
Variety of Scalable Shuffling
Countermeasures against Side

Channel Attacks

Nikita Veshchikov, Stephane Fernandes Medeiros
and Liran Lerman

Department of Computer Sciences, Université libre de Bruxelles,
Brussel, Belgium
E-mail: {nveshchi; stfernan; llerman}@ulb.ac.be

Received 1 April 2017; Accepted 14 June 2017;
Publication 12 July 2017

Abstract

IoT devices have very strong requirements on all the resources such as mem-
ory, randomness, energy and execution time. This paper proposes a number
of scalable shuffling techniques as countermeasures against side channel
analysis. Some extensions of an existing technique called Random Start Index
(RSI) are suggested in this paper. Moreover, two new shuffling techniques
Reverse Shuffle (RS) and Sweep Swap Shuffle (SSS) are described within their
possible extensions. Extensions of RSI, RS and SSS might be implemented in
a constrained environment with a small data and time overhead. Each of them
might be implemented using different amount of randomness and thus, might
be fine-tuned according to requirements and constraints of a cryptographic
system such as time, memory, available number of random bits, etc. RSI, RS,
SSS and their extensions are described using SubBytes operation of AES-128
block cipher as an example, but they might be used with different operations
of AES as well as with other algorithms. This paper also analyses RSI, RS
and SSS by comparing their properties such as number of total permutations
that might be generated using a fixed number of random bits, data complexity,
time overhead and evaluates their resistance against some known side-channel
attacks such as correlation power analysis and template attack. Several of

Journal of Cyber Security, Vol. 5 3, 195–232.
doi: 10.13052/jcsm2245-1439.532
c© 2017 River Publishers. All rights reserved.



196 N. Veshchikov et al.

proposed shuffling schemes are implemented on a 8-bit microcontroller that
uses them to shuffle the first and the last rounds of AES-128.

Keywords: Side channel analysis, countermeasures, hiding techniques,
shuffling countermeasure, microcontroller, AES, lightweight shuffling.

1 Introduction

One of the most fast and wide spreading domains in modern digital world is
the domain of mobile connected devices called the Internat of Things (IoT).
This world is composed of embedded systems, small portable devices such as
smartcards or microcontrollers. These interconnected devices are distributed
among their users who can also be potential attackers, thus security of IoT is an
important issue. A new type of attacks become very important in this context:
attacks where the adversary has access to the attacked device. These attacks are
among the most powerful attacks on cryptographic implementations, and they
represent real-world thread to the IoT devices. Side channel attacks (SCA)
are among the most efficient and strongest attacks of this type. Instead of
targeting the algorithm (an abstraction), they focus on their implementations
(real, physical devices).

Since side channel attacks on implementations of cryptographic algo-
rithms were introduced to the scientific community [8, 9] a number of different
countermeasures were suggested and studied in literature. Reordering of
independent operations, generally referred as shuffling, was suggested as one
of the possible countermeasures against side channel attacks [7, 18]. Small
embedded devices have lots of constraints such as time, power consumptions,
amount of memory that might be used or amount of random bits that a
Random Number Generator (RNG) might generate per encryption. Thus,
often lightweight security and lightweight countermeasures are privileged for
implementations in such environments. Even less constrained environments
often have strong requirements on parameters such as e.g., high through-
put. Some countermeasures might heavily affect the execution speed of an
algorithm (e.g., increase it by a factor of 6 or 7) [13], so even in such
environments relatively lightweight countermeasure that would not heavily
affect the performance of the device would often be the designer’s choice.

This work proposes a set of scalable shuffling techniques that can be fine
tuned to fit specific requirements and constraints of a given application. The
designer can use our schemes according to the resources that are available
in the system including random numbers, timing constraints and available
memory.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 197

1.1 Related Works

Shuffling has already been studied in the literature. Random Start Index (RSI)
was applied on AES block cipher by Herbst et al. [7] and by Tillich et al. [21].
In their implementation of AES, operations were executed in a sequential
order but with a different randomly chosen starting index: RSI starts by
choosing a column index, this index will be the index of the first column to
be processed (other columns will be processed sequentially). Furthermore,
a second index is chosen for the starting line, for all of the columns. In
their schemes, shuffling was combined with masking and applied only on
the initial AddRoundKey, SubBytes and MixColumns of the first round and
on MixColumn and AddRoundKey of round 9 as well as on SubBytes and
AddRoundKey of the last round. RSI shuffling technique is very lightweight
and may be easily implemented with virtually no overheads [14, 15]. The basic
versions of RSI such as used by Tillich et al. [21] requires 4 random bits. We
suggest several extensions of the RSI shuffling technique, our extensions are
scalable i.e., they are flexible in terms of the number of random bits that might
be used in order to shuffle instructions (e.g., from 1 up to 10 random bits in
case of AES-128).

Fully random permutation, inside AES operations, was suggested by
Tillich et al. [21] and applied by Rivain et al. [18]. They also combined
masking and shuffling countermeasures.

Veyrat-Charvillon et al. [23] also studied the basic RSI shuffling technique
and suggested improvements to Random Permutation (RP) shuffling technique
by manipulating the program’s control flow. RP technique allows to reorder all
16 bytes of one operation (such as SubBytes) of AES-128, it might generate all
possible 16! permutations (which is roughly 244.25) using 64 random bits [23].
This technique is not as lightweight as RSI but is able to generate much more
permutations (all of them). Our shuffling schemes require less randomness
than RP, but they also produce less permutations. Our shuffling techniques
are as lightweight as RSI, but they allow to produce more than 16 different
orderings.

RP shuffling technique was also suggested as an improvement (to be used
in combination with masking) for the DPA contest v4 [1, 17] and was used
for the DPA contest v4.2. Two different algorithms were suggested for the
generation of the random permutation, one of them generates full entropy
but it has higher big O complexity while the other is less computationally
expensive but results in lower entropy [1].



198 N. Veshchikov et al.

Fernandes Medeiros [13] introduced a shuffling technique that he called
SchedAES, it randomizes the sequence of instructions of the AES over several
operations. This countermeasure takes precedence relations between opera-
tions into account in order to decide which instruction could be executed next.
It allows to generate many different orderings of operations. Unfortunately,
this technique requires additional data structures, a lot of random bits per
execution (up to 3 000 per execution) and could not be used in very constrained
environments.

All shuffling algorithms require randomness as input in order to generate a
permutation, most of them are rigid and require a fixed amount of random bits
for example, technique proposed by Veyrat-Charvillon et al. [23] for Random
Permutation shuffling requires 64 random bits. The algorithm used by Tillich
et al. [21] needs 4 random bits. Our shuffling algorithms allow to choose the
number of random bits and thus allow to tune the implementation according
to constraints and requirements of the system as well as to the amount of
available resources.

