Practical Attacks on Security and Privacy
Through a Low-Cost Android Device

Greig Paul and James Irvine

University of Strathclyde Department of Electronic & Electrical Engineering
Glasgow, United Kingdom
Email: {greig.paul; j.m.irvine} @strath.ac.uk

Received 3 November 2015; Accepted 1 December 2015;
Publication 22 January 2016

Abstract

As adoption of smartphones and tablets increases, and budget device offerings
become increasingly affordable, the vision of bringing universal connectivity
to the developing world is becoming more and more viable. Nonetheless, it is
important to consider the diverse use-cases for smartphones and tablets today,
particularly where a user may only have access to a single connected device.
In many regions, banking and other important services can be accessed from
mobile connected devices, expanding the reach of these services.

This paper highlights the practical risks of one such low-cost comput-
ing device, highlighting the ease with which a very recent (manufactured
September 2015) Android-based internet tablet, designed for the developing
world, can be completely compromised by an attacker. The weaknesses
identified allow an attacker to gain full root access and persistent malicious
code execution capabilities. We consider the implications of these attacks,
and the ease with which these attacks may be carried out, and highlight
the difficulty in effectively mitigating these weaknesses as a user, even on
a recently manufactured device.

Keywords: Security, Privacy, Android, Exploit, Physical Access.

Journal of Cyber Security, Vol. 4, 33-52.
doi: 10.13052/jcsm2245-1439.422
(© 2016 River Publishers. All rights reserved.

34 G Paul and J. Irvine

1 Introduction

The smartphone and tablet markets in developing regions are predicted to see
significant growth in the coming years. Time magazine reported on the current
low market penetration of smartphones in India, and the likelihood for rapid
growth in sales of lower price-point handsets [1]. Cisco’s Visual Networking
Index predicts that by 2019, mobile data traffic usage in India will grow 13-fold
from 2014, and that 51% of devices will be smart devices (i.e. smartphones
and tablets) rather than feature-phones [2].

In Africa, there has been a widely documented rise in the use of mobile
phones by individuals, as both a means of communication, as well as a means
of access to services from governments and banks [3] [4, pp. 80-90]. The rise
of mobile banking in Africa is also especially significant, as it has reached
significant market penetration and day-to-day usage, with mobile payments
in Africa exceeding those from both Europe and North America [5, 6].

There is therefore a motivation for technology-based attacks against users
in these regions, leading towards crimes such as theft. This paper aims to
explore some of the risks posed by consumer electronic devices targeted
specifically towards developing markets. We highlight the risks posed to
users as a result of some of the security weaknesses in these devices, and
consider the challenges of providing secure computing environments in these
situations.

Conventionally in the study of security, attacks involving compromise of
a local device are generally neglected, on account of the adage that physical
access to a device grants the attacker control over the device. Despite this,
the threat model for consumer hardware is rapidly evolving, with Secure Boot
in UEFI on desktop and laptop computers able to protect against malicious
modifications to the computer’s operating system during offline attack [7].
For this reason, we consider physical attacks from non-invasive attacks (i.e.
not requiring physical disassembly of the product) to be highly relevant and
significant to users of these devices, and shall illustrate the significance of
these attacks in Section 4.

2 Overview of Android Security Model

The Android operating system is derived from an open source project, referred
to as the Android Open Source Project (AOSP) [8]. Android is a customised
userland, built on top of the Linux kernel, providing APIs for sandboxed
applications to run, and access hardware in a standardised manner, irrespective

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 35

of the manufacturer of the device. This means that many devices run the
Android operating system, from different manufacturers, and application
software may run on any of these, using the Android platform’s hardware
abstraction to simplify the development of software.

Android devices, in contrast to more general purpose Linux-based com-
puters, are designed around a security model whereby each user application
runs within a separate Unix user account (UID). By controlling access to
protected resources through a combination of a permissions layer provided
by the Android APIs, and regular filesystem permissions, applications are
sandboxed from each other, and are not normally able to access data from
other applications.

This isolation offers a different security model from the desktop. The
Android model assumes that an application may safely store data privately
within its own dedicated area, protected by the filesystem access control
permissions. This prevents other applications, or indeed the user themselves,
from having direct access to these files.

Android devices, in common with most Linux-based embedded systems,
feature a number of separate partitions, in order to separately hold the kernel
image, ramdisk, and main operating system. There is additionally a partition
to hold the user’s data, which is able to be erased in the process of carrying
out a factory reset. Ordinarily, no partition other than the user data partition
should be mounted read-write — the operating system partition is, by default,
mounted read-only, and other partitions are not generally mounted, since they
do not contain regular filesystems.

