
Trading Off a Vulnerability: Does Software
Obfuscation Increase the Risk

of ROP Attacks

Harshvardhan P. Joshi, Aravindhan Dhanasekaran and Rudra Dutta

Department of Computer Science, North Carolina State University
Raleigh, NC 27695-8206, USA
Email: {hpjoshi; adhanas; rdutta}@ncsu.edu

Received 13 February 2016; Accepted 25 February 2016;
Publication October 2015

Abstract

Software obfuscation is a commonly used technique to protect software,
especially against reverse-engineering attacks. It is a form of security through
obscurity and is commonly used for intellectual property and Digital Rights
Management protection. However, this increase of security may come at the
expense of increased vulnerabilities in another direction, hitherto unsuspected.
In this paper, we propose and investigate the hypothesis that some of the most
popular obfuscation techniques, including changing the control flow graph
and substituting simpler instruction sequences with complex instructions, may
make the obfuscated binary more vulnerable to Return-Oriented Programming
(ROP) based attacks. ROP is a comparatively recent technique used to exploit
buffer-overflow vulnerabilities. We analyze the ROP gadgets present in both
obfuscated and un-obfuscated versions of well known binaries. We show that
the number of ROP gadgets in a binary significantly increase after certain
obfuscations, and it can potentially make ROP-based exploits easier.

1 Introduction

As computers, and the software to utilize them, perform increasingly pervasive
and critical functions in society, the security of software assumes ever-
increasing importance. The sophistication of malicious actors in developing

Journal of Cyber Security, Vol. 4, 305–324.
doi: 10.13052/jcsm2245-1439.444
c© 2016 River Publishers. All rights reserved.

306 H. P. Joshi et al.

techniques to exploit vulnerabilities also continues to increase, requiring
ongoing re-examination of existing software and security practices.

Software developers have two broad security concerns: (1) vulnerabilities
that lead to exploitation of the software (e.g. buffer overflow); (2) reverse
engineering (e.g. software or music piracy). The first concern (software
exploitation) is based on the threat model where the software runs on a benign
host, and the goal is to protect the software in order to protect the host system
and the information the software has access to.An example of this threat model
is an unprivileged attacker exploiting vulnerability in software to gain access
to restricted information. The second concern (reverse engineering) however,
is based on a very different threat model where the host or the privileged user
is malicious and tries to subvert the restrictions set by the software developers.
An example would be reverse engineering Digital Rights Management (DRM)
protection software for music or movies piracy.

Some developers use static analysis tools to prevent vulnerabilities such
as buffer overflow; however, many others rely on OS level protections such as
Address Space Layout Randomization (ASLR) and Write or Execute Only
(W⊕X) pages [1, 2]. Protection against reverse engineering is generally
achieved via software obfuscation tools and cannot leverage OS support.

Given the pervasiveness of W⊕X in operating systems, attackers have
begun using return-oriented programming. Return-Oriented Programming
(ROP) is a technique through which an attacker can introduce changes to
a program’s control flow using many short code snippets, called gadgets,
present in a program’s address space [3]. ROPallows attackers to exploit buffer
overflow vulnerabilities even when W⊕X protection is enabled. The goal of
the attacker using ROP is to exploit a vulnerability (buffer overflow) in client
software in order to compromise the host system. Thus, it is a technique used
by attackers in the software exploitation threat model.

Even the software that requires protection against reverse engineering
should be secure against the software exploitation threat model in order
to protect the benign hosts it may run on. However, some of the software
obfuscation techniques used in practice may impact the vulnerability of the
software to the software exploitation threat model. In other words, in their
overriding concern to protect their software against the user (who may be, but
is not typically, malicious), software developers may be unwittingly exposing
the integrity of the users platform to sundry attackers, who are most certainly
malicious. In this paper, we assert a potential impact of software obfuscation
on the program’s vulnerability to ROP based attacks, and do a preliminary
study comparing the impact of two different obfuscating tools.

Trading Off a Vulnerability: Does Software Obfuscation Increase 307

The rest of the paper is organized as follows. Section 2 gives some
background on ROP and code obfuscation techniques. Section 3 provides
a brief overview of our work, which outlines the design and implemen-
tation details, followed by evaluation methods and results in Section 4.
Section 5 includes related work and finally the concluding remarks are in
Section 6.

