine), The representation method of IR. Reference [16] estab-
lishes a mapping between function source code and function binary code
based on LLVMIR, effectively alleviating the problem of cross language
similarity. In the field of code defect detection, reference [17] is a method
that integrates sequence information and semantic features. However, due to
only considering the data dependency between basic blocks and ignoring the
control dependency between basic blocks, some semantic information is lost.
In order to extract semantic information more comprehensively and improve
detection accuracy, reference [18] proposed a standardized unsupervised fea-
ture extraction method. This method utilizes the attention weights of Control
Flow Graph (CFG) nodes, while considering both data flow relationships
and control dependencies to extract semantic information, in order to more
accurately capture program behavior. Reference [19] proposed the method
of introducing instruction attributes to enrich function semantics, but the
effectiveness of these methods is limited.

However, the above solutions all have certain limitations. The granularity
of analysis based on binary functions is too coarse, and the vulnerabilities
are caused by some of the code. The implementation scheme of using
modifying dangerous functions as vulnerability patches involves minimal and
difficult to capture modifications to the execution logic of binary functions.
Based on binary function similarity calculation, it is difficult to describe
data dependency constraint relationships and capture vulnerabilities triggered
by unconstrained data. In addition, due to the use of different optimization
levels to compile binary code with different architectures from a source code,
the differences can be very large. Function oriented vulnerability similarity
schemes cannot identify security vulnerabilities triggered by the lack of
necessary constraint judgments between functions. Deep learning schemes
based on intermediate language representation result in a high false alarm
rate in vector distance based comparisons. The similarity based vulnerability
detection scheme lacks a finer grained filtering mechanism, and vulnerability
verification still requires a lot of manual labor.
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3 Conceual Framework

This paper mainly solves the problem of vulnerability mining in open-source
programs, and is also applicable to programs compiled across architecture
platforms. It implements a universally applicable and efficient vulnerability
mining tool for binary programs. This tool, combined with anti obfuscation
techniques, can bypass some defense measures of the program and restore
the true control flowchart of the program by removing control flow flattening
techniques, while also reducing path pressure for subsequent symbol execu-
tion; Combined with binary program function similarity detection based on
neural networks, function similarity detection can detect high-risk vulnerabil-
ity functions contained in the program, and then implement targeted symbol
execution vulnerability mining in the subsequent mining process, to some
extent avoiding path explosion and improving the effective coverage of test
samples.

Referring to the technical theory of NLP(Natural Language Processing),
it solves the difficulty of binary code similarity analysis. The specific appli-
cation methods are as follows: the instructions of the basic block of the
program are regarded as phrases in text processing, and the instructions of the
basic block are converted into vector values with function characteristics by
using the vector embedding model. Based on the long-short temporal memory
network (LSTM), a bi-directional LSTM (BiLSTM) model is introduced to
add additional basic block semantic information vectors to the basic block
function eigenvectors, forming a basic block embedding vector (ACFG) with
basic block attributes. Finally, a set of basic block embedding vectors are
formed, it is still usable for programs with different architectures. To sum
up, the model used to generate the basic block semantic embedding vector
is shown in Figure 1, which mainly includes two parts, one is the instruction
embedding model, and the other is the basic block embedding model.

Figure 1 Generation of basic block semantic embedding vector.
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Embedded models are a type of machine learning model widely used in
fields such as natural language processing (NLP) and computer vision (CV).
Its main function is to transform high-dimensional data into low dimensional
embedding space, while retaining the features and semantic information of
the original data, thereby improving the efficiency and accuracy of the model;
Basic block embedding is a fundamental work in machine learning based
binary program analysis methods.