1.2 Notations

We are going to use terms shuffling technique to denote a method or an
algorithm that allows to reorder operations (instructions) of an algorithm
without changing its final result. The term shuffle will be used to represent
one possible ordering (one permutation) of all operations (or instructions)
that are being shuffled. Number of shuffles will represent the total number of
all possible different shuffles that can be generated using a particular shuffling
technique.

The abbreviations LSB and MSB denote the least significant bit and the
most significant bit respectively, LSBs and MSBs will be used for several
least and most significant bits. We use terms second LSB and second MSB to
denote the bit next to the LSB and MSB respectively e.g., if the index of the
LSB of a byte is 0 and the index of the MSB is 7 then the index of the second
LSB is 1 and the index of the second MSB is 6. Terms third LSB (MSB) or
fourth LSB (MSB) are used in the same manner.

We will refer to a random number generator used by a cryptographic system
as RNG.

Since it is possible to shuffle one or several rounds of an algorithm as well
as several operations per round and each of these operations might be done in
one or several clock cycles (depending on the used hardware), we are going
to use the term random bits available per unit of time where the unit of time
might represent one clock cycle, one operation, one round or one encryption.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 199

1.3 Structure of This Paper

The rest of this paper is organized as follows. Section 2 presents our new
shuffling schemes as well as their extensions using SubBytes operation of
AES-128 block cipher as an illustration. Section 3 compares our shuffling
techniques among them as well as with couple of other techniques from several
points of view. Section 4 sums up the analysis and discusses our results.
Finally, Section 5 concludes this paper and gives a list of suggestions for
further improvements and future works.

2 Scalable Shuffling Techniques

Here we are going to describe 3 scalable shuffling techniques. For sake of
simplicity all examples presented in this section are given for the SubBytes
operation (application of the S-box) on the state of 128-bit version of AES
block cipher. This section presents shuffling techniques on the example of
the first round of AES, but same shuffling techniques might be applied to
any number of rounds depending on system’s requirements and amount of
available resources (time, memory, amount of random bits, etc). All presented
shuffling schemes might be easily adapted for other operations of AES
as well as for other algorithms.

Most of the shuffling techniques suggested in this section are based on the
fact that the internal state might be seen as a vector or as a matrix. Indeed, in
the memory of a computer, a vector of size 16, a 4 × 4 matrix or even a 2 × 8
matrix are all just tables of 16 memory units (in our case bytes).

2.1 Random Start Index

Basic version Random Start Index (RSI) shuffling for AES-128 represents the
AES state as a vector of 16 elements. S-box is applied to all 16 bytes one by
one starting from a randomly chosen index (between 0 and 15). This shuffling
technique requires 4 random bits and it gives us 16 possible starting indexes
(and 16 different shuffles in total).

Two different variations of the basic RSI technique might be implemented,
those techniques generalize RSI and might be applied with less or more random
bits (between 1 and 10 bits in our AES-128 examples).

Vector-RSI

Vector RSI (V-RSI) extension, uses the same representation of the AES-128
state as the basic RSI, the state is used as a vector and a random start index



200 N. Veshchikov et al.

might be chosen with less than 4 bits of randomness. It might be done by giving
a fixed value to all missing bits, by reusing some of the available random bits
(eventually by combining them) or even by combining these two approaches,
see Figure 1.

For example, if we have only 3 available random bits for the RSI, we can
fix the position of the missing one as the LSB of the starting index and always
assign its value to 0. In this case we will have 8 possible shuffles with only
even numbers as starting indexes, see Figure 2(a).

Here is another example, lets say we have only 2 random bits per unit
of time and we would like to use V-RSI shuffling. We can fix those random
bits as two LSBs of the index, fix the value of the MSB of the index to
1 and assign the value of the second MSB to the exclusive-or (XOR) of
the two available random bits. If we use this algorithm to generate the
starting index we will be able to generate 4 different shuffles that might
start with indexes 8, 11, 13 or 14, see Figure 2(b). This last example is not

Figure 1 Structure of V-RSI index generation. The order of bits coming from different parts
might be chosen arbitrarily.

Figure 2 Example of V-RSI use with 2 and 3 available random bits.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 201

practical, especially in software implementations, since it requires additional
computations. Nevertheless, it is worth noting that we can actually choose
any starting index for an implementation by choosing how to assign values to
missing bits that are needed in order to have a random index.

An idea of using 3-part computation (fixed part, random part and combined
part) in order to generate a random index might be used in a scenario when
the shuffling scheme used by the device is the same for all devices, but each
instance is different thanks to different combination functions and different
fixed parts. In such scenario each device will use a different shuffling, thus an
attacker will have less chances of being able to profile one device in order to
attack another one.

Matrix-RSI

The second extension, that we call Matrix RSI (M-RSI), of the RSI technique
handles the internal state of AES as a matrix and treats it row by row. Since
the state is handled row by row, we can just apply the V-RSI on each row.
Since all rows are handled separately, we can also start with any row i.e., we
can reuse V-RSI technique in order to choose the starting row. This technique
might allow us to shuffle SubBytes operation with 1 to 10 random bits and
can give us from 2 to 1024 possible shuffles.

Table 1 shows how M-RSI might be applied on AES-128 state depending
on the number of available random bits per unit of time. This table is structured
as follows, All rows part shows how we can go through all rows and Cells in a
row part shows how we may handle all cells in one row. Following notations
are used: Fixed – normal, non-random algorithm is used (e.g., 0, 1, 2, 3);
Rand(n) – starting index is chosen using n random bits; S – same random
numbers are used to get the starting index in each row, D – different random
bits are used to generate the starting index in different rows. For example, if
we have 6 available random bits and we want to use M-RSI, according to the
table we might use 2 bits in order to choose a random row to start with and
we can also use 1 bit per row in order to choose a random starting index in
each row (using V-RSI with 1 bit on a vector of 4 bytes).

Notice that this table only gives some examples of how to use M-RSI per
number of available bits, multiple combinations might be implemented for
some numbers e.g., for 4 bits we might also use 2 bits in order to choose a
starting row and then use 2 random bits in order to choose a random start cell
(same in each row). Some of these choices might be more efficient and/or
more secure than others.



202 N. Veshchikov et al.

Table 1 Examples of M-RSI use on 4 × 4 AES-128 state using different number on
random bits

All Rows Cells in a Row
Available Random Bits Bits Handling Bits Handling Number of Shuffles

1 1 Rand(1) 0 Fixed 2
2 2 Rand(2) 0 Fixed 4
3 2 Rand(2) 1 Rand(1), S 8
4 0 Fixed 4 Rand(1), D 16
4* 2 Rand(2) 2 Rand(2), S 16
5 1 Rand(1) 4 Rand(1), D 32
6 2 Rand(2) 4 Rand(1), D 64
8 0 Fixed 8 Rand(2), D 256
9 1 Rand(1) 8 Rand(2), D 512

10 2 Rand(2) 8 Rand(2), D 1024

*The second version with 4 bits offers more security, see Section 3 and Table 5.