2 Context

2.1 Software Obfuscation Techniques

Software obfuscation is achieved by a sequence of transformations on the
code in order to obscure the purpose of the code while maintaining its original
behavior. There have been several obfuscating transformations identified in
literature [4, 5]. These include inserting opaque predicates which are difficult
to evaluate at compile time; inserting dead or irrelevant code; cloning, split-
ting or merging functions; control flow flattening; etc. More details about some
of these obfuscation techniques are discussed in Section 3.2.1.

2.2 Return-Oriented Programming

Return-Oriented Programming is made possible by making use of small
instruction sequences called “gadgets” [3]. Each gadget ends with a ‘return’
or ‘jump’ instruction, which is used to chain together several such gadgets to
alter the program’s behavior. Each gadget might perform a different operation,
e.g. a load and add operation followed by a jump. A return-oriented program
consists of several gadgets arranged carefully to meet the attacker’s goal.
These gadgets must be in the memory, in the address space of the executing
program or in the address space of a library used by the program. On the
whole, return-oriented programming can be viewed as the generalized notion
of return-to-libc [6] types of attacks. In W⊕X model, a memory page is either
writable or executable, but not both, which prevents all types of code injection
attacks. In return-oriented programming attacks however, the attacker does
not inject any code and just alters the program execution by executing already
existing code in an arbitrary fashion. While ASLR can be used to mitigate
ROP attacks, it can be circumvented if information about the address layout
is leaked [7].

An ROP based attack depends on stringing together gadgets in the code in
order to perform arbitrary action. In [8], a catalog of x86 gadgets are identified
for a Turing-complete ROP. A software with a larger number of gadgets from

308 H. P. Joshi et al.

this catalog is likely to be easier to exploit using ROP by an attacker, assuming
they find an entry through vulnerabilities like buffer overflow.

In this paper, we hypothesize that software obfuscation makes it more sus-
ceptible to ROP attacks. This is based on our observation that obfuscation tools
add redundant code to the software, change control flows, add conditionals,
etc. which can increase the number of gadgets in the binary.

We analyze a set of open source software binaries in terms of the catalog of
gadgets they contain, and compare this with the gadgets found in obfuscated
versions of the same software. Based on our experiments, we show that
obfuscation significantly impacts the number of gadgets in a binary, which
in turn makes an ROP attack easier.

3 Overview and Experimental Design

In order to study the susceptibility of a software to ROP attacks, we identify
the catalog of gadgets in the code. It may seem that a software with a larger
number of gadgets would be more susceptible to ROP attacks. However, there
is limited advantage of repetitive gadgets, and variety is more important in
order to chain them together and accomplish a useful task. Hence, we only
consider unique gadgets in the code.

To evaluate our hypothesis, we find and compare gadgets in obfuscated
and un-obfuscated versions of a large number of binaries. We use a set of
open source software of different size and type including executables and
libraries. We build the obfuscated version of the software for Linux using
LLVM with the same flags and optimizations as used to build the un-obfuscated
binaries, in order to make our analysis of both set of binaries comparable.
LLVM [9] is a compiler infrastructure and toolchain that enables code analysis
and optimizations for arbitrary languages. It is increasingly becoming popular
both for academic research and in commercial products along with Clang, its
native C/C++ compiler.

3.1 Binaries Selection

Since we believe that the increase in the size of binary due to obfuscation may
impact its ROP susceptibility, we want to evaluate on binaries of different
sizes. The source code of the software likely to be obfuscated in practice is not
made openly available, as that defeats the purpose of obfuscation. However,
we decided to use software that is security sensitive but openly available. This
allows us to use well-known software for evaluation and also to build binaries
with various levels of obfuscation for consistent comparison.

Trading Off a Vulnerability: Does Software Obfuscation Increase 309

We use two sets of software, GNU Coreutils [10] and OpenSSL [11]
as target binaries for our evaluation. We use OpenSSL, and specifically
its libraries libssl and libcrypto as an example of commonly used security
sensitive libraries.