3.1 Optimization of Improved Skip-gram Model

Each instruction of the basic block is constructed in the form of h according
to a given instruction wi, where m + 1 ≤ i ≤ N − m. For example, if
we set the size of the sliding window to 3, then when training, using the
sliding window mode on the basic block instruction will overwrite the first 3
and last 3 instructions of the current instruction. The embedding layer of the
network is composed of a V ×D matrix, and these two parameters together
determine the size of the final eigenvector. Among them, V is the standard of
the size of the basic block instruction set, and D is the dimension of the basic
block eigenvector. There is a softmax function between the two, the weight
is D × V , and the offset dimension is determined by V . The model starts
from each randomly selected word vector and is trained while traversing the
sliding window. The embedded vector of the middle vector wi in the current
sliding window is calculated by the softmax function. The specific method
can refer to Equation (1).

g(wi+m, wi) =
exp(δTwi+m

vwi)∑
wi+m∈V exp(δTwi+m

vwi)
(1)

The function g also represents the correlation of the position relationship
between wi+m and wi, which can ensure that the direction of the vector δ
corresponding to wi+m is opposite to that of wi, so as to ensure that every
instruction of the basic block can be completely encoded without omission.
Among them, the function g is updated according to rules like this:

v(new)
wi

= v(old)wi
− γ(σ(vTwi

δwi+m)−D)δwi+m (2)

v(new)
wi+m

= v(old)wi+m
− γ(σ(vTwi

δwi+m)−D)δwi (3)

In the function, σ is the sigmoid function, σ(x) = 1
(1+exp(−x)) , γ repre-

sents the decay index of the learning rate, and D represents the label of wi+m
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under the premise of wi, where:

D

{
1; (i < 0)
0; (i > 0)

(4)

The loss function of the skip-gram model itself is shown in Equation (5):

Loss =
1

|V |

|V |∑
i=0

∑
0<|m|≤c

log(p(wi+m)wi) (5)

Among them,

p(wi+m|wi) =
exp(v′Twi+m

vwi)∑
wi+m∈V exp(v′Twi+m

vwi)
(6)

The loss function of the improved skip-gram model is to combine the
two, and calculate the loss according to the loss function formula shown in
the following Equation (7):

Loss =
1

|V |

|V |∑
i=0

∑
0<|m|≤c

log p(wi+m|wi) + g(wi+m, wi) (7)

Therefore, an instruction embedding model based on skip-gram can be
obtained in the end. The model structure is shown in Figure 2.

The model establishes a connection between intermediate vocabulary
and the entire text by controlling the size of the sliding window, but this
approach increases overhead and significantly increases training time. Due to
the fact that this chapter is designed to implement instruction embedding in
the program, only the semantic information and contextual connections of the
basic blocks need to be considered. Therefore, it is necessary to improve the
model. By establishing semantic connections between intermediate vocabu-
lary and context in the model, predicting intermediate vocabulary, context,
and key words in the text through intermediate vocabulary, we can increase
the contextual connections of basic blocks and utilize semantic information
with less training costs.

Each instruction will be embedded in the V × D matrix E, and each
instruction will be embedded in the n-th instruction wn in the vocabulary,
whose instruction embedding en is calculated by:

en = unE (8)
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Figure 2 Schematic diagram of skip-gram model.

un is a vector of 1×V , and the n-th element is 1, while the rest represent
0. Through the skip-gram model built above, the instruction embedding of
the basic blocks can be realized. For example, when a basic block block of
a function is given, this block is composed of a list of instructions, and the
instruction stream of block is denoted I (b):

I(b) = [b1, . . . , bn] (9)

Among them, bn represents an instruction in block. Similarly, different
functions can be parsed into corresponding basic block instruction streams
according to the same logical thinking, and then these instruction streams
can be input into the model for training, and the final result is the instruction
embedding matrix. Of course, the embedding dimension of the matrix can be
manually adjusted according to needs, which will be mentioned in subsequent
experiments.

Before finally generating the instruction embedding vector of the basic
block, in order to improve the overall performance of the model, this paper
introduces a layer of attention mechanism self-attention network, which can
effectively transmit information and effectively reduce redundant embedding
vectors. The specific principle of the self-attention mechanism is shown in
Figure 3 below, where FC represents the fully connected network layer.
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Figure 3 Schematic diagram of the self-attention mechanism.

Attention mechanism is an important concept in computer models, which
refers to the ability of the model to focus on certain important parts and ignore
other irrelevant parts when processing input data. In computer data processing
tasks, attention mechanisms can help models better understand input data,
thereby improving model performance.

