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Abstract

The power grid is vulnerable to bad data interference and false data attacks, so
its security is reduced. This paper focuses on the study of false data injection
attacks (FDIAs), analyzes the principle of FDIAs and their impact on power
systems, and studies the methods of suppressing and detecting FDIAs based
on distributed state estimation and neural networks. In addition, this paper
establishes a specific simulation model. Simulation results show that the
proposed method can effectively identify FDIAs and correct bad data, thus
further reducing the impact of FDIAs on power system state estimation.
Therefore, in the follow-up, we can use this method to carry out practical
research in the power communication network to further improve the security
of the power communication network.
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1 Introduction

Simply expanding the functions of traditional computer systems or other
engineering equipment can no longer meet the needs of social production.
Moreover, traditional industrial equipment needs to change to the direction
of informatization and networking. However, limited by communication
technology, the real-time, controllability and scalability of the network are
poor. Therefore, scholars and researchers from all over the world have
begun to pay attention to the optimal allocation of system resources, perfor-
mance improvement and the integration of information systems and physical
systems.

At present, the security problems faced by smart grid mainly exist in
the perception layer, execution layer and data transmission layer. Among
them, physical attacks destroy the integrity of data by damaging physical
devices and other ways, and Denial of Service (DoS) attacks are the easiest
to achieve. In this case, the attacker does not need to know much about
the system architecture, and can carry out the attack through the network
communication channel. In addition, the replay attack uses the normal data
packets received by the receiver before, and sends them to the receiver again,
so as to achieve the purpose of spoofing the system [1]. Attackers can obtain
data from the network transmission channel, use model identification and
other methods to obtain the system topology, design attack vectors with
concealment characteristics [2].

FDIAs (FDIAs) have more potential threats than other attacks because of
their concealment characteristics, which are not easy to detect. How to solve
the network security problem in smart grid, design a reasonable detection
scheme. The purpose of this paper is to explore a fast early warning method
for FDIAs in CPS of power communication networks through intelligent
methods, which can effectively identify FDIAs and correct bad data, thus
further reducing the impact of FDIAs on power system state estimation.

Regarding the concealment of false data injection attacks,the topology
modeling of power CPS is based on the interdependent network of complex
theory. Power CPS is formed by a specific coupling mode between power sys-
tem and information system, and power system is composed of synchronous
generator, asynchronous generator, bus, transmission line, smart meter and
other components, which mainly meet the needs of power production. The
information system is composed of dispatching control system, data acqui-
sition equipment, sensors, computing system, etc., and plays the roles of
supervision and control, decision-making calculation, and data acquisition
for the power system.
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The purpose of this study is to propose a fast warning method for dealing
with CPS false data injection attacks in power communication networks. This
paper focuses on the research of false data injection attacks in power systems,
analyzes the principles of false data injection attacks and their impact on
power systems, and studies methods for suppressing and detecting false data
injection attacks based on distributed state estimation and neural networks

The innovation of this article is the proposal of a neural network-based
method for identifying and correcting false data. By using residual detection
and fully connected neural networks to determine whether the power system
has been subjected to false data injection attacks, and removing the impact
of tampered data on system observability, a multivariate LSTM time series
prediction model is used to correct the tampered data. Simulation results have
shown that the proposed method can effectively identify false data injection
attacks and correct malicious data that has been tampered with by false data
injection attacks, enhancing the power system’s ability to suppress false data
injection attacks.