In line with other Unix-based systems, root access is the highest level of
privilege available to code running under the kernel. Code executed as the root
user may load modules into the kernel, altering its behaviour, and generally
access any resource provided by the kernel, with full access permissions.

2.1 Main Requirements

The Android compatibility definition document, as published by Google [9],
is intended as a guide as to good practice when making a device which runs
the Android operating system. In order to receive approval for the shipping
of Google services on a device (which we note the device investigated
in this paper did not include), it is necessary for these guidelines to be
followed.

On Android devices, the root user account is not meant for normal use,
and there is not meant to be a means for the end user (or applications) to

36 G Paul and J. Irvine

access it [9]. This is because the root user is inherently able to access the
entire filesystem, thus bypassing the access controls of the Android security
model, and this would expose protected application data to any code running
as root.

Additionally, the Android compatibility definition now requires the use
of SELinux in enforcing mode [9]. SELinux is a mandatory access control
framework, designed to enforce system-wide security policies across a system.
It is capable of constraining applications which run as the root user, and
therefore offers some protection against the use of kernel root exploits and
other privilege escalation attacks, since such an exploit will not bypass
the constraints of the SELinux policies [10]. This naturally requires well-
designed and implemented policies, since SELinux merely enforces those
policies.

3 Overview of Platform Hardware

While the Android operating system is shipped on a wide variety of devices,
at a wide variety of price points, we focus exclusively on low-cost, con-
sumer hardware. The tablet in question we investigated was manufactured
in September 2015, according to the information label on the box, shipped
with Android 4.4 (KitKat), and retailed for 3499 Rupees in India [11]
(approximately 50 USD). It was distributed to attendees of meeting 35
of the Wireless World Research Forum, as a conference gift holding the
proceedings.

Android devices feature a bootloader, which initialises the hardware, loads
the kernel from storage into memory, and executes the kernel, having set the
kernel commandline parameters to specify where to locate the remainder of
the operating system.

In addition to loading the kernel, the bootloader is also used to control boot
modes, based upon the boot control block, which is implemented to allow
a device to boot into a minimal recovery environment. This environment
normally does not require the Android userland to be present to run, and
ships with its own kernel image and ramdisk, from which the main operating
system and kernel can be updated. This environment also carries out factory
reset operations, erasing the user data partition. The bootloader also typically
offers a means of reprogramming a device’s internal memory, to allow for the
recovery image to be upgraded, and to allow the device to be programmed as
part of the manufacturing process.

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 37

4 Vulnerability Identification

In this section, the process through which vulnerabilities were identified on
the device is discussed, as well as the capabilities of each exploit. These
vulnerabilities are reported in the order they were originally identified during
our research. Finally, following our exploration of these identified issues, we
carried out a security scan of the underlying Android operating system (since
our identified vulnerabilities mostly lie below the Android operating system),
and highlight the risks identified there.

4.1 Root ADB Access by Default

Initial exploration of the device indicated that ADB (Android Debugging
Bridge) was enabled by default, which is a property of engineering and userde-
bug builds (referred to as “eng” or “userdebug” builds) of Android. These
builds feature reduced security, compared with release firmware (referred
to as “user” builds). This was confirmed by carrying out a factory reset of
the device, and verifying that ADB remained enabled by default. The build
fingerprint was also checked using getprop ro.build.type,indicating the
build was a “userdebug” build.

One of the relevant security features disabled in non-release builds is ADB
host verification, which requires the user accept a public key presented by the
computer opening a connection with the ADB daemon on the phone. This
meant that it was possible for an ADB session to be established without either
a prompt being shown to the user, or confirmation being given by the user.

The ADB connection available over USB offered a standard Unix shell on
the device, from which commands may be executed by any device connected
to the USB port. One of the binaries available on the device was the su binary,
designed to escalate the current user to root. On this device, it was possible to
carry out an escalation from the ADB shell user, to the root user, without any
prompt of input. This escalation to root access was confirmed using the Unix
id command, indicating the shell was running as UID 0, that of the root user.

It was not possible for user applications to carry out a root escalation using
this approach directly, since root access was only granted to the shell user.
Nonetheless, this poses a risk for users charging or otherwise plugging their
device into an untrusted charger, or where others may have even momentary
physical access to the device. In many developing countries, where access to
grid-supplied electricity is not practical, users charge devices in shops or public
charging stations [12], putting them at risk of a rogue charger connecting over
ADB and gaining root access to the device.