GNU Coreutils include utilities like cp, mv, ls, date, etc. which are
included in nearly all Linux distributions. Some of these utilities can also be
considered to be part of these Linux distribution’s trusted computing base
(TCB) since they are frequently run as root. The Coreutils package includes
106 utilities of varying size and thus provides us with a good base for our
evaluation. For more detailed analysis we select a subset of these utilities
again based on their security sensitiveness, and their potential to do harm.
These include link, chroot, shred, touch, date, cp. We select touch
and date due to recent vulnerability CVE-2014-9471 that may allow arbitrary
code execution or denial of service attack. We select shred due to expectation
of secure removal of files, while the others (link, cp, chroot) for their
potential for misuse.

3.2 Obfuscation Tools

Since C/C++ is most commonly used in practice among languages vulnerable
to buffer overflow and ROP attacks, we focus our attention on C/C++
obfuscators. While there are several software obfuscation tools available for
C/C++, the majority are neither open-source nor free. The free obfuscation
tools for C/C++ include the Tigress [12] and Obfuscator-LLVM [13].

3.2.1 Obfuscator-LLVM
We chose to use Obfuscator-LLVM as it is an open source project to build
an obfuscator for LLVM tool-chain and is currently maintained. It works on
LLVM’s intermediate representation (IR) level, and so it can take advantage
of LLVM’s front-end and back-end which support many languages including
C and C++, and architectures such as x86, arm, mips, etc. Since, this is a fairly
new project, it has limited obfuscating transforms available. These are:

• Instruction Substitution (SUB): This obfuscation technique relies on
substituting one set of instructions with another set of instructions while
maintaining the same functionality.

• Control Flow Flattening (FLA): This obfuscation flattens the control flow
graph of the program so that the structure of the program cannot be
easily understood by static analysis like disassembly. This is achieved by
identifying and moving blocks in a function which are at nested levels,

310 H. P. Joshi et al.

next to each other. The selection of control flow to a particular block is
done using a switch statement and a control variable that keeps track of
the state of the program.

• Bogus Control Flow (BCF): This obfuscation modifies a function call
graph by adding a basic block before the current basic block. This new
basic block contains an opaque predicate and then makes a conditional
jump to the original basic block.

3.2.2 The Tigress Obfuscator
The Tigress is a C language obfuscator and virtualizer that offers several
defenses against both static and dynamic reverse engineering [12]. Designed
for educational purposes, it is a source-to-source obfuscator, applying obfus-
cating transforms on the C source code to generate obfuscated C source
which can be examined for effects of transformations. Some of the important
transforms offered by the Tigress include:

• Virtualize: Turns a function into an interpreter with a virtual instruction
set, a bytecode array, and virtual program counter and stack pointer.

• Jit: Turn a function into a sequence of instructions that dynamically builds
up the function at runtime.

• Flatten: Flatten a function.
• Merge: Merges two or more functions.
• RndArgs: Randomize and add bogus arguments to a function.
• AddOpaque: Add opaque predicates to split up control-flow.
• EncodeLiterals: Replace literal integers and strings with less obvious

expressions.
• InitBranchFuns: Create branch functions.
• AntiBranchAnalysis: Replace branches with other constructs.
• AntiTaintAnalysis: Insert implicit flow such that dynamic taint analysis

becomes less precise.
• AntiAliasAnalysis: Replace direct function calls with indirect ones

making alias analysis less precise.

3.3 ROP Gadget Analysis

A few algorithms for discovering gadgets in code have been described in
literature, including in [3] and [8]. We use an ROP gadget finding tool, ROP-
gadget [14], to identify potential gadgets in binary. A list of all unique gadgets
found in the un-obfuscated binary is created, and then compared against the
list from obfuscated binary.

Trading Off a Vulnerability: Does Software Obfuscation Increase 311

Once we identify gadgets in a binary, we also categorize these gadgets
based on the instructions they contain and the function they can serve. The
categories are

• Memory: These are instructions and gadgets that facilitate load and store
operations from/to memory and registers.

• Arithmetic: These are gadgets that contain arithmetic instructions and
which can be used to perform operations such as add, sub, neg, etc.

• Logic: These are gadgets that contain instructions or can be used to
perform operations such as and, or, xor, shift, rotate, etc.

• Control: These are gadgets that can control the flow, such as conditional
or unconditional jumps.

• Other: These are gadgets that could not be categorized in one of the above
categories.