2 Related Work

The passive defense against FDIAs occurs in the stage after the attack has
already occurred, and can generally be divided into the detection, identi-
fication, and repair of FDIAs [3]. The detection of FDIAs is achieved by
analyzing and extracting normal and abnormal data features from historical
data to detect real-time data. The traditional state estimation sets a threshold
at a certain confidence level through extreme value functions and residual
formulas. When the threshold is exceeded, it can be considered as bad data.
FDIAs bypass this type of detection [4]. Reference [5] proposes using the
Kullback Leibler distance between historical and real-time data as the basis
for determining the presence of FDIAs. However, this method still requires
setting a threshold, which greatly affects the detection results. Reference [6]
proposes the sparsity property that can be exploited for FDIAs, treating the
detection problem as a decomposition problem of low rank sparse matrices.
Reference [7] proposes the use of an adaptive CUSUM(Cumulative Sum
Control Chart) algorithm to achieve real-time monitoring. With the diversifi-
cation of attack methods used by initiators of FDIAs, early attack detection
methods are no longer sufficient to address these challenges. The exten-
sive application of machine learning in the field of classification provides
scholars with new solutions. Reference [8] proposed that false data injec-
tion attack detection is essentially a classification problem. However, such
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shallow algorithms require training a large number of network parameters
when facing large power networks, making them difficult to apply to large
power grids. In addition, in terms of unsupervised learning, PCA(Principal
Component Analysis) in reference [9] and isolation forest in reference [10]
have also been applied to solve attack detection problems, but neither can
achieve real-time detection.

The deep integration of information systems and physical systems in
smart grids has improved the efficiency, scheduling, and monitoring. Due to
the extensive access of network devices, while promoting resource allocation,
data analysis, and decision control, the security risks faced by the power grid
are gradually increasing. The power SCADA(Supervisory Control And Data
Acquisition) system plays a crucial role in perceiving the state of the power
grid, and increasing measurement redundancy can improve the accuracy of
system state estimation. However, FDIAs designed by attackers targeting the
SCADA system state can avoid traditional bad data detection systems, result-
ing in incomplete data in the SCADA system, erroneous decision-making
in the control system, and causing huge losses to the safe operation [11].
Reference [12] analyzed the vulnerability of state estimation in smart grids
and comprehensively reviewed the potential serious consequences that smart
grids may face after being attacked by false data injection. The commu-
nication network of the power system has characteristics such as network
specificity, security zoning, horizontal isolation, and vertical authentication,
which have a certain degree of reliability and security. Current security case
studies on smart grids indicate that physical isolation cannot fully guarantee
the security of the power grid system [13]. The power system and related
facilities are important supports for national industrial construction. The
forms of attacks against industrial control equipment are increasing day
by day, and research on attack mechanisms, defense strategies, and system
security performance evaluation urgently needs to be deepened [14]. Network
attacks in the power grid can be classified into disrupting the confidential-
ity, integrity, and availability of information according to different attack
targets [15], while FDIAs can be classified as disrupting the integrity of
data, posing a higher degree of threat to the power grid. According to the
approach of constructing FDIAs, data injection attacks can be divided into
two categories: manipulating data and disrupting network communication.
In recent years, multiple power grid security accidents have been related
to data tampering and loss, as well as damage to communication networks.
Moreover, it is difficult to recover data from malicious damage [16]. With the
development of technologies such as network communication, data analysis,
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and control decision-making in the power grid system, as well as the upgrad-
ing of hardware equipment, the level of intelligence is constantly improving,
and the scope of malicious data injection attacks is also expanding. In a broad
sense, disrupting the integrity of power grid information system data, causing
control system instability, scheduling decision-making errors, causing eco-
nomic losses, and wasting power and energy can all be regarded as FDIAs
facing the power grid, which is not conducive to the construction of smart
grids.

Intrusion detection systems have attracted widespread attention as an
important means of deep defense for power CPS. Reference [17] combines
packet load characteristics on the basis of behavioral characteristics. Con-
sidering that an attack behavior may affect multiple events across space
and time, reference [18] proposes an intrusion detection method based on
spatiotemporal event correlation to reduce the high false alarm rate caused
by traditional intrusion detection systems using only a single event feature
for attack identification. Reference [19] extracts periodic communication
behavior features from the system to construct a whitelist for effective intru-
sion detection. Considering that communication traffic in network attacks
may exhibit sudden changes in cycle size, new cycles or missing known
cycles, and sudden strengthening of noise in the frequency domain, wavelet
analysis methods are used to perform spectral analysis on traffic curves to
identify abnormal frequencies [20]. However, industrial control networks not
only include strong periodic data polling functions, but also configuration
functions with certain randomness and non periodicity. Relying solely on
traffic periodicity for detection may result in a high false alarm rate,some
researchers have attempted to incorporate packet content into anomaly
detection.