38 G Paul and J. Irvine

4.2 SELinux Bypass

Although root access was obtained from the ADB shell, this access was still
potentially subject to SELinux policy constraints. While no denials were
encountered in the process of carrying out this work, it was found to be possible
to easily disable SELinux. SELinux was firstly ascertained to be enabled
through the use of the getenforce command, which indicated the policies
were in “Enforcing” mode (rather than merely in permissive fault logging
mode). By running the command setenforce O from the rooted shell, it was
possible to disable the SELinux access controls, as verified by the “Permissive”
response from the getenforce command.

4.3 Bootloader Root Shell

Access to the device bootloader was gained by holding down both the volume
down, and power buttons, to turn on the device. In this mode, the device
presented a menu of options, selectable using the volume keys and power
button. In bootloader mode, an ADB device was again presented over the
USB interface, once again without ADB authentication. Upon opening the
shell, it was possible to escalate to root access using the su command. The
presence of this vulnerability in the bootloader means that even in the event
of the regular firmware being patched or upgraded, it would also be necessary
to make significant modifications to the lower level boot stack, which may or
may not be practical to carry out, given the risks of carrying out an upgrade
of device bootloaders in-the-field.

While accessing this shell, it was observed that the user data and operating
system filesystems were both mounted in read-write mode. This meant that it
was possible to easily make persistent modifications to the operating system
image, or access user data, directly from the bootloader shell.

We also observed that the bootloader installed on the device to the
partition mmcblkObootO did not feature a cryptographic signature at its
footer, indicating it is likely that this bootloader is unsigned, and therefore
potentially vulnerable to tampering or modification by a suitably determined
adversary.

4.4 Recovery ZIP Signing Keys

The recovery environment, used to install operating system updates, has the
capability for a ZIP file containing new firmware to be loaded into memory
and installed. This ZIP file should be signed with a private key corresponding

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 39

to a certificate stored on the device itself, in order to verify that the firmware
being installed has not been modified or corrupted in the process of reaching
the device.

This signature check relies upon the confidentiality of the firmware zip
signing keys — if a third party is able to generate signed firmware images,
they may replace any component of the device operating system, including
installed applications or even the device kernel, simply through creation of
a custom firmware ZIP file. In the case of this device, the recovery image
accepted standard ZIP signing keys, which are publicly available within
the AOSP source code repositories [13]. As a proof of concept, a ZIP was
created to display a message to the screen, and add a new file to the device
filesystem. It was then signed using the AOSP testkey, and successfully
installed onto the device, using the “Install from ADB” feature of the recovery
environment.

The file input.zip was signed using the command java -jar
signapk. jar -w testkey.x509.pem testkey.pk8 input.zip output
-signed.zip, and installed using the command adb sideload output-
signed.zip

The execution of the ZIP file was confirmed through the output of the
command to display a message to the screen, and the new file added to the
filesystem being observed following a reboot. This illustrated it was possible
to make arbitrary modifications to the device operating system, such as adding
new files, or modifying existing files, which would not be reverted following
a device factory reset.

4.5 Application Package Signing Keys

Android applications (APKs) are signed in a similar manner to ZIP firmware
upgrades. To prevent application replacement attacks, where a user is encour-
aged or coerced into installing a false update to an application, the Android
platform will not allow an update to an application to be installed if its
signing key does not match the existing signing key for the application. This
ensures that the party signing the APK holds the same key as originally used
by the developer. Likewise, applications are protected against downgrading,
by ensuring that the version code has been incremented since the previous
update, which could be used to install an old version of an application with
vulnerabilities, for exploitation.

The signing keys used for the platform applications (which have privileged
access to system APIs) were found to, again, be the default AOSP signing keys,

40 G Paul and J. Irvine

which are publicly available. It was therefore possible to replace core system
applications on the device, including for example, the dialer, settings interface,
keyboard, and overall firmware user interface (referred to as SystemUI).

A modified version of these applications could then be used to upgrade
an existing version of the application, without the user being made aware
of any extra risks. This is of particular significance since platform level
applications have full access to the entire device and permissions. Having
a publicly available platform key significantly violates the Android security
model, which assumes the platform key is not available to attackers [14].