The self-attention mechanism consists of Query = Q, Key = K, and
Value = V , where the vector represented by K and V corresponds one-
to-one. K and V represent the vectors generated by the same instruction.
The weight value αt is obtained through the operation of Q and K, and the
important features in V are selected to complete the feature vector fusion.
Generally, the following calculation formula is selected:

αt = softmax (simt(Q,Kt)) (10)

After getting the weight value αt, we can get the value of attention by
weighting and summing it with the value represented by V :

attention(Q,K, V ) =
∑
t

αtVt (11)

The standard attention mechanism is to assign different weights to the
input information of the unit, so that the model pays more attention to the
key information, while those low-weight information will be filtered out. For
the instruction embedding of basic blocks, not only the key instruction infor-
mation related to the program function is required, but also the acquisition
of control flow information without obvious special marks should be given
similar attention weight allocation. Therefore, this model needs to adjust the
weight distribution of the attention mechanism and modify the algorithm. The
schematic diagram of the instruction embedding model after fusion of the
attention mechanism is shown in Figure 4. The attention network “screens”
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Figure 4 Schematic diagram of instruction embedding model.

the instruction embedding vectors generated by the improved skip-gram
model to remove redundant feature vectors.

Combined with the characteristics of the instruction vector of the basic
block of the function, the calculation formula of the attention mechanism is
finally determined as follows:

et = u tanh(Wαmt + b) (12)

f(mt,ms) = Wα[mt;ms] (13)

αt =
exp(f(mt,ms))∑
j exp(f(mt,ms))

(14)

st =
n∑

t=1

etαt (15)

mt represents Q mentioned above, ms represents that K and b are bias, et
represents the attention distribution determined by the input vector at moment
t, and st is the eigenvector of the final output.

3.2 ACFG Vector Similarity Calculation Model Based on
Attention Mechanism

By converting a binary program into a control flow graph (ACFG) with basic
block attributes, the characteristic information of each node is extracted, so
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Figure 5 ACFG vector similarity calculation model based on attention mechanism.

that the program can not only obtain the code, but also obtain the rela-
tionship between them. Using the struc2vec algorithm, the ACFG vector is
transformed into a more complex graph, which better represents the vector
characteristics of the basic blocks of each function, as shown in Figure 5.

The vertex eigenvectors of all the basic blocks are fused to finally generate
the embedded vector µg of the ACFG:

µ′
g = Mv∈V (µv) (16)

Based on the struc2vec algorithm, this paper constructs the following
ACFG embedding vector generation method, and its basic block node vector
mapping relationship is as follows:

G

xv,
∑

u∈E(v)

µu

 = tanh

W1xv + σ

 ∑
u∈E(v)

µu

 (17)

Among them, xv is the d-dimensional vector, represents the character-
istics of ACFG nodes, W1 is the parameter matrix of d × p, and p is the
embedding dimension of ACFG. The function σ is a fully connected layer of
n layers:

σ(l) = P1 × Relu(P2 × . . .Relu(Pnl)) (18)

Among them, Pi(1, 2, . . . , n) is the p×p parameter matrix, n is the ACFG
embedded depth, Relu is the linear rectifier unit, and meet the condition
Relu(x) = max(0, x).

If the set of neighbor base block vertices of the base block vertices v
in a graph g is represented as E(v), the first step in building a struc2vec
algorithm is to set the eigenvectors of all base block vertices to 0, and in
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Figure 6 ACFG vector embedding model diagram.

the next iteration process, this step is repeated continuously using the same
strategy.

u(t+1)
v = G(xv,

∑
u∈E(v)

µ(t)
u ),∀v ∈ V (19)

Among them, xv is the characteristic attribute of the vertex v of the basic
block, V is the set of vertices of the graph g, µ(t)

u is the embedding of the
eigenvector of vertex µ at time t, u(t+1)

v is the embedding of the eigenvector
of vertex v at time t+ 1, and G is a vector mapping function.