3 Model Construction

3.1 Power CPS Modeling Under False Data Attacks

In this paper, the topology modeling of power CPS is based on the inter-
dependent network of complex theory. Power CPS is formed by a specific
coupling mode between power system and information system, and power
system is composed of synchronous generator, asynchronous generator, bus,
transmission line, smart meter and other components, which mainly meet
the needs of power production. The information system is composed of
dispatching control system, data acquisition equipment, sensors, computing
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Figure 1 Schematic diagram of power CPS topology.

system, etc., and plays the roles of supervision and control, decision-making
calculation, and data acquisition for the power system.

In order to simulate the CPS false data injection attack mode in power
communication and find reliable countermeasures, this article summarizes
the common CPS false data injection attack modes in the current power
communication network, models them, and constructs a simple topology
structure for the analysis and resolution in the following text.

According to the above analysis of power CPS, ignoring the distribution
network, Figure 1 shows a simple topological structure. In this structure, the
whole CPS is abstracted into two undirected networks. Among them, the
upper layer network is the information layer or called information system,
information network, and the lower layer network is the power layer, which
can be called physical system, power network or power system.

Gp = (Vp, Ep), and Vp represents the power system physical equipment,
where power plants and substations are power supply nodes and the internal
structure of the system is ignored. Ep represents the transmission lines, the
abstracted power system is expressed as an unweighted undirected network
with m physical nodes, and has small-world characteristics for the power
grid. The information network is the private communication network of
electric power CPS, and each physical device is equipped with corresponding
communication equipment for data monitoring and acquisition. In order to
maintain the similarity, the model structure of the information network also
has the characteristics of a small world and an information node corresponds
to a power node, which is abstracted as a graph GN = (VN , EN ). VN repre-
sents the data collection and supervision equipment and network equipment



Research on Fast Early Warning of False Data Injection Attack 1337

of the information system. The network side is abstracted as a communication
link, and the information communication system has N information nodes.
Based on the abstraction analysis of the power CPS, has the following
structure:

A =

[
Ac Ac−p

(Ac−p)
T Ap

]
=


C1

. . .
CN

P1

. . .
PM



×


a1,1 . . . a1,N a1,N+1 . . . a1,N+M

. . . . . . . . . . . . . . . . . .
aN,1 . . . aN,N aN,N+1 . . . aN,N+M

aN+1,1 . . . aN+1,N aN+1,N+1 . . . aN+1,N+M

. . . . . . . . . . . . . . . . . .
aN+M,1 . . . aN+M,N aN+M,N+1 . . . aN+M,N+M

 (1)

In the formula (1), Ac represents the internal adjacency matrix of the
network layer, Ap represents the adjacency matrix of the physical layer, Ac−p

represents the network physical interface matrix, which represents the inter-
connection between the network layer and the physical layer, and (Ac−p)

T is
the transpose matrix of Ac−p. If there are connecting edges for network nodes
Ci and Cj , the element in Ac is aij = 1, otherwise aij = 0. The nodes in the
information layer need the state data provided by the nodes in the power layer,
and the nodes in the power layer need the control commands provided by the
nodes in the information layer to operate safely. In the actual power system,
each node is matched with a sensor or a data acquisition device. In order to
describe and realize the topology, the CPS based on the “complete one-to-one
correspondence” relationship in the dependent network.

In this paper, the fragility of the current network structure is judged by
seeking the most connected subgraph of the network structure on both sides.
When any node of the system does not belong to the most connected sub-
graph, the function shows that the node is out of operation, and the structure
shows that the system loses this node. Figure 2 shows the cascading failure
process of the system structure, the red node represents the information layer
node, and the green node represents the grid layer node. According to the
principle of false data attack, the structural failure process of the attacked
system is analyzed.
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Figure 2 Schematic diagram of cascaded faults in system structure.

Figure 3 Correlation between false data attacks and state estimation.

Traditional vulnerability research methods only consider the deviation of
the state estimation results from the actual estimation value, but ignore the
problem of state estimation convergence failure caused by different mea-
surements. Figure 3 shows the impact of measurements on state estimates.
This section focuses on the impact of false data injection voltage and power
measurements on the vulnerability of state estimation.