4.6 Android OS Security Status

To conclude our analysis of the device, we carried out an analysis of the
device’s resistance to a variety of standard, well-known attacks and exploits
against the Android operating system, using the Bluebox’s “Trustable” security
scanner [15]. The results of this highlighted that the device was protected
against only 3 of the 12 vulnerabilities scanned for. This scanner was selected,
asitis capable of detecting all of the recent high-profile security vulnerabilities
of the Android operating system, including “StageFright”, the multiple vari-
ants of the “MasterKey” attack, and a number of kernel root exploits, including
the futex attack. Figure 1 highlights the results of this scan. We also note that
the device was vulnerable to the CVE-2015-3636 local privilege escalation
attack via kernel ping sockets. An open source implementation of this exploit
is available [16], and was used to verify that the device was vulnerable. Any
application capable of executing a binary on this device (or indeed a user with
access to a shell) was able to gain local root access, as shown in Figure 2,
where a shell running as the root user was obtained.

Of these vulnerabilities, FakelD, Futex, ObjectInputStream and Pending-
Intent were reported in 2014, yet remained un-patched in this device, with a
manufacture date of September 2015. This was due, in part, to some of these
fixes being withheld until the release of future major versions of Android,
rather than immediate security patches being released and backported to older
software versions. While Google has begun to issue security backport patches
and notifications [17], this is a very recent change, and requires the vendor
to apply these patches. In the case of this device, the presence of serious
weaknesses like the futex root exploit, suggest this is not the case, and that
patches are not being applied prior to the launch of devices.

Indeed, by checking the build date of the software on the device from
the command getprop ro.build.date, the software was found to have

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 41

Vulnerability analysis

¥ Android Masterkey(s): protected

X Android FakelD: vulnerable

¥ Heartbleed (OS only): protected

X Linux futex (Towelroot): vulnerable

X ObjectinputStream Serialization: vulnerable
X Settings Pendinglntent (BroadAnywhere): vulnerable
X GraphicsBuffer Overflow: vulnerable

¥ Android Installer Hijacking: protected

X Stagefright: vulnerable

X Conscrypt Serialization: vulnerable

X SIM Command Interception: vulnerable

X SMS Notification Bypass: vulnerable

Figure 1 Result of Bluebox security scan for Android vulnerabilties.

@1c1913padv3wsl/06:
Creating target socket
9 + 39205 sockets created
2097152 bytes allocated
4194304 bytes allocated
4194304 bytes allocated
Done!

shell@lc1913padv3wsl706:/data/local/tmp # id
uid=0@(root) gid=0(root) groups=1003(graphics),1004(inp
ut),1007(log), 1009(mount),1011(adb), 1015(sdcard_rw), 10
28(sdcard_r),3001(net_bt_admin), 3002(net_bt),3003(1inet
),3006(net_bw_stats) context=u:r:shell:so@
shell@lc1913padv3ws1706:/data/local/tmp # ||

Figure 2 Successful execution of local root exploit CVE-2015-3036.

been built in April 2015, several months before the product’s release date. The
software therefore appeared to not have been rebuilt by the manufacturer in the
5 months prior to launch, thus explaining the lack of many security patches.
Since the device in question had no over-the-air update capabilities, we suggest
adevice shipping with 5 months’ of disclosed vulnerabilities present puts users
at risk from the moment the device is removed from its box.

4.7 Summary of Attack Vectors

A number of vulnerabilities have been identified on this device. All of these
were in the default configuration, in an out-of-box setup as experienced by
users. They are listed below in summary form.

42 G Paul and J. Irvine

e Privilege escalation to root possible from ADB shell on device

e ADB shell accessible without authentication, enabled by default

e SELinux can be disabled via a root shell

e ADB shell allowing privilege escalation to root available in bootloader

e Recovery image uses well-known signing keys intended only for testing

e Platform applications are signed using well-known signing keys intended
only for testing

e Multiple previously disclosed vulnerabilities, including root exploits,
unpatched on released device.

5 Potential Attacks

This section shall consider some of the potential attacks which could be carried
out against users, as a result of the attack vectors described previously. These
attacks should be considered in the context of a user in the developing world,
who may be using this device for a variety of tasks, including banking or
accessing government services, as discussed previously.

Previous works have examined user attitudes towards the perceived
sensitivity and value of personal data on smart-phones, and what concerned
them most about potential actions of software. A survey of these actions
highlighted that, asides from permanently disabling or breaking a handset,
the top ten concerns from users related to actions which would cost the user
money (such as making premium rate calls or sending premium rate SMS
messages), or were destructive (such as deleting user data like contacts) [18].
Other concerns raised included the public sharing of data which users felt was
confidential, such as their text messages, emails, or photographs. Users were
also concerned about the sharing of their data with advertisers, or the abuse
of their contacts for spamming, and the risk of theft of passwords or other
credentials such as credit card details.