Unfortunately, we were not able to find a “nice” combination that could be
implemented efficiently (that does not need special cases, when implemented)
for 7 available random bits.

2.2 Reverse Shuffle

The idea behind the simplest version of Reverse Shuffle (RS) technique is the
following: AES-128 state is used as a vector of 16 bytes, S-box is applied to
all bytes of the state following forward or reversed order (depending on the
value of 1 random bit). For example, if the value of the random bit is 0 we
may go through the state from byte 0 to byte 15 and if the value of the random
bit is 1 we can go through bytes in the reversed order (from 15 to 0).

Matrix-RS

RS might be extended by using the state of AES-128 as a m×n matrix instead
of a vector (where m × n is the size of the original vector, 16 in our case), we
are going to call this extension Matrix-RS (M-RS). We will specify the exact
M-RS version by using the notation M-RS m × n. Note that M-RS 1 × 16
gives us the original simple RS.

The idea behind M-RS 4 × 4 is the following: we can use RS on each row
(of 4 bytes) as well as for all rows (start from row 0 or row 3 in the matrix).
It allows us to use from 1 up to 5 random bits for shuffling. For example,
if we have 4 random bits we can go through all rows in forward order (no
randomness required), we can also go through all cells in each row in forward



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 203

or reversed order (different order for all rows, 4 bits of randomness), see
example in Figure 3, also see Table 2.

Table 2 shows how M-RS 4 × 4 might be applied on AES-128 depending
on the number of available random bits. This table uses following notations:
Rand means that indexes are handled in forward or reversed order randomly,
Fixed means that same fixed order is used to go through cells in a row (or
rows in the matrix); S means that same random bits are used on several rows1,
D means that different random bits are used for all rows.

Since a 16 byte AES-128 state might be represented as a matrix in several
different ways (matrix of different size), we may use it to our advantage while
using more or less random bits for shuffling. If we want to use more than
5 random bits and generate more shuffles we can use M-RS 8 × 2 shuffle, it
will allow us to use up to 9 random bits (1 bit per row and 1 bit for all rows)
and generate 512 shuffles.

Figure 3 Example of M-RS 4 × 4 with 4 available random bits.

Table 2 Examples of M-RS use on 4 × 4 AES-128 state using different number on
random bits

All Rows Cells in a Row
Available Random Bits Bits Handling Bits Handling Number of Shuffles

1 1 Rand 0 Fixed 2
2 1 Rand 1 Rand, S 4
3 1 Rand 2 Rand, 2S 8
4 0 Fixed 4 Rand, D 16
5 1 Rand 4 Rand, D 32

12S in line 3 means that same bits are reused 2 times on 2 different rows and then different
random bits are used on 2 other rows.



204 N. Veshchikov et al.

2.3 Sweep Swap Shuffle

The idea of Sweep Swap Shuffle (SSS) is based on the fact that the state of
AES-128 might be represented as a m × n matrix (e.g., a 4 × 4 or a 2 × 8
matrix). A matrix might be handled row-by-row or column-by-column. SSS
might also be implemented e.g., by swapping pieces of code that go through
row and column indexes. In order to specify how a vector is represented as
a matrix we will use the notation SSS m × n. Figure 4 shows two possible
orders of SSS 4 × 4.

Part SSS

The idea behind Part-SSS (P-SSS) extension of SSS technique is the following:
a state of AES-128 might be broken into several equal parts e.g., 2 parts of
8 bytes. An SSS technique could be then applied to each part separately, it
would allow us to create more different shuffles (by using more than 1 random
bit). We will use the notation Pk-SSS m × n in order to specify the number
k of identical parts that we want to use. Note that P1-SSS 4 × 4 gives us the
original SSS 4 × 4. See example of P2-SSS 2 × 4 in Figure 5.

By using P-SSS on AES-128 we can generate up to 16 shuffles by using
1 to 4 random bits, see Table 3.

Figure 4 Going through bytes of AES-128 state matrix with SSS 4 × 4.

Figure 5 Possible shuffles of AES-128 state with P2-SSS 2 × 4 technique.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 205

Table 3 Examples of P-SSS use on AES-128 state using different number on random bits
Random Bits (and k) Technique Shuffles

1 P1-SSS 4 × 4 2
2 P2-SSS 2 × 4 4
4 P4-SSS 2 × 2 16

Multidimensional SSS

The idea behind Multidimensional SSS (MD-SSS) extension of SSS technique
is based on the fact that a vector might be seen as a multidimensional matrix2.
For example the state of AES-128 might be seen as 2 × 4 × 2 matrix, also
see examples on Figure 6. It allows us to go through all dimensions in any
order, e.g., in 2 dimensions the state might be handled row by row or column
by column (go through the first dimension then through the second one or the
other way around).

To specify a version of SSS we are going to use the notation MD-SSS
d1 × d2 × dD, where D is the number of dimensions and di is the size of
the state in the dimension i. The number of shuffles that can be generated
with MD-SSS depends on the number of dimensions that is used to represent

Figure 6 Examples of representations of AES-128 state as multidimensional matrices.

2It is important to note, that we can think about the state as if it was a three dimensional
matrix for the purpose of shuffling, but it does not mean that the state has to be represented
and manipulated as such during the entire algorithm.



206 N. Veshchikov et al.

Table 4 Examples of MD-SSS use on AES-128 state with different number on random bits
D Random Bits State Representation Shuffles
2 1 2 × 8 2
3 3 2 × 4 × 2 6
4 5 2 × 2 × 2 × 2 24

the state for the shuffling. Since we can choose any ordering of dimensions
to handle the state, the number of different shuffles that might be generated
is given by D! and thus the number of necessary random bits is given by
�log2D!�. Table 4 gives several examples of MD-SSS used with AES-128
state using different number of available random bits.

3 Analysis

In order to analyse our shuffling algorithms as well as to compare them to the
existing schemes we introduce a couple of new terms and definitions.

3.1 Randomization

Randomization range of a shuffling technique is the biggest interval where
the shuffling algorithm operates and where the shuffled operations might be
reordered.

A randomization interval of a shuffling technique might be one operation
(e.g., AddRoundKey), one round (or several operations of one round), several
rounds or the entire algorithm. If the same shuffling technique is applied on
SubBytes operation of all rounds of AES, then the randomization interval of
this technique is still one operation (SubBytes) since instructions in between
different SubBytes are not reordered among them.