From Figure 3, it can be seen that false data attacks on power CPS
mainly create false voltage and power by injecting false data, causing the
monitoring system to mistakenly believe that all parameters are in a normal
state. Traditional methods cannot be used to implement and operate the power
communication network, making it difficult to make reliable state estimates.
If the false voltage and power can be effectively identified through reliable
methods, the entire system state can be effectively evaluated.

In state estimation, the power system balance equation and nonlinear
model are constructed, and the nonlinear equations are solved by using
the collected measurement data and iterative approximation method. The
convergence value of the solved equations is used as the estimated value of
the state variable. Formulas (2)–(4) are the solution process and convergence
criteria of AC power flow state estimation. When the measurement vector of
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the quantitative measurement equation is z, the state estimation vector
⌢
x is

to find the minimum value of the objective function.

min J(x) = [z − h(x)]T
−1∑
e

[z − h(x)] (2)

According to the Gauss-Newton iteration method, the solution of formula
(2) can be obtained by iteration according to formula (3)

G(
⌢
x
k
)∆

⌢
x
k+1

= HT (
⌢
x
k
)

−1∑
e

[z − h(
⌢
x
k
)] (3)

k represents the number of iterations,
⌢
x
k

represents the result of the k-th

iteration of the state variable, ∆
⌢
x
k+1

=
⌢
x
k+1

− ⌢
x
k

and G(
⌢
x
k
) = HT (

⌢
x
k
)∑−1

e H(xk) represents the gain matrix. H(x) = ∂h(x)/∂x is the Jacobian
matrix of the measurement vector of order m ∗ n, which takes any one of the
following three terms as the convergence criterion.

∥∆ ⌢
x
k
∥ < εa

max |∆ ⌢
x
k

i | < εx

|J(∆ ⌢
x
k
)− J(∆

⌢
x
(k−1)

)| < εJ

(4)

In the formula (4), i represents the sequence numbers of the components
in the state vector x, and εa, εx, εJ are different convergence criteria selected
according to the accuracy. The second formula indicates that the maximum
absolute value of the state correction in the k-th iteration calculation is less
than the given convergence standard value, and this convergence criterion is
commonly used in practice.

3.2 Identification and Correction of FDIAs

To enhance the filtering ability for bad data,the steps include: 1. Building a
power system state estimation model, obtaining residual vectors based on
the state estimation model, and comparing them dimension by dimension
to see if they exceed the detection threshold. If they exceed the detection
threshold,it is considered bad data. 2. Detect false data attacks through fully
connected neural network detection to detect false data attacks that residual
detection cannot detect. Use fully connected neural networks to determine
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Figure 4 Flowchart of detection and correction of false data injection attack.

whether each node has suffered from false data attacks. If it is determined
that a node has suffered from false data attacks, it is considered that the
measurements related to that node are untrustworthy and are all bad data. 3.
Determine whether removing bad data affects system observability. If it does
not, delete the bad data. The proposed method can effectively identify false
data that traditional bad data detection methods cannot recognize, and can
be well applied in small systems and distributed state estimation subregions.
The process of detecting and correcting FDIAs is shown in Figure 4.

When the system is attacked by random false data, there are differences.
Compared with the fitting residual value of normal data. At this time, the
measurement data set attacked by random false data can be found by residual
detection. The standardized residual error method is used to identify the bad
data caused by random false data attacks and measurement errors. The power
system nonlinear measurement equation can be expressed as:

z = h(x) + v (5)

In the formula (5), z = [z1, z2, . . . , zm]T represents the m-dimensional
measurement vector, x = [x1, x2, . . . , x2n−]

T represents the 2n − 1-
dimensional state vector, n represents the number of power system nodes.

r = z − h(
⌢
x) (6)

⌢
x is the 2n− 1-dimensional state estimation vector.

rN =
√
D−1r (7)
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In the formula (7), D = diag [WR], W = I −H(HTR−1H)−1HTR−1,
R is an m-dimensional covariance matrix, and H is a m × 2n − 1-order
Jacobian matrix.