In a survey of perceived value and sensitivity of their data, the sensitivity
of location data and passwords was highlighted, as well as that of other types
of data, such as photos and videos, or of messages [19]. It is therefore clear
that users are concerned both about the theft of their data, and of the risk of
the loss of such data, and the consequence of its loss.

5.1 Lockscreen Bypass

The first attack we identified allows an unauthenticated attacker to bypass the
device’s lockscreen, if the user made use of a PIN, password or pattern lock

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 43

for security. Since the lockscreen on Android is designed to fail insecure, in
the event of corrupted (or missing) settings, simply removing the pattern or
PIN data is sufficient to completely bypass the lockscreen. By removing the
file /data/system/password.key, or /data/system/gesture.key, for
PIN/password or pattern locks respectively, the lockscreen security was
completely removed. Alternatively, the cryptographic hash of the password
may be obtained from this file, and brute-forced, as described in [20,
p. 268-275], in order to establish the plaintext password, PIN, or pattern
lock, as set by the user.

This attack is possible, since the device exposes an unauthenticated ADB
shell by default, with privilege escalation to root available through use of the
su command. In the event that ADB is disabled on the device, it may also be
carried out directly from the root ADB shell available through the bootloader.
Finally, a firmware update ZIP file could be crafted (and signed) to remove
this file via recovery, thus removing lockscreen security, and providing the
user with full access to the device as though a password had been entered.

The ability to bypass the lockscreen poses a clear privacy risk to users, as
it serves as an authentication bypass to carry out operations such as accessing
user data, sending messages, and similar. It also allows access to messages
and potentially sensitive files, including (for example), one-time passwords
sent over SMS to the device. The ability to bypass the lockscreen therefore
aids an attacker in carrying out interactive exploration of the device.

5.2 Theft of User Data

With ADB access available to the device by default, the adb pull command
may be used to extract files from the shared storage area of the device, or the
SD card. These areas of storage are not protected by per-application filesystem
permissions, and are designed for the storage of data which a user may wish to
transfer to a computer. The adb pull command does not require root access
to succeed, and may be carried out either from within the regular operating
system, or from the bootloader. In addition, due to the lack of authentication on
ADB connection attempts, it is also possible to use ADB from the lockscreen
to access data.

This attack makes it possible for a malicious attacker to extract all of a
user’s photographs, or documents, from the device. By expanding this attack
to utilise root permissions (through privilege escalation via the su command),
it is possible to further extend it to result in the theft of private per-application
user data. This may include passwords for user accounts, as well as user

44 G Paul and J. Irvine

messages, photographs, cryptographic keys, and other sensitive data which
should only be accessible to a single application, such as tokens. If this were
carried out against a banking app, there is potential for sensitive user data to
be obtained, depending upon the design of the application in question.

It was also possible to gain a full image of the device’s data partition, using
root access to recursively select all files found on the user data partition, and
store them in a single compressed archive, which could easily be extracted
from the device over ADB.

5.3 Full Access to Device Partitions

With full read-write access to the device, including operating system partitions,
it was possible to make modifications to the installed operating system.
This was achieved from within the operating system itself, by re-mounting
the system partition as root using the command mount -o remount,
rw /system. It was also possible to carry this out from the bootloader shell, as
well as through the installation of a custom ZIP from the recovery environment.
These changes are persistent through a factory reset, increasing the severity
of this attack, since rectifying the modifications will be beyond the abilities
of most users, if they were able to detect the modifications in the first place.

5.4 Installation of a Keylogger

A malicious attacker may wish to capture user credentials, in order to gain
access to user accounts, or financial credentials such as card details. Alterna-
tively, they may simply wish to know what a user is writing on their device,
especially if it is used to carry out sensitive tasks. It was possible to install
a keylogger through a variety of methods on this device, without the user
being aware. Firstly, from a rooted shell, it was possible to replace the default
keyboard application on the system partition (this change will persist between
installs). It was also possible to remotely socially engineer a user to install
an updated version of the keyboard application, using the publicly known
signing keys to create an apparent update to the keyboard. This update could
be distributed on the internet, or indeed installed through the USB interface
of the device while charging. An updated version of an application could be
installed over ADB using the command adb install -r filename.apk,
or directly from the device filesystem by downloading it to the shared storage,
and selecting the application from the file manager.