The randomization range of all our shuffling techniques is one operation
(SubBytes, as presented in Section 2). RP also has a randomization range of
one operation. SchedAES has a very wide randomization range and it allows
to generate many different shuffles but requires a huge amount of randomness.

Fully randomized instruction (or operation) is an instruction that might be
reordered (and executed) at any instant in time by a given shuffling technique
inside of its randomization range without changing the final result of the
algorithm that is being shuffled.

Apartially randomized instruction (or operation) is an instruction that is not
fully randomized, but that might be reordered and executed at least 2 different
instants in time by a given shuffling technique inside of its randomization
range without changing the final result of the algorithm that is being shuffled.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 207

An unrandomized instruction (or operation) is an instruction that is always
executed at the same moment in time inside of the randomization range using
a shuffling technique.

A shuffling algorithm is fully randomized if all instructions inside of
its randomization range are fully randomized. If at least one instruction is
unrandomized or only partially randomized, than the shuffling technique is
partially randomized.

RSI applied to SubBytes is fully randomized in its basic version, but if we
use less random bits (as in V-RSI) it becomes only partially randomized. Dif-
ferent versions of M-RSI might be fully randomized or partially randomized
depending on choices made during the implementation (different number of
random bits used to choose the start index for rows and inside of each row).

RS and its extensions are always partially randomized and it does not have
unrandomized instructions if used with AES.

Unfortunately SSS is partially randomized and have unrandomized
instructions since some bytes are always used at the same moment in time,
indeed the S-box is always applied on the first byte at the beginning and on the
last byte at the end of the SubBytes operation. Moreover, if we use e.g., SSS
4 × 4 onAES-128 S-box on bytes 0, 5, 10 and 15 are unrandomized since these
bytes are situated on the diagonal of the 4 × 4 matrix. In general, handling a
square matrix row by row or column by column does not change the position
of elements on the diagonal. Thus, SSS k × k will have k unrandomized
instructions.

In order to analyse all of the proposed shuffling schemes, we executed
each one of them through the entire range of possible random inputs that each
algorithm could receive as a parameter. For every algorithm we generated
a heatmap of all possible positions in time when a SubBytes operation can
take place on every single byte id. See examples of such plots on Figure 7,
other figures are available in the Appendix 9. We can see that for each scheme
available positions for each byte are uniformly randomly distributed, with the
exception of 4 bytes of SSS (the bytes that are situated on the diagonal of the
matrix). The exact patterns that we can observe on there heatmaps depend on
the way the scheme was implemented (i.e. which bits were chosen to be fixed
and which are random, recall Figures 1 and 2).

We also generated same type of heatmap for the RP shuffling scheme,
see Figure 8. We used the implementation of RP shuffling scheme from DPA
Contest v 4.2 [17]. It is currently impossible to enumerate all possible inputs
(randomness) required by this shuffling scheme in a reasonable amount of
time, so the heatmap from Figure 8 is generated using 235 permutations. Using
this approximation we can see that the ratio between the highest number of



208 N. Veshchikov et al.

Figure 7 Examples of heatmaps of positions when the SubBytes operation takes place for
every byte.

occurrences of a byte at a given position to the lowest number is equal to
1.000116, which is less than 0.01 % of difference (approximately 2−13).

3.2 Number of Shuffles

Optimal shuffling algorithm is an algorithm that is able to generate 2n different
shuffles using n random bits.

If we have n random bits of information we will be able to generate at
most 2n different values. If a shuffling algorithm uses n bits of randomness
and generates less than 2n different shuffles, then it is not an optimal shuffling
algorithm (from the point of view of information theory).

RS, RSI and all of their extensions use n bits in order to generate 2n

shuffles, see Tables 1 and 2, thus these schemes are optimal, however it is



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 209

Figure 8 Heatmap of Random Permutation (RP) shuffling scheme. Implementation from
DPA Contest v4.2 [1].

not always the case of SSS. The simple version of SSS is optimal as well as
P-SSS, but not the MD-SSS since for a MD-SSS we can obtain D! shuffles
(where D is the number of dimensions) and ∀ · a, b ∈ N, (a > 2) → a! �= 2b.

RP is able to generate all k! possible permutations of the state (k is
the number of bytes that have to be shuffled), but it is not optimal since it
requires more than log2(k!) random bits, the implementation proposed by
Veyrat-Charvillon et al. [23] requires 64 bits of randomness.

Doubling the number of instants when an operation could be executed
increases the amount of traces required for a successful attack roughly by
a factor of four [12]. Thus, in a perfect scenario, a shuffling algorithm that
generates more different permutations offers more security (because there
should be more possibilities of different operations being performed at a given
moment in time), however it is not always true. It is very important to notice,
that some particular cases of RSI and RS extensions do not always improve
the strength of the countermeasure when more random bits are used. For
example, in the simplest version of RS it can generate only two permutations
(forward and reversed), thus we know that we have only two possible indexes
at each moment in time. If one would use 4 × 4 M-RS with 4 random bits



210 N. Veshchikov et al.

as suggested in Table 2 when rows are always handled in forward order while
each row might be handled in the forward or the reversed order, we still have
only two possible indexes that might be used at each moment in time. Same
reasoning applies in some other cases, thus not all versions of each scheme
give a security increase when more random bits are used, for more details see
Table 5.

Table 5 Min and max number of different SubBytes operations that might occur at a fixed
moment in time i.e. the number of different bytes of the state that might be handled at a given
moment in time during shuffling. Results for different techniques are given according to the
examples given in the paper

Operations
Technique Random Bits Min Max Total Shuffles
RP [23] 64 16 16 16!
RP• 45 16 16 16!
RSI 4 16 16 16
V-RSI 1 2 2 2

2 4 4 4
3 8 8 8
4 16 16 16

M-RSI 4 × 4 1 2 2 2
2 4 4 4
3 8 8 8
4 2 2 16
4* 16 16 16
5 4 4 32
6 8 8 64
8 4 4 256
9 8 8 512
10 16 16 1024

RS 1 2 2 2
M-RS 4 × 4 1 2 2 2

2 4 4 4
3 4 4 8
4 2 2 16
5 4 4 32

P1-SSS 4 × 4 1 1 2 2
P2-SSS 2 × 4 2 1 2 4
P4-SSS 2 × 2 4 1 2 16
MD-SSS 1 1 2 2

3 1 3 6
5 1 4 24

Result for RP• represents the theoretical lower bound on the number of necessary random bits,
�log216!� = 45.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 211

Nevertheless, when we increase the number of random bits in a scheme
we always increase the number of different shuffles that could be generated.
Thus, from this perspective, the security of a scheme increases i.e., when an
attacker learns the position of one byte it gives him less information about
positions of all other bytes.