4 Results and Discussion

As discussed in Section 3, we perform our evaluations on binaries found in
the GNU Coreutils package as well as the libraries in OpenSSL. The GNU
Coreutils and OpenSSL packages are built using LLVM 3.4, and the same
compiler is used to build the obfuscated versions of those binaries. Both
Obfuscator-LLVM and Tigress obfuscators are used for evaluation, but the use
of Tigress obfuscator is limited to a few binaries in Coreutils, used for more
detailed analysis. This is because Tigress is a source-to-source obfuscator and
is not able to handle certain compile-time macros commonly used in Coreutils
source code, requiring manual modification of the source code.

We built different versions of the obfuscated binaries, for different types
of obfuscations supported by Obfuscator-LLVM and discussed in Section 3.2,
and a binary with all the obfuscations. In our discussion, unless otherwise
specified, an obfuscated binary refers to a binary built with all the supported
obfuscations by Obfuscator-LLVM. For Tigress obfuscator, as default we use
transforms that are similar to the ones offered by Obfuscator-LLVM, namely
Virtualize, Init/Add/UpdateOpaque, and Flatten transforms. These transforms
are applied on all functions in the source file. Since Virtualize and JIT are the
two main transforms of Tigress, we also analyze with JIT applied to the main
routine for each binary.

While the OpenSSL libraries libssl.a and libcrypto.a are a collection of
object files, we created a small test program and then statically linked the
objects from both libraries with this program to create a binary which we can

312 H. P. Joshi et al.

use for evaluation. We refer to this combined binary of objects from libssl and
libcrypto as libssl.

4.1 Impact of Obfuscation on Gadget Count

Figure 1a shows the categorized as well as the total gadget counts aggre-
gated for all the binaries in Coreutils with and without obfuscation. We can
see that obfuscation more than doubles the total gadgets in the binaries,
however the impact varies across categories. A similar graph for libssl is
shown in Figure 1b, where the total increase is more moderate. We believe

(a) Gadget count for all binaries in Coreutils

(b) Gadget count for libssl library

Figure 1 Gadget count for various binaries with Obfuscator-LLVM.

Trading Off a Vulnerability: Does Software Obfuscation Increase 313

this was because the obfuscator we are using was not able to handle some of
the more complicated and large source files in libssl, and hence abandoned
obfuscations on them. However, both these graphs show that obfuscation
significantly increases the number of gadgets in a binary.

4.2 Impact of Obfuscation Type

Table 1 shows the binary sizes for some of the utilities in GNU Coreutils
along with their size with different obfuscations. From Obfuscator-LLVM,
the instruction substitution obfuscation is referred to as sub-obfusc (or SUB),
bogus control flow as bcf-obfusc (or BCF) and control flow flattening as
fla-obfusc (or FLA), and details of these obfuscations are discussed in
Section 3.2.1. As expected, substitution does not have as big an impact on
binary size as the other two. The size increases in binaries with full obfuscation
ranged from about 3× to 5×. The effects of Virtualize transform of the Tigress
obfuscator is similar, with 2× to 4× increase in binary size. The JIT transform
on the other hand, applied only to the main routine, adds about 2 to 2.5 MB
to the binary size due to the ‘jitter’ code needed to dynamically generate the
function at execution-time. For smaller binaries like link, this can mean a size
increase of more than 45×.

The impact of different obfuscation transforms of Obfuscator-LLVM on
gadgets is shown in Figure 2. It is clear that while overall the impact of
BCF and FLA are higher than SUB, their impact within specific categories of
gadgets varies. Since aggregating across all of Coreutils binaries is difficult to
analyze, we do more detailed analysis on a few selected binaries in Coreutils as
identified in Section 3.1. For these binaries, we also use the Tigress obfuscator
with Virtualize transform, such that it is comparable to the obfuscations of
Obfuscator-LLVM. The graphs for cp and link are shown in Figures 3a
and 3b. On very small binaries like link the Tigress Virtualize obfuscations
only marginally increase the gadget count, while on larger binaries like cp the

Table 1 Binaries size (in KBs) with different obfuscation transforms
Obfuscator-LLVM Tigress

Binaries Original SUB BCF FLA All Virtualize JIT
link 44 48 81 92 149 87 2040
chroot 59 59 111 131 223 182 2567
shred 85 97 169 185 313 405 2374
date 101 113 217 277 473 235 2890
cp 169 185 381 425 757 384 2614
coreutils 11264 9318 17408 20480 41984 – –

314 H. P. Joshi et al.

Figure 2 Different obfuscation transforms of Obfuscator-LLVM for all binaries in
Coreutils.

increase is significant. On the other hand, Obfuscator-LLVM has big impact
on the gadget counts for all binaries. We have not shown the gadget counts
for Tigress JIT obfuscation, but for smaller binaries like link, the increase
in gadget count can be more than 20×. The impact of JIT obfuscation are
explored more in Section 4.3.