The rN detection is to perform the dimensional residual error according
to the method of hypothesis testing:

H0 : |rN,i| < γN,i, H0 is real, accept H0

H1 : |rN,i| ≥ γN,i, H0 is not real, accept H1

(8)

i = 1, 2, . . . ,m, m is the dimension of the measurement vector, rN,i is
the i-th normalized residual value, and γN,i is the i-th normalized residual
threshold value, which takes 2.81 (false detection probability Pε = 0.005).
When the standardized residual value of the detection quantity measurement
is greater than the threshold value.

When the system passes the residual detection, it is considered that there
are no gross errors or random false data with errors greater than ±3σ in the
current measurement. For perfect false data, the residual remains unchanged
before and after the attack, and cannot be identified through residual detection
methods. However, when an attack occurs, the voltage amplitude and phase
angle values will deviate from the normal data before the attack. Therefore,
a fully connected neural network can be used as a discriminator to determine
whether each node in the power system has been subjected to perfect false
data injection attacks.

Fully connected neural network is the most common model of neural
network, which means that the neurons between any two adjacent layers
are connected. Fully connected neural network has more connections and
weights, and have strong nonlinear fitting capabilities.. Compared with other
machine learning algorithms, it cans effectively extract false data features.
The fully connected layer neural network model is shown in Figure 5.

The model are characterized by their layer-to-layer transfer functions:

output t = activation(W · input t+ b) (9)

input t is the input layer, output t is the output layer, activation is the
activation function, W is the weight, and b is the offset.

It is judged whether the removal of bad data will affect the observability
of the system. If it does not affect, the bad data will be deleted, and vice versa,
the bad data will be predicted and corrected by the multivariable LSTM(Long
Short-Term Memory) time series prediction model.
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Figure 5 Fully connected neural network model.

In statistics, a group of random variables {X1, X2, . . . , Xt}t ∈ T com-
posed of time order are usually called time series. For time series, there are
the following important statistical characteristic quantities:

(1) Mean function:

µt = E(Xt) =

∫ +∞

−∞
xft(x)dx, t ∈ T (10)

(2) Variance function:

Var(xt) = E[Xt − E(xt)]
2, t ∈ T (11)

(3) If there is a mean E(Xt) = µt for each state of the sequence, then the
autocovariance r(t, k) would be:

r(t, k) = Cov(Xt, Xk) t, k ∈ T (12)

In the formula (12), Cov(Xt, Xk) = E(Xt − µt)(Xk − µk).
(4) Autocorrelation coefficient:

If the variance
√
Var(Xt)Var(Xk) is used for normalization, then

the autocorrelation can be converted to an autocorrelation coefficient
ρ(t, k):

ρ(t, k) = Corr(Xt, Xk) =
Cov(Xt, Xk)√
Var(Xt)Var(Xk)

t, k ∈ T (13)
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Figure 6 SimpleRNN layer.

The specific formulas are as follows:

RMSE =

√√√√ 1

n

n∑
i=0

(yt − yp)2 (14)

MSE =
1

n

n∑
i=0

|yt − yp| (15)

MAPE =
1

n

n∑
i=0

∣∣∣∣yt − yp
yt

∣∣∣∣× 100% (16)

In the formulas (14)–(16), yt represents the true value, yp represents the
predicted value, and n represents the number of variables predicted.

LSTM is evolved from Recurrent Neural Network (RNN). RNN is a basic
deep learning algorithm used to deal with sequence problems. It handles the
sequence by iterating through all sequence elements and saving a state state t
that contains information about the sequence 0 ∼ t that has been viewed,
that is, all information about the past. The Simple Recurrent Neural Network
Layer (Simple RNN) model is shown in Figure 6.

The SimpleRNN layer is characterized by its time step function:

output t = activation(W · input t+ U · state t+ b) (17)

In the formula (17), activation is the activation function, W and U are
the weight, and b is offset.

The long-short memory algorithm in the LSTM layer was developed by
Hochreiter and Schmidhuber, which solves the problem of information loss
in the SimpleRNN layer due to the disappearance of gradients. The LSTM
layer is an improvement of the SimpleRNN layer. It adds an information
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Figure 7 LSTM layer.

transmission belt to transmit the information in the sequence to a later time
step, and saves the information in real time for later use, so as to prevent the
loss of earlier signals during processing. The LSTM layer model is shown in
Figure 7.