3.3 Resources

In addition to randomness, shuffling algorithms also require a certain addi-
tional memory and time. In order to support RP one needs to use an additional
data structure (of the same size as the internal state of the algorithm, so
its memory overhead is O(k), where k is the size of the state). Depending
on the algorithm RP might also require additional time overhead O(k) up
to O(k3) [1]. Our extensions of RS, RSI and SSS do not require as much
memory, their memory overhead is limited to a couple of variables (generally
to recompute and hold new indexes), in other words their memory overhead is
O(1). The only exception might be MD-SSS, where we need to store a small
table of the size equal to the number of dimensions, which is always smaller
than the size of the original internal state; in this case the memory overhead
is O(log(k)).

Shuffling as a countermeasure also results in a time overhead. The exact
time overhead might vary depending on the implementation and on the
available hardware. We did several experiments on a ATMega 328P 8-bit
microcontroller, all our code was written in C++. The microcontroller used an
external 16 MHz clock. We implemented some of the variations of shuffling
techniques that were described in Section 2. We applied several techniques on
the SubBytes operations of the first and the last round of AES-128. The only
detail that changed between different implementations were the two calls to
functions that implemented different versions of SubBytes. In order to measure
the time we encrypted 10 000 random plaintexts with different random bits as
inputs to our shuffling techniques. Table 6 presents our results including and
excluding the time needed for the generation of random bits (for shuffling). The
first and the last rounds used same random bits for shuffling. We can see that
most of the overhead comes from the RNG. The source code is available on our
website3. All calculations (of indexes for memory accesses during shuffling)
did not use conditional branching in any way dependent on the random bits
used for the shuffling in order to prevent possible SPA and Timing attacks.

3http://www.ulb.ac.be/di/dpalab/download.html



212 N. Veshchikov et al.

Table 6 Execution time of 10 000 executions AES-128 encryptions with different shuffling
techniques applied to the SubBytes operation of the first and the last rounds. Columns
Including RNG and Excluding RNG give information including and excluding time for
the generation of random numbers required for shuffling. Time is given in milliseconds,
overhead is in %

Including RNG Excluding RNG
Algorithm RND Bits Time Overhead Time Overhead
No shuffling 0 13197 0.0 13197 0.0
RS 1 14500 9.9 13547 2.7
M-RS 4 × 4 1 14201 7.6 13246 0.3

2 14438 9.4 13486 2.1
3 14480 9.7 13528 2.5
4 14362 8.8 13412 1.6
5 14465 9.6 13514 2.4

SSS 4 × 4 1 14394 9.0 13441 1.8
V-RSI 1 14426 9.3 13473 2.1

2 14426 9.3 13473 2.1
3 14424 9.3 13473 2.1
4 14423 9.3 13472 2.1

M-RSI 4 × 4 1 14186 7.5 13232 0.3
2 14185 7.5 13232 0.3
3 14322 8.5 13369 1.3
4 14323 8.5 13372 1.3
5 14425 9.3 13474 1.3
6 14423 9.3 13475 1.3
8 14319 8.5 13373 1.3
9 14397 9.1 13452 1.9
10 14398 9.1 13452 1.9

We can see that the overhead is relatively small and reasonable, but not
negligible. Different techniques give slightly different time overheads which
give the ability to choose depending on timing constraints that are imposed to
a system.

These results might probably be improved by implementing other variants
of our shuffling techniques or by implementing them in the assembly code
(while taking into account the architecture of the microcontroller).

3.4 Resistance against Side-Channel Attacks

We analyse 3 different scenarios which represent 3 attackers of different
strength in order to show the differences between presented shuffling schemes.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 213

Unprofiled attack

Correlation Power Analysis (CPA) [3, 6] is considered to be among the
strongest non-profiled Differential PowerAnalysis (DPA) attacks [8]. We have
tested several versions of our shuffling schemes against CPA attack. The CPA
was conducted using the Hamming Weight (HW) leakage model on simulated
power traces. We have implemented the following algorithm:

r = Sbox(k ⊕ m)

where r is the resulting 4 × 4 state, k is a 16 bytes fixed key and m is
a 16 bytes message. The application of Sbox function was shuffled using
different shuffling schemes. In order to simulate power traces we used SILK
[22] simulator with the following parameters: Hamming weight as the leakage
function and the noise variance was set to 2. Same parameters were used for
all simulations with different shuffling schemes.

Figure 9 shows the estimated number of traces that is necessary in order to
extract the key with various shuffling techniques used as countermeasures. As
expected, the number of traces increases with the number of different bytes
that might be handled at a fix moment in time (due to shuffling). The success
rate of this attack on each scheme is shown in Figure 12 (Appendix 6).

Figure 9 Number of traces needed to extract the key using CPAon different implementations.



214 N. Veshchikov et al.

The same CPAwas applied to all shuffling techniques. among the presented
algorithms, there are several techniques that give same advantage against a
classic versions of DPA-like attacks, but some of them may generate more
different permutations in total (see Table 5) and should make implementation
specific attacks more difficult.

Implementation specific unprofiled attack

We used same simulation parameters and same algorithms and applied a CPA
attack in a scenario when the attacker is aware of the shuffling scheme and
knows the details of its implementation. We applied a preprocessing technique
called integration to the power traces before applying the correlation power
attack. In this scenario we sum all points which could be related to the attacked
byte according to the shuffling scheme that is used, see Figure 7 and Figures
of the Appendix 9. Thus, for a scheme where a byte can be handled in d
different positions we integrate d points, for example we integrated 4 points
while attacking M-RSI 4 × 4 with 2 random bits, those points correspond to
positions where byte 0 can potentially be handled (i.e., points that correspond
to bytes 0, 1, 2 and 3 in a scenario without shuffling, see Figure 7(a)). To sum
up, we suppose that the attacker knows exactly where a given byte can be
handled in a power traces.

Figure 10 shows the number of traces needed to successfully extract the
secret (lowest number of traces where the success rate of the attack equals
one). More details on some attacks are in Figure 13 (Appendix 7). We can
see, that this technique is more powerful than a “simple” CPA against all
shuffling schemes. Nevertheless, our results show that the more bytes can be
found in a particular position (same moment in time during the execution of
an algorithm), the more difficult this attack becomes.

Profiled attack

We used a Gaussian Template Attack (TA) [5] in a scenario when an attacker
has profiling capabilities and when he has the knowledge of the shuffling
scheme (i.e., he knows all points in time when a byte can be handled in
the same way as in the unprofiled CPA with integration). However, in this
scenario the attacker does not control the randomness during the profiling,
which corresponds to a real case scenario (the randomness for cryptographic
operations is generated inside of the device), thus an attacker does not know
the full permutation (order of bytes during a single execution)4.