The two obfuscators generate considerably different binary images, and
it is quite difficult to quantitatively evaluate and compare the effectiveness
of each obfuscation through static analysis. Since obfuscation is expected
to make recognizing original code difficult, one quantitative measure could
be the correlation between binaries before and after applying obfuscating
transforms. However, a high score on this measure can be achieved by
inserting large amount of unused random instructions that is never called
while keeping the original binary content. Such obfuscation is unlikely to
be very effective in practice when faced with determined adversary. A more
useful, but qualitative, measure could be the change in control flow graph of a
function. In Figure 4 we show the flow graph of a single function, is root()
from chroot, in unobfuscated and obfuscated binaries. The simple flow
graph of the unobfuscated function in Figure 4a is significantly obfuscated
and complicated in Figures 4b and 4c. The effects of bogus control flow can

Trading Off a Vulnerability: Does Software Obfuscation Increase 315

(a) Categorized gadget count for a large binary in Coreutils: cp

(b) Categorized gadget count for a small binary in Coreutils: link

Figure 3 Impact of different obfuscations on gadget count for small and large binaries.

316 H. P. Joshi et al.

(a) Original unobfuscated flow graph (b) Obfuscator-LLVM generated flow graph

(c) Tigress generated flow graph

Figure 4 Flow graphs for is root() function from chroot with different obfuscations.

Trading Off a Vulnerability: Does Software Obfuscation Increase 317

be seen in both Figures 4b and 4c, while the top part of Figure 4c clearly
shows the effects of flattening transformation and the resulting large block of
switch statement.

While in this paper we focus on the static analysis for measuring the
effectiveness of obfuscation, dynamic analysis may be able to provide more
insight. In [15], a comparison of the effectiveness of obfuscation is done by
analyzing the dynamic behavior of code to find similarities between obfuscated
and unobfuscated code. This work also uses the same obfuscation tools,
Obfuscator-LLVM and Tigress.

4.3 Impact on Gadget Categories

The impact of obfuscations on different types of gadgets is not evenly
distributed. We have observed that in general binaries have plenty of memory
gadgets but relatively few logic and control gadgets. The impact of obfuscation
is more pronounced on these fewer logic and control gadgets than on memory
gadgets. This is not only because of the smaller baseline, but also because of the
characteristics of the obfuscations. Both, bogus control flow and control flow
flattening obfuscations significantly increase control flow and logic related
instructions like conditional and unconditional jumps. For memory gadgets,
the increase with obfuscations is comparatively small as can be seen in
Figure 5. However, for logic and control gadgets, the increase in numbers
is quite high and can be more than 6x the number of gadgets in unobfuscated
binaries. As we can see in Figures 6 and 7, small binaries like link have very
few (nearly single digit) logic and control gadgets and obfuscation can push
the number up 4 to 5 times. If we consider very complex dynamic obfuscation
transform like Tigress JIT, then the increase can be up to 20 times. This can
potentially impact the feasibility of ROP attack on that binary.

In addition to analyzing the number of gadgets, we looked at the actual
gadgets for these binaries in order to do a qualitative analysis. We compared
the gadgets found in each utility against their obfuscated binaries. There were
some common gadgets between these binaries, usually at the lower memory
address where the common preambles in ELF can be expected. However, the
majority of the gadgets were very different in both sets of binaries and it was
difficult to make any generalizations about them.

5 Related Work

Both obfuscation and ROP have been studied in literature previously, though
not together.

318 H. P. Joshi et al.

Figure 5 Memory gadget count for few ‘coreutils’ binaries.

Figure 6 Logic gadget count for few ‘coreutils’ binaries.

Trading Off a Vulnerability: Does Software Obfuscation Increase 319

Figure 7 Control-flow gadget count for few ‘coreutils’ binaries.