The output function for the LSTM layer is:

output t = activation(W · input t+ U · state t+ V · c t+ b) (18)

In the formula (18), c t is information carrying across time steps,
activation is the activation function, W , U and V are weights, and b is
an offset. Its update method involves three different transformations, the
transformation form is the same as the SimpleRNN unit, and the update
method is as follows:

c t+ 1 = x t× y t+ c t× z t

x t = activation(Ux · state t+Wx · input t+ bx)

y t = activation(Uy · state t+Wy · input t+ by)

z t = activation(Uz · state t+Wz · input t+ bz)

(19)

In the formula (19), Ux, Uy, Uz , Wx, Wy and Wz are the weight, bx, by
and bz are the offset. c t and z t are multiplied to forget irrelevant information
in the information transfer belt, and x t and y t are multiplied to update
information in the information transfer belt.

The input variable selection of the multivariable LSTM time series pre-
diction model The quantitative measurements related to tampered data are
shown in Figure 8. The relevant input data for Node 2 are V2, δ2, P1, Q1,
P2, Q2, P3, Q3, P2−1, Q2−1, P2−3 and Q2−3. When the voltage amplitude or
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Figure 8 Node 2 related input data.

phase angle of Node 2 deviates from the normal value, Node 2 is attacked by
perfect false data, and the tampered data is corrected by outputting data.

4 Experimental Study

4.1 Experimental Methods

The experimental simulation uses Matlab software package Matpower7.0,
all power flow calculations are AC. The test is run under IEEE39-bus and
IEEE118-bus systems. The state estimation is run in AC mode with a max-
imum of 100 iterations and a weighted norm tolerance of 1 * 10−8 for the
measurement residuals, and the state estimation is checked for bad data using
the chi-square test with a tolerance of 6.25.

The processor of this system is i9-9900KS, the system running memory
is 32GB, the hard disk memory is 1TB, and the graphics card model is GTX
1060.

The false data attack is divided into two different scenarios: in scenario 1,
when the physical protection of the meter is different, the attacker can only
access some specific meters, and the number of destroyed meters is not
limited. Based on the above scenario description, attackers cannot attack the
control center and convergence point, but can only attack ordinary measuring
instruments. According to the coupling model of power CPS and the struc-
tural characteristics of the actual power system, the control center is a node
with high network degree. In scenario 2, illegal personnel have the ability
to destroy any protected and unprotected meters, but the number of meters
damaged is limited. It assumes that the number of broken meters is limited,
and the attacker has at most k meters to attack.

4.2 Results

Figure 9 shows the node survival rate of different ways of false data attack
systems. The experimental results show that any kind of false data attack
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Figure 9 Survival rate of system nodes after attack.

Figure 10 Comparison of system load loss rate under random number coupling.

will make the system more fragile, and the survival rate of the system
nodes will continue to decline with the increase of the number of attacking
nodes. Among them, compared with the other three attack methods, the node
survival rate of the system decreases relatively slowly in the random attack
method. On the contrary, high-criticality attacks make the survival rate of
system nodes decline rapidly. When the number of attacking nodes is close to
60, the survival rate of the system drops to 0. To sum up, power CPS is more
vulnerable to high-criticality attacks.

Figure 10 shows the comparison of the system load loss rate under
random number coupling. Under the degree-betweenness coupling mode,
the average load loss rate curves under different attack modes are shown in
Figure 11.

In system simulation experiments based on IEEE39-bus and IEEE118-
bus standards, the attacker injects false data into the measurement data
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Figure 11 Comparison of system load loss rate under degree-betweenness coupling.

Figure 12 Power values before and after IEEE39-bus attack.

through the SCADA system or smart meter, such as voltage amplitude,
branch active power, reactive power, etc. In order to study the influence of
measurements on the limit state of the state estimate, the minimum value
that leads to the failure of the state estimate convergence is calculated by
continuously injecting false measurements of voltage and power. Taking the
active and reactive power at the head of the false data attack branch as an
example, we observe the false data attack injection situation, as shown in
Figures 12 and 13.