4Even in a case when an attacker knows all random values, he might choose not to use them
in order to speed up the profiling phase of the attack by building less templates.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 215

Figure 10 Number of traces needed to extract the key using CPA with integration as a
preprocessing technique.

For each target value (attacked byte) the template corresponds to an
average and a covariance matrix. The complexity of the parameters’estimation
for each of these templates depends on the number of points that have to be
considered during an attack. The number of points in each attack depends
on the number of points in time when a byte might be handled and thus the
number of points depends on the shuffling scheme. We used 5 000 traces per
target value in order to build all profiles.

The number of traces needed to extract the key with high probability is
shown in Figure 11 (the success rate of each attack can be found in Figure 14
in Appendix 8). These results shows us that the success of an attack depends
on the number of possible bytes that could be handled at the same moment in
time (due to shuffling), which is also the case for two other attacks. We can
also note that the TA is better than the CPA with integration when the number
of points used for the TA is low (i.e., when the number of positions where an
given byte can be handled by the shuffling scheme is low or in other words
when the number of possible bytes used at a fixed moment in time is low)
e.g., see Figures 13 and 14 for 2 possible positions. However, the TA is less
effective than the CPA with integration of points for schemes that result in
permutations where a byte could be in many different positions (many points



216 N. Veshchikov et al.

Figure 11 Number of traces needed to extract the key using TA on different implementations.

to consider in the TA), compare Figures 13 and 14 for 16 possible bytes used at
a fixed moment. The advantage of the TAcompared to the CPAwith integration
decreases when more points have to be taken into account due to the fact the
TA suffers from the estimation error in high dimensionality contexts.

Targeting the RNG

Another implementation specific technique that an attacker might be used in
order to attack these schemes could also be implemented. An attacker that
knows the exact implementation of the shuffling countermeasure that was
used might try to recover random bits used to shuffle the bytes and then extract
the key using this knowledge (by finding the positions of shuffled operations
using known random numbers). This technique was used to attack a masking
scheme of a DPA Contest [10, 11]. Basically, the attacker targets the random
number generator which allows to effectively remove the security mechanism
that uses randomness. Thus, all masking and shuffling schemes are vulnerable
to attacks that can successfully target the random number generator.

Attacks on other shuffling schemes

Our results with all three attacks suggest that the difficulty of attacking a given
shuffling scheme mostly comes with the number of positions where a given



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 217

byte can be handled during an execution of the cryptographic algorithm. To be
more precise, all schemes that can put a given byte at d positions require the
same number of traces to extract the key for a given attack, see Figures 9, 10
and 11 where all points of the same column overlap or lie close to each other.
Moreover, we can observe that the success rate of each attack on all schemes
that result in putting a given byte to the same number of positions also closely
follow each other, see Figures 12, 13 and 14.

Using these observations, we conclude that a given attack on any scheme
S will give the same performance that this same attack on a scheme S′ that
can shuffle a byte into the same number of positions as the scheme S. Thus,
an attack on the first byte of the SSS is identical to attacking an unprotected
implementation, while an attack on the second byte will perform as an attack
on a byte of e.g., V-RSI with 1 random bit (see Table 5 and Figures 7(d)
and 15(a)). Same resoning can be applied to P-SSS and MD-SSS schemes.
Thus, the RP scheme is as difficult to attack as M-RSI 4 × 4 with 10 bits or
V-RSI with 4 random bits (see Table 5).

Nevertheless, it is important to note, that this reasoning holds if the RNG
is not biased and if the implementation under attack does not have additional
flaws that an attacker can exploit nor additional sources of information
available to the attacker. This result can also vary in case if additional
countermeasures are applied with a shuffling scheme.

3.5 Applications & Modifications

It is easy to apply RSI, RS, SSS and their extensions to SubBytes or Ad-
dRoundKey operations of AES-128 since each of them operates only on one
byte of the state at a time and does not have any precedence requirements
inside of the operation. In order to apply these techniques to ShiftRows or
MixColumns operations we may simply consider a row or a column as a
memory unit (instead of a byte).

Same techniques might be adapted for 192-bit and 256-bit versions as
well as for other operations of AES cipher by using more random bits to
handle additional rows. RSI, RS, SSS and their extensions might be also
applied to other algorithms. These techniques should be applicable if parts of
the state are used independently from each other during some computations
e.g., the application of the S-box in ciphers like Blowfish [19], DES [16]
or PRESENT [2].

We can also combine RS, RSI, SSS and their extensions in order to
obtain more different shuffles, e.g., RS might be used with 10-bit version



218 N. Veshchikov et al.

of M-RSI on the AES-128 in order to get 2048 different shuffles by using
11 random bits.

Finally, it is worth noting that not all techniques presented here (as well
as their extensions) are equally practical and are equally secure (with a given
number of random bits). Nevertheless, we considered that all versions with
their extensions should be presented for the sake of completeness of this work.
For example, SSS is not as practical as RSI extensions for security, optimality
as well as penalty reasons; however, we think that SSS is a nice case study for
theory.

4 Discussion

All of the shuffling schemes that we propose and describe are similar i.e., each
one suggests a way of going through all indexes of the state in a particular
order that could be easily implemented with a small overhead. Most of these
techniques could be seen as extensions and generalizations of the random
starting index shuffling scheme.

Our scalable shuffling schemes can offer different number of shuffles and
different number of positions (moments in time) where a particular byte is
handled, overall it results in different levels of security. In order to choose
which shuffling scheme to implement we advise the designers of a cryptosys-
tem to consider the following criteria in given order:

• Number of available random bits
• Timing constraints
• Number of different operations that could be handled at a given moment

in time
• Number of shuffles

The first criterion is related to the basic constraints of the system, so the
designer should use as much randomness as he can in order to increase the
security. The second criterion changes depending on the given hardware and
implementation, so it has to be tested for each platform individually, however,
our results show that all shuffling schemes that we present result in very
similar timing overhead. Results of all our attacks suggest that a scheme
which generates shuffles such that higher number of different bytes that could
potentially be handled at a fixed moment in time (from the beginning of the
execution) increases the difficulty of an attack. Thus a designer of a cryp-
tosystem should choose a shuffling algorithm that maximizes this number.
Finally, the number of different shuffles that a given shuffling scheme can



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 219

produce does not influence the number of traces that is needed in order to
mount a successful attack. However, mounting some profiled attacks becomes
increasingly difficult when the number of shuffles grows since an attacker
would have to create a model per shuffle [4]. This parameter can also help in
case if the attacker can find out a position of one byte in order to reduce the
remaining uncertainty on the positions of other bytes.