In [16], the return-oriented programming is used for program steganog-
raphy. This is a form of software obfuscation using return-oriented program-
ming. In-place code randomization [17] is a technique that can be applied
to third-party software to mitigate ROP attacks. It uses narrow-scope code
transformations to randomize binaries and disrupt useful ROP gadgets. The
mechanisms of this approach is similar to software obfuscation in the use
of code transforms, however, the goal is not to obfuscate but to prevent
occurrences of useful gadgets.

The attacks that fall under return-oriented programming paradigm are very
broad, but still there are many defense mechanisms to mitigate or to prevent
ROP based attacks. Abadi et al., [18] used control-flow integrity (CFI) to
prevent stack based ROP attacks. kBouncer [19] is a light weight tool to
prevent certain ROP attacks using hardware features and without requiring
any modifications of the binary code. Another hardware based approach,
ROPecker [20], prevents control flow based ROP attacks by examining the
last branch taken registers, found in commodity processors. Carilini et al.,
[21] discuss three new ROP attacks that break existing CFI based defense
mechanisms such as kBouncer and ROPecker. Schuster et al., analyze different
defense mechanisms in [22] and show that with a little extra effort, it is possible
to break ROPecker, kBouncer and ROPGuard.

320 H. P. Joshi et al.

However, to the best of our knowledge, the connection between obfus-
cation and ROP has not been studied or hypothesized in the literature
previously.

6 Conclusion and Future Work

Software developers concerned about reverse-engineering attacks and piracy
commonly deploy software obfuscation as a defense. The users of software
however are more concerned about vulnerabilities in the software that may
compromise their system. We show that there is a possibility of conflict
between these two security goals if software obfuscation is used. We have
shown that software obfuscation can significantly increase the number of
gadgets (1.5× to 3×) in a binary. We have also shown that for logic and
control flow related gadgets, the increase is much higher (up to 6×). For
certain, especially smaller, binaries which have very small number of logic
and control gadgets this increase can potentially make ROP attacks feasible,
or at best, easier. Our evaluation with two openly available obfuscation tools
show that certain obfuscation techniques may be preferable to reduce the
impact on number of gadgets in a binary.

Our study is an early one, and is far from complete. In the future, this
work can be extended by comparing the effectiveness of obfuscation tools
and transforms quantitatively, along with comparing their impact on the
number of gadgets. Such studies can be conducted on a much wider range
of software for a broader range of platforms. It would also be interesting to
implement an ROP-based attack on an obfuscated binary that would not be
feasible without obfuscation. Finally, an allied field of research would consist
of developing effective techniques for obfuscation that do not adversely impact
the susceptibility to ROP attacks.

Acknowledgements

The work presented in this paper was made possible in part by grants CNS-
1111088 and 1318594 from the US National Science Foundation.

References

[1] Bhatkar, S., DuVarney, D. C., and Sekar, R. (2003). “Address obfuscation:
an efficient approach to combat a broad range of memory error exploits,”
in Proceedings of USENIX Security, Vol. 3, 105–120.

Trading Off a Vulnerability: Does Software Obfuscation Increase 321

[2] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and
Boneh, D. (2004). “On the effectiveness of address–space randomiza-
tion,” in Proceedings of the 11th ACM Conference on Computer and
Communications Security. ACM, New York, NY, 298–307.

[3] Shacham, H. (2007). “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Proceedings
of the 14th ACM Conference on Computer and Communications Secu-
rity, ser. CCS ’07 (New York, NY: ACM), 552–561. Available at:
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/1315245.1315313

[4] Nagra, J., and Collberg, C. (2009). Surreptitious software: obfuscation,
watermarking, and tamperproofing for software protection. Pearson
Education, Upper Saddle River, NJ.

[5] Collberg, C. S., and Thomborson, C. (2002) Watermarking, tamper-
proofing, and obfuscation tools for software protection. IEEE Transact.
Softw. Eng., 28, 735–746.

[6] Wojtczuk, R. (2001). The advanced return-into-lib(c) exploits: PaX case
study. Phrack Mag., 0x0b, Phile# 0x04 of 0x0e.

[7] Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., and
Sadeghi, A.-R. (2013). Just-in-time code reuse: on the effectiveness
of fine-grained address space layout randomization,” in 2013 IEEE
Symposium on Security and Privacy (SP), , 574–588.