The struc2vec model used is written using the RNN network, so the
attention mechanism in the RNN network is considered. The purpose of
the attention network is to further fuse the feature vectors generated by
the previous network element, further reduce the redundancy in the feature
vectors, reduce the calculation overhead, and obtain the final feature vector
ug. The final ACFG vector embedding model structure is shown in Figure 6,
and w2 is a p× p dimension matrix with the same embedding dimension.

In view of struc2vec algorithm is mostly used for classification and not
for calculating similarity, the network is designed as a Siamese structure, and
the similarity of the left and right parts of the vector is calculated through the
way of parameter sharing, so as to obtain the function similarity score of the
program. The Siamese architecture model is shown in Figure 7.

The Siamese network structures have exactly the same characteristics,
and they all contain the same parameters, which allow them to coordinate
with each other.
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Figure 7 Siamese architecture model diagram.

We are given a dataset containing N ACFG pairs < gi, g
′
i > and their

similarity information yi ∈ {+1,−1}, where yi = +1 means that two
basic blocks have similar functions, and conversely yi = −1 means that
these two basic blocks have no similar functions. Then, the Siamese network
will calculate each ACFG according to the following algorithm Theoretical
similarity between pairs:

Sim(g, g′) = cos(ϕ(g), ϕ(g′)) (20)

Among them, n represents the dimension of the embedded vector and
ϕ(g) is the ACFG embedded vector.

In order to optimize the parameters, the embedded model updates the
parameters through back-propagation and stochastic gradient descent tech-
niques, so that the cross-entropy loss function reaches a minimum value. The
calculation process is as follows:

Loss =

N∑
i=1

(Sim(g, g′)− πSim(g, g′))2 (21)

4 Experimental Results and Analysis

4.1 Experimental Methods

The graph embedding model introduced in this paper is built by Python
language on the Keras platform. Keras relies on TensorFlow as the backend.
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Hardware configuration: Intel ® CoreTM i5-10400 CPU @ 2.90 GHz 2.90
GHz processor and running memory of 16GB, and Operating environment:
Ubuntu 20.04 64bit.

Manual analysis of binary programs typically requires a combination
of static and dynamic analysis. For binary programs with source code,
first identify the vulnerability points in the program through source code
analysis, and then confirm the program vulnerabilities and exploitation
methods through dynamic debugging. For programs without source code,
reverse programming is usually required, which involves analyzing assembly
code or pseudocode, observing software behavior through dynamic debug-
ging, and confirming analysis based on the personal experience of the
analyst.

The source of the first dataset of this paper: combining the data of the
second part with the help of crawlers on the network, a complete dataset can
be built to effectively train, verify and test the model.

The basic principle of a web crawler is based on the website network
protocol, and the process of obtaining information from web pages in bulk
according to the website address. Simply put, it refers to using computer
programs to simulate the process of manually clicking on web pages to obtain
data.

1. Firstly, select a carefully selected subset of seed URLs (uniform resource
locators);

2. Put these URLs into the URL queue to be crawled;
3. Retrieve the URL to be crawled from the queue of URL to be crawled,

resolve DNS, and obtain the host’s IP. Download the corresponding
webpage from the URL and store it in the downloaded webpage library.
In addition, put these URLs into the crawled URL queue;

4. Analyze the URLs in the crawled URL queue, analyze other URLs
within it, and place the URLs in the URL queue to be crawled, thus
entering the next loop.

The source of the second dataset: the dataset corresponding to the original
model that has not been processed by the technical route of this paper. Among
them, the data set of the original model is constructed in the following way:
some functions of OpenSSL (v1.0. 1a and v1.0. 1f) and Linux packages are
compiled to implement the compilation of MIPS and ARM architectures, and
gcc and clang compilers are used to ensure the accuracy and reliability of
compilation. Three optimization levels of O1-O3 are adopted respectively,
and the data is further divided into three parts, as shown in Tables 1 and 2.
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Table 1 Dataset 1
Training set Validation set Test connection TOTAL