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 45

5.5 Deletion of Data

With root access to the device, it was possible to gain full access to the
filesystems, and to erase all user data. By carrying out a backup prior to
this process, and potentially encrypting the backup, it would be possible for a
malicious party to ransom a user’s data, requiring them to make a payment to
gain access to it again. As one of the main concerns of users was the deletion of
their data, this may cause significant inconvenience to users [18]. The ability
to scale this attack to many devices, through the use of communal charging
areas [12], would also make the ability to spread malicious software like this
particularly harmful.

5.6 SMS Interception

With root access to the device, it is possible for the device operating system
to be modified, such that SMS messages may be intercepted or redirected.
This could take place without the user being notified or aware, and could
be used to relay seemingly secure one-time passwords, which are commonly
sent via SMS. This modification would be made in the messaging app or
system frameworks, and could be carried out either using root access from a
plugged-indevice, or by socially engineering a user to install arogue “updated”
version of the messaging app, using the publicly known signing keys to sign
the application package.

5.7 Premium Rate Abuse

One of the main concerns identified in [18] was the risk that rogue software
could run up a bill by making premium rate calls or text messages. With
root-level access to Android devices, it is possible to modify the dialer to
make calls when the device is not in use, or to modify the messaging app
to silently (without a record kept in the sent items) subscribe the user to
premium rate SMS services, and send premium rate messages. While the
Android operating system contains software to warn the user before premium
rate SMS messages are sent, these warnings are easily removed or bypassed
on a rooted device, where the operating system may be modified without user
intervention or knowledge. A financially motivated attacker with the ability to
carry out this attack on many devices, such as by creating a fake mobile phone
charging station, could potentially compromise a large number of devices,
and make significant quantities of money by making use of premium rate
network services on behalf of unwitting users. To hinder discovery of such an

46 G Paul and J. Irvine

attack, the modification may be configured to only operate when the device is
charging, such that no abnormal power use would be noticed by a user.

5.8 Random Number Generation Compromise

Another attack which we found to be possible was the effective “short-
circuiting” of the kernel’s random number generation. This was made possible
through the root access exposed by the device. By renaming /dev/urandom,
and creating a new symbolic link towards /dev/zero using the command
In -s /dev/zero /dev/urandom, all random number generation using the
kernel APIs was compromised, after the depletion of the existing random pool
by running cat /dev/random. A long series of random numbers was gener-
ated, and found to return all-zeroes, as expected. The ability for an attacker to
do this allows for the compromise of security of encrypted communications,
since randomly generated keys would be entirely predictable. Additionally,
numbers expected to be random (such as nonces or initialisation vectors),
may be re-used and predictable, potentially compromising the security of the
protocol. In particular, for elliptic-curve based signature algorithms such as
ECDSA, re-use of a nonce causes a catastrophic failure resulting in the ability
for the signing key to be determined from 2 signatures using the same nonce
[21, p. 68-72]. There is therefore potential for significant harm, if malicious
software, or indeed a malicious attacker, were to abuse root access in order
to render ineffective random number generation on the device. This may also
expose a user to further attacks, since private components generated for Diffie-
Hellman key exchange (as seen in TLS), would be predictable and repeated,
potentially resulting in the ability for interception of HTTPS-based traffic. On
a device where sensitive tasks, such as mobile banking, were being carried
out, it would then be possible for a remote attacker with ability to observe
network traffic (such as over an insecure Wi-Fi network) to break an HTTPS
connection through knowledge of the compromised output of the random
number generator.

5.9 Physical Damage to Device

Finally, with root access, it would be possible for a malicious attacker to abuse
root access to render the device inoperable, and useless, effectively depriving
the user from their computing device. By using the Unix dd command, it
is possible to carry out raw read and write operations to block devices on
the device. By overwriting the kernel image and recovery image, the device

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 47

would be beyond the repair capabilities of most users, since there would be
no standard means through which to restore the firmware. As we noticed the
device bootloader was unsigned, it is likely that an attacker could overwrite
this with an empty partition, to permanently prevent the device from working.
While there may be no clear or strong motive to cause physical damage to
user devices, the ability to carry out this attack is a concern — potentially an
unscrupulous retailer could try to drive more sales of new devices by having
an attacker abuse this access to cause damage to devices. For a user reliant
upon their mobile device as their main means of accessing electronic services,
this would be potentially disruptive, and also cause them to lose data, reducing
their confidence and trust in the technology.