The IEEE 39-bus has 46 branches, and its branch numbers are consistent
with those of the standard system. The active power of the branch before
the false data attack is −106.124 MW, the reactive power is −16.799 MW,
and the active power after the attack is −72.341 MW, and the reactive



1348 Jiankun Zhao et al.

Figure 13 Power values before and after IEEE118-bus attack.

power is −10.79 MW. When the power values before and after injection
are equal, it means that false data has not been injected into the branch, and
vice versa, if the power values before and after injection are not equal, it
means that false data has been injected into the branch. IEEE118-bus has
186 branches, the original average active power is 1.64 MW, the average
active power after injection is 5.70 MW, the original average reactive power
is 0.245 MW, and the average reactive power after injection is 0.895 MW.
The measurement value injected with false data may lead to non-convergence
of state estimation, and the voltage and power are the main factors of
non-convergence.

Keras library is used to build the neural network model in Python 3.7. The
fully connected neural network adopted has four intermediate layers, each
layer has 32 neurons. Among the 30,000 sets of normal historical data, we
randomly select 3,000 sets to add attack vectors, verification data, and test
data, of which training data accounts for 17/30, verification data accounts
for 1/10, and test data accounts for 1/3. Then, we use statistical metrics to
evaluate the performance of fully connected neural networks. Among them,
true positive (TP) means the number of data detected with positive actual
values and positive predictions, and false positive (FP) means the number
of data with negative actual values and positive predictions. True negatives
(TN) means the number of data with negative predictions and negative actual
values, and false negatives (FN) means the number of data with negative
predictions and positive actual values. The simulation results are shown in
Table 1.
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Table 1 Statistical table of simulation data of fully connected neural network
Statistical Parameter Forecast Result
TP 9118
FP 0
TN 775
FN 6
Accuracy 98.90%
Sensitivity 100%
Specific validity 97.71%
Accuracy 98.90%

Figure 14 Change of loss with epoch when the prediction model adopts the AdaDelta
algorithm.

The loss function (loss) of the prediction model is the mean mean square
error. Based on a comprehensive analysis of the size of the dataset, the
complexity and performance of the model, as well as the training objectives,
and in conjunction with existing research literature, the epoch setting for this
article is ultimately determined to be 25.

Figure 14 is a change of loss with epoch adopts the AdaDelta algorithm,
and Figure 15 is an actual and predicted curve of the active power load of the
node.

Then, we use the same method to process the data of the prediction and
evaluation indicators of the other three optimization algorithms, count all the
data, and summarize the respective prediction and evaluation indicators when
the prediction model adopts the above four optimization algorithms as shown
in Table 2:
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Figure 15 Actual and predicted load curves when the prediction model adopts the AdaDelta
algorithm.

Table 2 Comparison of prediction and evaluation indicators
Optimization Algorithm RMSE MAE MAPE (%)
AdaGrad 0.028058 0.021297 0.004948
RMSProp 0.029517 0.022657 0.005273
Adam 0.028345 0.021572 0.005014
AdaDelta 0.028636 0.021825 0.005076

4.3 Analysis and Discussion

The power system encompasses the production and consumption of elec-
trical energy, consisting of power stations, transmission and distribution
lines, power supply and distribution stations, and electricity consumption. To
ensure that users can obtain safe, stable, and high-quality electricity in real
time, it is necessary to monitor and adjust the production and transmission
of electricity in real time. With the continuous expansion of the power grid
scale and the increasing penetration rate of new energy, the power grid is
vulnerable to adverse data interference and false data attacks, resulting in
reduced security. Hackers can use false data injection attacks to attack the
power system, causing it to collapse or gaining economic benefits, seriously
endangering the safe operation of the power system.

This paper focuses on the study of false data injection attacks (FDIAs),
analyzes the principle of FDIAs and their impact on power systems, and
studies the methods of suppressing and detecting FDIAs based on distributed
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state estimation and neural networks. In addition, this paper establishes a
specific simulation model. Simulation results show that the proposed method
can effectively identify FDIAs and correct bad data, thus further reducing the
impact of FDIAs on power system state estimation.