Our results based on side-channel analysis using 3 different attackers show
that the number of different operations that might occur at a given moment in
time produces the biggest effect on the success rate of an attack. This result
hold even for attacks that take into account the implemented scheme. From
this perspective, the SSS scheme presents a disadvantage because it does not
shuffle all bytes, some of the bytes always remain at a fixed position in a
trace. However, SSS could still be interesting in practice, because it could be
implemented using only a couple of additional instructions on many hardware
platforms (without taking into account the random number generator) e.g.,
conditional swap instruction (MSWAPF) available on TMS320x2803x or
using compare-and-exchange (CMPXCHG) that is available on many Intel
and AMD processors. SSS could also be easily combined with other shuffling
schemes thus giving a boost to the security of the system.

A specific type of attack could also be mounted against all of the presented
shuffling schemes. If an attacker targets the random number generator in order
to find out the ordering that is generated by the shuffling scheme, she can
effectively remove the protection given by the countermeasure. This type
of attack could be mounted on any shuffling of masking countermeasures
[10]. Thus, algorithmic countermeasures that rely on randomness require a
secure random number generator that could not be easily targeted through
side-channel analysis.

5 Conclusions and Future Works

Often it is important to be able to choose among several different countermea-
sures, since some of them might be implemented more efficiently on a given
platform (e.g., the hardware might have special instructions available), that
is why it is quite important to have an entire set of different countermeasures
that might offer similar performances. This is especially the case when the
developed system has a lot of strong constraints, which is the case in mobile
applications such as used in IoT.

We presented a couple of new scalable shuffling techniques (RS and SSS)
and a wide variety of their extensions as well as several different extensions of
an existing shuffling scheme (RSI). The main advantage of our proposals is the



220 N. Veshchikov et al.

fact that they allow developers to fine-tune the countermeasure to their needs.
It is possible to adjust parameters of our shuffling techniques depending on the
requirements and constraints of the cryptosystem such as time (or throughput),
code (or hardware) size and amount of available random bits per unit of time. In
other words, our proposals are not as rigid as other existing shuffling schemes.

We have compared RSI, RS and SSS extensions between them as well
as with couple of other shuffling techniques such as RP from the several
points of view: data overhead, required amount of random bits and number of
different shuffles (orderings) that might be generated as well as their relative
strength against CPA attack on a simulator. We also implemented AES-128
block cipher using 21 of the proposed extensions of RSI, RS and SSS on
an 8-bit microcontroller in order to compare their time overhead over an
unprotected implementation. In our implementations shuffling is applied on
SubBytes operations of the first and the last rounds of AES-128, but it could
easily be extended to more operations, other versions of AES as well as
other ciphers. Presented techniques offer different levels of security given
a fixed number of random bits, however some of them are easier to implement
than others depending on the target hardware platform, so even less secure
techniques might be useful.

Our results show that the main parameter that influences the success rate
of an attack against a shuffling technique is the number of different bytes that
might be handled at a fixed moment in time, but not the number of shuffles
(during an attack on one byte). However, the number of shuffles increases
the difficulty of mounting a profiled attack and it also increases the difficulty
of attacking the entire key (position of one byte gives less information on
positions of the others), thus it is also an important parameter.

This techniques should not be used as a stand alone countermeasure. It
should be combined with masking techniques e.g., as suggested for the DPA
Contest v4 [1], especially since some studies show that masking techniques
are much more efficient in presence of noise [20], additional noise could be
provided by shuffling.

As a future work it would be interesting to implement same countermea-
sures on different hardware platforms in order to analyze whether some of them
might be better adapted to particular platforms. It would also be interesting
to explore different combinations of RSI, RS, SSS and their extensions.
Some of them might not be practical, others might be efficient and generate
more permutations. Finally, it would be nice to further extend these shuffling
techniques in order to allow them to shuffle several operations of the same
round at once, like SchedAES [13].



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 221

Appendix

6 Simple CPA

Figure 12 The success rate of an non-profiled correlation power analysis against different
shuffling techniques. Horizontal axis is logarithmic.



222 N. Veshchikov et al.

7 CPA with Integration

Figure 13 The success rate of an non-profiled correlation power analysis with integration
(preprocessing) against different shuffling techniques. Horizontal axis is logarithmic.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 223

8 Template Attack

Figure 14 The success rate of a (profiled) template attack against different shuffling
techniques. Horizontal axis is logarithmic.



224 N. Veshchikov et al.

9 Heatmaps of Byte Positions Distributions

Figure 15 V-RSI Heatmap of positions when the SubBytes operation takes place for every
byte.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 225

Figure 16 M-RSI 4 × 4 Heatmaps of positions when the SubBytes operation takes place for
every byte.



226 N. Veshchikov et al.

Figure 17 M-RSI 4 × 4 Heatmaps part 2 of positions when the SubBytes operation takes
place for every byte.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 227

Figure 18 M-RS 4 × 4 Heatmaps of positions when the SubBytes operation takes place for
every byte.



228 N. Veshchikov et al.

Acknowledgements

The research of L. Lerman is funded by the Brussels Institute for Research and
Innovation (Innoviris) for the SCAUT project. The research of S. Fernandes
Medeiros is funded by the Région Wallone.

References

[1] Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., and Najm, Z. (2014).
“Analysis and improvements of the dpa contest v4 implementation,”
in Security, Privacy, and Applied Cryptography Engineering, eds R. S.
Chakraborty, V. Matyas, and P. Schaumont (Cham: Springer), 201–218.

[2] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M. J. B., et al. (2007). “Present: an ultralightweight block
cipher,” in Proceedings of the 9th International Workshop Crypto-
graphic: Hardware and Embedded Systems-CHES, 2007, eds P. Paillier
and I. Verbauwhede (Berlin: Springer), 450–466.

[3] Brier, E., Clavier, C., and Olivier, F. (2004). “Correlation power analysis
with a leakage model,” in Cryptographic Hardware and Embedded
Systems-CHES 2004, eds M. Joye, and J. J. Quisquater (Berlin: Springer),
16–29.

[4] Bruneau, N., Guilley, S., Heuser, A., Rioul, O., Standaert, F.-X., and
Teglia, Y. (2016). “Taylor expansion of maximum likelihood attacks for
masked and shuffled implementations,” in Proceedings of theAdvances in
Cryptology – ASIACRYPT 2016 – 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4–8, 2016, Proceedings, Part I, Lecture Notes in
Computer Science, Vol. 10031, eds J. H. Cheon and T. Takagi (Berlin:
Springer), 573–601.

[5] Chari, S., Rao, J. R., and Rohatgi, P. (2002). “Template attacks,” in
eds B. S. Kaliski Jr., Çetin Kaya Koç, and C. Paar, Proceedings of
the 4th International Workshop: Cryptographic Hardware and Embedded
Systems – CHES 2002, Redwood Shores, CA, USA,August 13–15, 2002:
Lecture Notes in Computer Science, Vol. 2523, (Berlin: Springer), 13–28.