O1 33814 31913 65727 2999 3613 6611 4324 4302 8626 41115 39827 80964

O2 44115 42330 86446 4963 5018 9981 5017 5534 10551 54096 52883 106978

O3 45677 44334 90011 5336 5325 10661 5940 5840 11780 56953 55499 112452

TOTAL 123606 118577 242184 13298 13956 27254 15282 15676 30957 152163 148209 300395

Table 2 Dataset 2
Training set Validation set Test connection TOTAL

O1 10362 10246 20608 1519 1719 3237 1422 1623 3044 13303 13587 26889
O2 9977 10178 20155 1369 1312 2681 1024 1421 2444 12370 12911 25281
O3 10331 10251 20582 1905 1128 3032 1932 1191 3123 14168 12570 26738
TOTAL 30670 30675 61345 4793 4158 8951 4378 4234 8612 39841 39067 78908

Figure 8 ROC curve of ACFG embedding model without data processing.

The extracted-ACFG tool is formed by using Angr framework to extract
ACFG automatically. This tool can perform code loading on different
binary functions and control flow graph extraction to generate basic block
embedding vectors.

4.2 Results

First, we set the epoch of model training to 100, and then use the verification
set to test the performance of the model, and save the model corresponding to
the largest AUC value as the basic model. Then, we test the accuracy of the
model with the test set data. Finally, the unprocessed data set is used as input
for comparison, and the results are shown in Figures 8 and 9.
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Figure 9 ROC curve of data-processed ACFG embedding model.

Table 3 Changes of TPR and FPR under different threshold
FPR(%) TPR(%) Threshold
100.00 100.00 0.00

57.42 97.02 0.20
44.55 95.04 0.40
41.58 92.07 0.59
39.60 83.16 0.79
17.82 17.82 1.00

True Positive Rate (TPR) is the number of true positive samples detected
divided by the number of all true positive samples;False Positive Rate (FPR)
is the number of false positive samples detected divided by the number of all
true negative samples.

As shown in Table 3, the true and false positive rates of the model at
different thresholds are recorded.

For the epoch number of the model, this paper sets different epoch
numbers, and observes the change of the AUC value during the training
process, and then stops the training when the AUC value tends to be stable,
as shown in Figure 10.

According to the vertex feature dimension of the model, the features of
ACFG structure can be effectively constructed by the basic block embedding
technology. In order to study the impact of different basic block feature
dimension embedding on the performance of ACFG embedding model, the
basic block embedding is adjusted to 4, 8, 10, 12 and 14 dimensions in
sequence in the experiment, and their AUC values are recorded. The test
results are shown in Figure 11.
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Figure 10 AUC of the model at different Epoch numbers.
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Figure 11 AUC of the model under different basic block embedding dimensions.

For the ACFG embedding dimension of the model, the ACFG embedding
dimension is adjusted according to 20, 40, 60, 80 and 100 dimensions in turn,
and the AUC value of each model is recorded. According to the experimental
data, the model AUC under different ACFG embedding dimensions is shown
in Figure 12.

The embedding depth of ACFG can significantly improve the perfor-
mance of the model. The embedding depth of the ACFG can be reflected by
calculating the number of network layers n for s. In the simulation process,
ACFG needs to be embedded into different layers, including layers 1, 2, 3,
and 4. The AUC values for each level are recorded, and this information is
shown in Figure 13.

In order to reflect the effectiveness of the model and to see that the ACFG
embedding vector satisfies the condition that the eigenvectors compiled from
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Figure 12 AUC of the model under different ACFG embedding dimensions.
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Figure 13 AUC of the model at different ACFG embedding depths.

the same source functions belong to similar block pairs, and the vectors
compiled from different source functions belong to dissimilar block pairs, this
paper conducts model tests on 6 source functions (alloc procps scan, cat
main, fgetgrent, find mount point, get linux version code, modprobe

main) from the vulnerability sample library, and then the high-dimensional
embedding vectors generated by the model are visualized using t-SNE. The
results are shown in Figure 14.