6 Potential Mitigations

While the fundamental vulnerabilities identified here cannot necessarily be
resolved easily by end-users, it is possible to identify some potential coun-
termeasures to take. Firstly, users should disable ADB on the device, from
the “Developer options” menu. This setting is ordinarily disabled by default,
but was enabled on the device due to an engineering build of firmware being
shipped on the finished device. Secondly, users should consider making use
of a USB cable with the data lines shorted together, to prevent the transfer of
data across the USB port when charging. Since the bootloader may be attacked
separately from the operating system, users should ensure the device is always
charged using this cable, and that the device is kept in sight at all times while
charging (to prevent the cable being swapped). While there is no easy way
to prevent abuse of the publicly-known signing keys used for the recovery
image and platform applications, vigilance against installing any third party
software, and avoiding the installation of any software would help to alleviate
this. This would be a considerable trade-off for users, however, to forego the
installation of software in order to avoid such attacks.

A technically confident user may attempt to remove the su binary from
the device by remounting the system as read-write, as discussed previously,
and using the command rm /system/xbin/su, although this will not protect
the device from other attacks such as the abuse of known recovery ZIP and
platform application signing keys, or indeed the use of the CVE-2015-3036
root exploit, as demonstrated in Section 4.6. This procedure is also somewhat
risky in that removing the wrong file may result in the device being unbootable.

On future devices, it would be beneficial for over-the-air firmware updates
to be possible as well — on this device, there was no facility inbuilt for

48 G Paul and J. Irvine

network-based updates that we could identify. Instead, there was a menu option
inviting the user to place a file named update.zip on the SD card, and select
a menu option to install it. In addition to the problem of the signing key
being known for these update files, making it easy for a malicious party to
distribute fake updates containing malicious software, the manufacturer is
unable to issue prompt and regular security updates directly to devices, to
address issues identified.

7 Conclusions

In this paper, we have highlighted some major security weaknesses in a recent,
low-cost Android device, intended for developing markets. We identified that
insufficient measures were in place to protect user data. We showed how a root
shell could be gained on the device, out of the box, through both the device
firmware and the bootloader. We also demonstrated the device shipped with
a kernel root vulnerability, and that this is exploitable by any locally running
software (such as an app). We also showed how persistent modifications to
the firmware could be made, which would persist through factory resets,
allowing for highly pervasive malicious software to be installed and target
user data. Furthermore, we highlighted the risks of the device using the default
firmware signing keys, and application signing keys, the private components
of which are publicly available. We demonstrated that SELinux mandatory
access control could easily be disabled by the root user.

The implications of vulnerabilities such as this are particularly significant
for users of devices in the developing world, often the recipients and buyers
of such low-cost devices as their main computing device. Merely plugging
this device into a public charging station would be sufficient for a malicious
party to gain full control over the device, extract all of a user’s personal
data, and install pervasive malicious software onto the device. This software
could act as a keylogger, recording passwords and financial information, or
could serve to silently gather sensitive data (such as two-factor authentication
SMS messages) and forward them to the attacker. Malicious software could
also erase all of a user’s data, and demand a ransom for its return, or
even simply destroy the device. We demonstrated these changes will persist
through a factory reset, and that they are not visible to the end user. As
the changes persist, it is not possible for a user to remove such malicious
changes without advanced technical knowledge, and a known-clean firmware
image to replace their device’s software with. While we have presented some
mitigations against these attacks, these require the user to be highly vigilant,

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 49

and would not allow them to make use of many of the functions of the device
(such as installing applications), in order to defend against some of these
attacks.

With the rise in adoption of smartphones and tablets in developing
markets, the security and privacy of their users should be considered a priority
when developing their software. Guidelines from the Android Compatibility
Definition documents should be followed to avoid known security weaknesses.
Finally, low level device firmware should be audited to ensure that bootloaders
and other interfaces do not expose low-level root access to a device by default,
which would undermine the security model of an otherwise-secure operating
system.

Acknowledgment
This work was funded by EPSRC Doctoral Training Grant EP/K503174/1.

References

[1] B. Bajarin. (December 2014) Why India will be the world’s sec-
ond biggest smartphone market. [Online]. Available: http://time.
com/3611863/india-smartphones/

[2] Cisco.(May 2015) VNI mobile forecast highlights, 2014-2019. [Online].
Available: http://www.cisco.com/assets/sol/sp/vni/forecast_highlights_
mobile/index.html

[3] S. Etzo and G. Collender, “The mobile phone revolution in Africa:
Rhetoric or realty?” African affairs, 2010.

[4] K. E. Skouby and W. Idongesit, The African Mobile Story. River
Publishers, 2014.

[5] D. Porteous, “The enabling environment for mobile banking in Africa,”
2006.