[8] Roemer, R., Buchanan, E., Shacham, H., and Savage, S. (2012). “Return-
oriented programming: Systems, languages, and applications,” in ACM
Transactions on Information and System Security (TISSEC), Vol. 15, 2.

[9] Lattner, C., and Adve, V. (2004). “Llvm: a compilation framework for
lifelong program analysis and transformation,” in IEEE International
Symposium on Code Generation and Optimization, 2004 (CGO 2004),
75–86.

[10] GNU Coreutils. Available at: https://www.gnu.org/software/coreutils/
[11] OpenSSL. OpenSSL: Cryptography and SSL/TLS Toolkit. Available at:

https://www.openssl.org/
[12] TheTigress C Diversifier/Obfuscator.Available at: http://tigress.cs.arizon

a.edu/index.html.
[13] Obfuscator LLVM. Available at: https://github.com/obfuscatorllvm/obf

uscator/wiki
[14] ROPgadget. Available at: http://shell-storm.org/project/ROPgadget/
[15] Scrinzi, F. (2015). Behavioral Analysis of Obfuscated Code. [Online].

Available at: http://essay.utwente.nl/67522/
[16] Lu, K., Xiong, S., and Gao, D. (2014). “Ropsteg: program steganography

with return oriented programming,” in Proceedings of the 4th ACM

322 H. P. Joshi et al.

Conference on Data and Application Security and Privacy (New York,
NY: ACM), 265–272.

[17] Pappas, V., Polychronakis, M., and Keromytis, A. D. (2012). “Smashing
the gadgets: Hindering return-oriented programming using in-place code
randomization,” in IEEE Symposium on Security and Privacy (SP), 2012,
601–615.

[18] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. (2005). “Control-
flow integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security (New York, NY: ACM), 340–353.

[19] Pappas, V., Polychronakis, M., and Keromytis, A. D. (2013). “Trans-
parent rop exploit mitigation using indirect branch tracing.” in USENIX
Security, 447–462.

[20] Cheng,Y., Zhou, Z.,Yu, M., Ding, X., and Deng, R. H. (2014). “Ropecker:
a generic and practical approach for defending against rop attacks,” in
Symposium on Network and Distributed System Security (NDSS).

[21] Carlini, N., and Wagner, D. (2014). “Rop is still dangerous: Breaking
modern defenses,” in USENIX Security Symposium.

[22] Schuster, F., Tendyck, T., Pewny, J., Maaß, A., Steegmanns, M., Contag,
M., and Holz, T. (2014). “Evaluating the effectiveness of current anti-
rop defenses,” in Research in Attacks, Intrusions and Defenses (Berlin:
Springer), 88–108.

Biographies

H. P. Joshi received his B.E. and M.B.A. degrees from Gujarat University,
Ahmedabad, India in 2000 and 2002 respectively. He also received a Master
of Science degree from North Carolina State University, USA in 2006. After
working in industry for several years, he is currently pursuing a Ph.D. degree
in Computer Science at North Carolina State University. His primary research
interest is in networking and security.

Trading Off a Vulnerability: Does Software Obfuscation Increase 323

A. Dhanasekaran received his B.Tech. in Information Technology fromAnna
University, India in 2009. He worked in industry before earning a Master of
Science in Computer Science from North Carolina State University, USA in
2015. He currently works as a software engineer at Cisco Systems, Inc.

R. Dutta was born in Kolkata, India, in 1968. After completing elementary
schooling in Kolkata, he received a B.E. in Electrical Engineering from
Jadavpur University, Kolkata, India, in 1991, a M.E. in Systems Science
and Automation from Indian Institute of Science, Bangalore, India in 1993,
and a Ph.D. in Computer Science from North Carolina State University,
Raleigh, USA, in 2001. From 1993 to 1997 he worked for IBM as a software
developer and programmer in various networking related projects. He has
been employed from 2001–2007 as Assistant Professor, from 2007–2013
as Associate Professor, and since 2013 as Professor, in the department of
Computer Science at the North Carolina State University, Raleigh. During
the summer of 2005, he was a visiting researcher at the IBM WebSphere
Technology Institute in RTP, NC, USA. His current research interests focus
on design and performance optimization of large networking systems, Internet
architecture, wireless networks, and network analytics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