As shown in Figure 9, when the information network of the power
CPS is attacked, the information network nodes under the fault cause the
corresponding power network nodes to be unobservable. This unobservability
makes the system show high sensitivity. For example, the dispatcher’s control
of the power flow is inaccurate, which makes the information nodes continue
to fail and the system fault area continue to increase. The information layer
and the grid layer of power CPS have different coupling modes, and the
impact of different attack strategies on the observability and controllability
of the power layer may also be different under different coupling modes.

As shown in Figures 10 and 11, under the two coupling modes, the power
CPS is attacked by different false data. The experimental results show that
with the increase of the number of attacked information nodes, the average
load loss rate of the power CPS shows an increasing trend. Among them,
compared with other attacks, the load loss rate of the high-criticality attack
method increases faster, that is, the system is more fragile under the high-
criticality attack method.

Figures 12 and 13 show the active and reactive power when an attacker
injects false data into the front and rear branch heads of IEEE39-bus and
IEEE118-bus by solving a semidefinite programming (SDP)-based convexity
framework. As can be seen from Table 1, the fully connected neural network
can effectively detect whether the system node is attacked by perfect false
data.

In Figure 14, when the AdaDelta optimization algorithm is used, loss can
be maintained at a small level in both the training process and the testing
process. At the same time, it can be seen from Figure 15 that within 500
sampling periods.

It can be seen from Table 2 that the prediction effects of the four
optimization algorithms are relatively accurate and the errors are relatively
small, among which the AdaGrad algorithm has the best effect. Through the
comparison of the real value and the predicted value of the four different opti-
mization algorithms for 500 sampling periods, it can be seen that compared
with the random tampering of the quantity measurement by the perfect false
data injection attack, the predicted value of the LSTM time series prediction
model used in this paper is similar to the real value, which can well correct
the tampered data.
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From the above analysis, we can see that the fast early warning method of
false data injection attack in CPS of power communication network proposed
in this paper has good effect.

On the basis of traditional bad data detection, an improved method
for identifying and correcting false data injection attacks based on neural
networks has been designed. Firstly, the residual vector is obtained based
on the state estimation model, and the residual detection method is used to
determine whether each measurement has been subjected to false data attacks
or interference, resulting in bad data; Secondly, by using fully connected
neural networks to detect false data attacks, false data attacks that cannot
be detected by residual detection can be detected. If a node is judged to have
suffered from false data attacks, it is considered that the measurements related
to that node are unreliable and are all bad data; Then, determine whether
the removal of bad data affects the observability of the system. If it does
not affect, delete the bad data. Otherwise, use a multivariate LSTM time
series prediction model to predict and correct the bad data; Finally, a specific
simulation model was established, and numerical simulations showed that
the proposed method can effectively identify false data injection attacks and
correct bad data, further reducing the impact of false data injection attacks on
power system state estimation.

5 Conclusion

This paper focuses on the study of FDIAs in power systems, and analyzes the
principle of FDIAs and their impact on power systems. Moreover, this paper
studies the methods of suppressing and detecting FDIAs based on distributed
state estimation and neural network, and designs a method of identifying and
correcting FDIAs based on neural network. In addition, this paper detects
false data attacks through fully connected neural network detection, to detect
false data attacks that cannot be detected by residual detection, and estab-
lishes a specific simulation model. Simulation results show that the proposed
method can effectively identify FDIAs and correct bad data, thus further
reducing the impact of FDIAs on power system state estimation.

At this stage, the study on FDIAs is based on a certain time section. In the
future, attackers can control the measurement unit to carry out uninterrupted
and continuous FDIAs, so as to slow down the computing efficiency of the
defense algorithm, and even make the defense algorithm invalid. Therefore,
how to build a defense system against continuous FDIAs needs further
research.
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This study aims to investigate the vulnerability of power CPS under the
assumption that attackers have access to all configuration information of the
system. However, attackers may not have a complete understanding of the
system configuration and network structure of power CPS. Further research
on the vulnerability and response strategies of power CPS under false data
attacks can be conducted under the assumption of incompleteness. Secondly,
this article mainly studies false data attacks under the DC power flow model,
the time required to establish attack vectors, and the number of damaged
instruments. Further research is needed to establish attack vectors for false
data attacks under the AC power flow model
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