[6] B. Warner. (March 2013) What Africa can teach us about the future
of banking. [Online]. Available: http://www.bloomberg.com/bw/articles/
2013-03-06/what-africa-can-teach-us-about-the-future-of-banking

[7] G. Paul and J. Irvine, “Take control of your PC with UEFI secure boot,”
Linux J., vol. 2015, no. 257, Sep. 2015.

[8] Google. The android source code. [Online]. Available: http://source.
android.com/source/

50 G Paul and J. Irvine

[9] Google. (October 2015) Android 6.0 compatibility definition. [Online].
Available: http://source.android.com/compatibility/index.html

[10] S. Smalley and T. M. R2X, “The case for SE Android,” Linux Security
Summit, 2011.

[11] (October 2015) Datawind Ubislate 27CZ. [Online]. Available: http://
www.pricedealsindia.com/mobiles/Datawind-Ubislate-27CZ-price-in-
india-dpi4016.php#gotostore

[12] D. Wogan. (November 2013) Charging a mobile phone in rural Africa is
insanely expensive. [Online]. Available: http://blogs.scientificamerican.
com/plugged-in/charging-a-mobile-phone-in-rural-africa-is-insanely-ex
pensive/

[13] Google. (October 2008) AOSP platform signing keys. [Online]. Avail-
able: https://android.googlesource.com/platform/build/+/master/target/
product/security/

[14] D. Hackborn. (May 2011) Restrict system packages to protected stor-
age, android code review. [Online]. Available: https://android-review.
googlesource.com/#/c/22694/

[15] J. Forristal. (October 2014) Measuring mobile security & trust: Intro-
ducing trustable by bluebox. [Online]. Available: https://bluebox.com/
measuring-mobile-security-trust-introducing-trustable-by-bluebox/

[16] CVE-2015-3636. Commit used: 9868289bdb53c. [Online]. Available:
https://github.com/fi01/CVE-2015-3636

[17] Google. (August 2015) Android security updates. [Online]. Available:
https://groups.google.com/forum/#!forum/android-security-updates

[18] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but vibra-
tion ain’t one: a survey of smartphone users’ concerns,” in Proceedings
of the second ACM workshop on Security and privacy in smartphones
and mobile devices. ACM, 2012, pp. 33—-44.

[19] 1. Muslukhov, Y. Boshmaf, C. Kuo, J. Lester, and K. Beznosov, “Under-
standing users’ requirements for data protection in smartphones,” in
Data Engineering Workshops (ICDEW), 2012 IEEE 28th International
Conference on. IEEE, 2012, pp. 228-235.

[20] N. Elenkov, Android Security Internals: An In-Depth Guide to Androids
Security Architecture. San Francisco: No Starch Press, 2015.

[21] A. Kak, “Elliptic curve cryptography and digital rights man-
agement,” Lecture Notes on Computer and Network Security,
2015. [Online]. Available: https://engineering.purdue.edu/kak/compsec/
NewLectures/Lecture14.pdf

Practical Attacks on Security and Privacy Through a Low-Cost Android Device 51

Biographies

G. Paul received the B.Eng. (Hons.) degree in Electronic & Electrical Engi-
neering from the University of Strathclyde, Glasgow, UK, in 2013. He is
currently pursuing the Ph.D. degree in the Mobile Communications Group
at the University of Strathclyde. He is a Graduate Student Member of the
IEEE, and The Institution of Engineering and Technology, and the Chair of
the University of Strathclyde IEEE Student Branch. His research interests
include secure data storage and retrieval, practical considerations in the design
of secure systems, and the design of privacy-preserving service architectures.
Greig is the recipient of an EPSRC Doctoral Training Grant.

J. Irvine received the B.Eng. (Hons.) degree in Electronic and Electrical
Engineering and the Ph.D. degree in coding theory from the University of
Strathclyde, Glasgow, U.K., in 1989 and 1994, respectively. He is currently
a Reader with the Department of Electronic and Electrical Engineering,
University of Strathclyde, Glasgow, U.K., where he also leads the Mobile

52 G Paul and J. Irvine

Communications Group. He is a coauthor of seven patents and the books
Digital Mobile Communications and the TETRA System (Wiley, 1999) and
Data Communications and Networks: An Engineering Approach (Wiley,
2006). His research interests include mobile communication and security,
particularly resource allocation and coding theory. Dr. Irvine is an elected
member of the Board of Governors of the IEEE Vehicular Technology Society,
a member of the IET, a Fellow of the Higher Education Academy, and is a
Chartered Engineer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