In order to test the performance advantages of this model, this paper
uses other similar models to conduct comparative experiments, and records
the AUC values of the model respectively, so as to verify the accuracy of
the model for data processing. This section of the experiment compares the
performance of the three methods of reference [10], reference [11] and the
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Figure 14 Visualization results of high-dimensional embedded vectors.
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model proposed in this paper on the verification set, and records the AUC
value on the verification set, as shown in Figure 15.

4.3 Analysis and Discussion

As shown in Figures 7 and 8, the red curve is the ROC curve of the data set
without corresponding processing on the model. It can be concluded that the
data processing technology proposed in this paper has a higher AUC value,
which can make the model show better performance. Among them, a low
threshold will lead to a higher positive case rate in the model, and a higher
threshold will lead to a higher false positive case rate in the model.

It can be seen from the results in Table 3 that with the increase of the
threshold value of the model, the TPR and FPR of the model will continue
to decline, but the decline rate of FPR is faster than that of TPR. When the
model is at a high threshold, TPR is at a high level and FPR is at a low
level. Therefore, it can be concluded that the model in this paper has good
performance.
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As shown in Figure 9, increasing the epoch number will increase the
value of AUC, but the value of AUC is not only determined by the epoch
number. However, it can still be observed that the pre-processing scheme
of the data set proposed by this technology can make the model complete
training quickly and achieve a relatively good performance state. Finally,
according to the training record, the number of Epoch is determined to be 10.

As shown in Figure 10, increasing the feature dimension of vertices will
introduce more low-impact factors, which will actually reduce the value of
AUC. Therefore, the best basic block embedding dimension of this model is
10 dimensions.

Figure 11 shows the relevant conclusion: increasing the ACFG dimension
will increase the value of AUC, but the value of AUC is not only determined
by the ACFG embedding dimension, and excessive increase will introduce
more low-impact factors. Therefore, the embedding dimension suitable for
this model is 60 dimensions.

As shown in Figure 12, it has been experimentally proved that when the
model has 2 layers and 3 layers, the AUC value of the ACFG embedded
model is the highest, and as the number of layers increases, while the AUC
value of the embedded model decreases. According to the experimental
results, the optimal number of ACFG embedding layers is 2 layers, which
can meet the requirements of the model.

According to the distribution between the vectors in Figure 13, the
distance between the functions can be seen, which proves that the semantic
information of the functions is effectively preserved, while also eliminating
the differences caused by different architectures and compilation optimiza-
tion options. From Figure 14, it can be seen that the performance of the
model proposed in this paper is higher than that of the model proposed in
reference [10], and its performance advantage is more obvious than that of
the unsupervised learning model proposed in reference [11].

Finally, through experiments, it is proved that the technical processing
route proposed in this paper can effectively compare binary functions with
different architectures and optimization levels, and use the advantages of
neural networks to obtain higher accuracy and better analysis efficiency.

5 Conclusion

For SQL injection security vulnerability identification for Web applications,
this paper discusses how to map high-risk functions to other functions to
calculate the similarity between them. Moreover, through in-depth study of
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graph embedding problem and struc2vec algorithm, this paper combines
basic block embedding technology to convert the information related to
program functions contained in the vertices of basic blocks into eigenvectors,
and then obtain the ACFG vector of basic blocks. In addition, this paper
aggregates the ACFG embedding vectors of each vertex to form the feature
vectors of the program functions represented by the basic blocks of the
function, and measures the similarity of binary functions by evaluating the
similarity of the feature vectors. Finally, through experiments, it is proved
that the technical processing route proposed in this paper can effectively
compare binary functions with different architectures and optimization levels,
and use the advantages of neural networks to obtain higher accuracy and
better analysis efficiency.

However, although the vulnerability function sample library in this paper
involves the mainstream architectures ARM and MIPS, the specific number
of vulnerability functions involved is still not enough. Therefore, in order to
better reflect the detection and mining capabilities of the tool, the type and
quantity of the sample library can continue to be expanded in the future.
The method of removing control flow flattening in this article to achieve
anti obfuscation will be limited when faced with other obfuscation measures.
Other anti obfuscation algorithms can be added to the anti obfuscation algo-
rithm, such as the data flow anti obfuscation algorithm, to resist program
obfuscation of the data flow.
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