[6] Coron, J.-S., Kocher, P., and Naccache, D. (2001). “Statistics and secret
leakage,” in Financial Cryptography, ed. Y. Frankel (Berlin: Springer),
157–173.

[7] Herbst, C., Oswald, E., and Mangard, S. (2006). “An AES smart card
implementation resistant to power analysis attacks,” in Proceedings



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 229

of the 4th International Conference, ACNS 2006: Applied Cryptography
and Network Security, Singapore, June 6–9, 2006: Lecture Notes in
Computer Science, Vol. 3989, eds J. Zhou, M. Yung, and F. Bao (Berlin:
Springer), 239–252.

[8] Kocher, P., Jaffe, J., and Jun, B. (1999). “Differential power analysis,”
in Proceedings of the Advances in Cryptology-CRYPTO’99, (Berlin:
Springer), 388–397.

[9] P. C. Kocher. (1996). “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Proceedings of the CRYPTO:
Lecture Notes in Computer Science, Vol. 1109, ed. N. Koblitz (Berlin:
Springer), 104–113.

[10] Lerman, L., Bontempi, G., and Markowitch, O. (2015). A machine learn-
ing approach against a masked AES – reaching the limit of side-channel
attacks with a learning model. J. Cryptogr. Eng. 5, 123–139.

[11] L. Lerman, S. Fernandes Medeiros, G. Bontempi, and O. Markowitch. ().
“A machine learning approach against a masked AES,” in Proceedings of
the 12th International Conference, CARDIS 2013: Smart Card Research
and Advanced Applications, Berlin, Germany, November 27–29, 2013.
Revised Selected Papers, Lecture Notes in Computer Science, Vol. 8419,
eds A. Francillon and P. Rohatgi (Berlin: Springer), 61–75.

[12] Mangard, S., Oswald, E., and Popp, T. (2008). Power Analysis Attacks:
Revealing the Secrets of Smart Cards, Vol. 31. Berlin: Springer Science &
Business Media.

[13] Fernandes Medeiros, S.(2012). “The schedulability of aes as a counter-
measure against side channel attacks,” in Proceedings of the SPACE:
Lecture Notes in Computer Science, Vol. 7644, eds A. Bogdanov and S.
K. Sanadhya (Berlin: Springer), 16–31.

[14] Medwed, M., Standaert, F.-X., Großsch¨adl, J., and Regazzoni, F. (2010).
“Fresh re-keying: security against side-channel and fault attacks for
low-cost devices,” in Proceedings of the Progress in Cryptology–
AFRICACRYPT 2010, (Berlin: Springer), 279–296.

[15] Moradi, A., Mischke, O., and Paar, C. (2011). “Practical evaluation of
dpa countermeasures on reconfigurable hardware,” in Proceedings of the
2011 IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), (Piscataway, NJ: IEEE), 154–160.

[16] NIST FIPS PUB. 46-3. (1977). NIST FIPS PUB. 46-3 data encryption
standard. Federal Information Processing Standards. Gaithersburg, MD:
National Institute of Standards and Technology.



230 N. Veshchikov et al.

[17] TELECOM ParisTech SEN Research Group (2013). DPA Contest.
Availble at: http://www.dpacontest.org

[18] Rivain, M., Prouff, E., and Doget, J. (2009). “Higher-order masking
and shuffling for software implementations of block ciphers,” in C.
Clavier and K. Gaj, Proceedings of the 11th International Workshop,
Lausanne, Switzerland, September 6–9, 2009: Cryptographic Hardware
and Embedded Systems – CHES 2009: Lecture Notes in Computer
Science, Vol. 5747, (Berlin: Springer), 171–188.

[19] Schneier, B. (1994). “Description of a new variable-length key, 64-bit
block cipher (blowfish),” in Fast Software Encryption, ed. R. Anderson
(Berlin: Springer), 191–204.

[20] Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B.,
Medwed, M., Kasper, M., et al. (2010). “The world is not enough:
Another look on second-order dpa,” in Proceedings of the Advances in
Cryptology-ASIACRYPT 2010, (Berlin: Springer), 112–129.

[21] Tillich, S., Herbst, C., and Mangard, S. (2007). “ProtectingAES software
implementations on 32-bit processors against power analysis,” in Pro-
ceedings of the 5th International Conference: Applied Cryptography and
Network Security, ACNS 2007, Zhuhai, China, June 5–8, 2007: Lecture
Notes in Computer Science, Vol. 4521, eds J. Katz and M. Yung (Berlin:
Springer), 141–157.

[22] Veshchikov, N. (2014). “Silk: High level of abstraction leakage simulator
for side channel analysis,” in Proceedings of the 4th Program Protection
and Reverse Engineering Workshop, PPREW-4, (New York, NY: ACM),
3:1–3:11.

[23] Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., and Standaert, F.-X.
(2012). “Shuffling against side-channel attacks: a comprehensive study
with cautionary note” in Proceedings of the Advances in Cryptology
ASIACRYPT 2012: Lecture Notes in Computer Science, Vol. 7658, eds
X. Wang and K. Sako (Berlin: Springer), 740–757.



Variety of Scalable Shuffling Countermeasures against Side Channel Attacks 231

Biographies

Nikita Veshchikov got his Bachelor in Computer Sciences in 2009 at Uni-
versité Libre de Bruxelles (ULB) in Belgium. He continued studies in the
same field and got a Master in Computer Sciences with advanced studies of
embedded systems in 2011 at the same university. During his master thesis he
studied reverse engineering and anti-patching techniques. Since 2011 Nikita
works as a teaching assistant while also working on his PhD thesis in the field
of side-channel attacks. His is mostly interested in simulators and automated
tools for side-channel analysis and computer assisted secure development. He
is also interested in lightweight secure implementations.

Stephane Fernandes Medeiros got his Bachelor (in 2007) and his Master (in
2009) degree in computer sciences at the Université libre de Bruxelles (ULB),
Belgium. He worked on his PhD in the domain of software countermeasures
against side-channel attacks while being a teaching assistant at ULB, he got
his PhD in 2015. Now Stephane works as a postdoctoral researcher at the
Université libre de Bruxelles, he is mainly working on security protocols for
small embedded devices.



232 N. Veshchikov et al.

Liran Lerman received the PhD degree in the department of Computer
Science at the Université libre de Bruxelles (in Belgium) in 2015. In 2010,
he received with honors (grade magna cum laude) the master degree from
the same university. During his PhD thesis, he was a teaching assistant and
a student doing research as part of a Machine Learning Group (MLG) and
the Cryptography and Security Service (QualSec). Currently, he is a post-
doctoral researcher of the QualSec. His research relates to machine learning,
side-channel attacks and countermeasures.


