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Abstract

We present and motivate a parallel algorithm to compute promising candidate
states for modifying the state space of a pseudo-random number generator
in order to increase its cycle length. This is important for generators in
low-power devices where increase of state space to achieve longer cycles
is not an alternative. The runtime of the parallel algorithm is improved by
an analogy to ant colony behavior: if two paths meet, the resulting path is
followed at accelerated speed just as ants tend to reinforce paths that have
been used by other ants. We evaluate our algorithm with simulations and
demonstrate high parallel efficiency that makes the algorithm well-suited even
for massively parallel systems like GPUs. Furthermore, the accelerated path
variant of the algorithm achieves a runtime improvement of up to 4% over the
straightforward implementation.1

Keywords: Pseudo-Random Generators, Parallel Efficiency, Ant Colony,
Lightweight Cryptography.

1 Introduction

Pseudo-random numbers are an important ingredient in a wide range of
cryptographic protocols and applications, including applications in resource-
constrained environments such as RFID chips or Internet of Things. There, the

1This publication is an extended version of [10].
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pseudo-random number generators (PRNGs) can only use little energy, i.e. use
simple algorithms, but still must provide a decent level of security.

For instance, in smart sensors or wearables, limited computing power and
solar-powered energy-supply challenges the implementation of state-of-the-
art cryptographic algorithms. With the increasing number of field-deployed
but soon to be obsolete IoT components, this problem can be expected to
increase. One of the important criteria for a PRNG is the cycle length,
i.e. the number of outputs until the sequence of outputs will repeat, but
there are more criteria such as good statistical properties of the output
sequence, forward and backward secrecy to name a few. Hence it is quite
complicated to design a PRNG with a moderate state space size (because of
resource constraints such as energy from a battery) that can provide these
properties. For a PRNG that has already been investigated with respect to
above criteria but where an increase in cycle length is desirable, we have
proposed in previous work a method that only modifies a small number of
state transitions to increase cycle length notably [18]. In order to find which
state transitions to change, the state space of the PRNG has to be sampled,
which is computationally intensive, and thus calls for the use of parallel
computing.

In this work, we motivate and present a parallel algorithm to find
promising states, called candidate states, for the modification of state tran-
sitions. The parallel algorithm is inspired by the behavior of ants, that
tend to follow trails where other ants have already passed. We demon-
strate the advantage of our algorithm over a straight-forward parallel
implementation by simulation. While the asymptotic parallel efficiency of
the parallel algorithm is highly dependent on the structure of the state
transition graph, experiments indicate a good parallel efficiency (70%)
in practice even for 1000 threads. Thus, together with its regular struc-
ture, the algorithm is suited for massively parallel computing engines
like GPUs.

The remainder of this paper is organized as follows. In Section 2, we
summarize background information on PRNGs. In Section 3, we present a
parallel algorithm to identify promising candidate states for transition modi-
fication. In Section 4, we demonstrate the suitability of our parallel algorithm
by simulation experiments. In Section 5, we describe further improvements
to achieve longer cycles. Section 6 gives conclusions and an outlook to future
research.
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2 Fundamentals & Related Work

Pseudo-random number generators (PRNGs) are used to generate (pseudo-)
random numbers that are frequently used in communication protocols, be
it as a nounce, a challenge, or for some other purpose. Between seedings,
and while no additional entropy bits are input to the PRNG, on each call
it outputs a value that depends on the current state, and transitions to a
follow-up state by applying a state transition function on the current state.
Thus, it works like a finite state automaton without input. A hash chain, i.e. a
cryptographic hash function repeatedly applied to some initial value, is also
used in cryptographic protocols, e.g. in Lamports authentication protocol [12].
After hashing the initial value once, the hash function works on the set of hash
values much like the above transition function on the set of states. Other
cryptographic primitives such as stream ciphers might be modelled in this
manner as well.

PRNGs in resource-constrained systems such as mobile sensors typically
use a state space of moderate size, because e.g. in 8-bit systems the increase
of the state space by 8 bits leads to one more instruction for each addition
or logical operation, which in turn increases the energy consumption per
cryptographic operation, and thus puts a load on the battery. Hence we
see hash functions with low computational load and 64-bit output like
SipHash2 or BLAKE2s3, and PRNGs with state spaces of similar size,
such as AKARI [14].

There are a number of general security requirements for cryptographic
primitives like forward secrecy and backward secrecy [15] and PRNG-specific
models such as [3] and [4], or suites that test the output of PRNGs for
randomness such as the Marsaglia suite of Tests of Randomness [13] and
the NIST test suite [17]. Still, if the cycle length of the primitive is short,
patterns of output bits can be stored and repetition can be detected. A practical
example for this is the attack on A5/1 (cf. [2, 7]). Thus, a long cycle length is
a prerequisite for enabling forward secrecy.

A PRNG can be modelled as a deterministic state transition function f :
M → M mapping a finite state space of size n = |M | to itself. If a single
state is interpreted as a node and the transition between a state and its unique
successor state is interpreted as an edge, the result is a directed graph Gf =
(V ; E) with V := M and E := {(x, f(x))|x ∈ M}, where each node has

2https://131002.net/siphash/siphash.pdf
3see RFC 7693.



150 J. Keller et al.

exactly one outgoing edge (deg-1 graph). The structure of the generated graph
provides information about the behavior of the primitive. For non-bijective
transition functions, the graph typically consists of several weakly connected
components. Each of these components consists of one cycle and generally
several trees with roots located on the cycle. The trees tend to be very ragged.
Figure 1 depicts the structure of a component.

Properties of the graph include the number and sizes of the connected
components, length of the cycles and maximum depth of the trees. In order to
identify all connected components of a graph, the complete state space would
have to be analyzed, e.g. by a depth first search (DFS). The cycles can be
detected by starting from the unique back edge in each component. If the state
space is too large for complete exploration, a part of the state space can be
analyzed, accepting the fact that one or several components might be missed.
Still, this approach can provide valuable information about the expected state
space structure. The typical approach is to randomly select nodes as starting
points, and to follow the path from each starting point until a cycle is reached.
The number of followed paths, which influences analysis time, does not need
to be very large: as the expected number of components is small (see below),
already a small number of sample paths through the state graph will hit all

Figure 1 Typical connected component of a state transition graph, taken from [1].
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of the larger components, and provide their cycle lengths. Please note: as
the components are much larger than their cycles, a short cycle in such a
component affects many seed states in the state graph.

In [9], an analysis method of the state space is presented that avoids the
large memory requirements of depth-first search, where each node must be
marked as visited, which is clearly impossible if n ≥ 240. The idea is to
only store certain nodes while traversing the tree. If only the nodes are stored
that are reached after 2, 22, 23, . . . steps taken since the start value (so called
anchors), the required memory usage is logarithmically in the number of steps,
i.e. O(log n), and thus very low. A cycle is reached if the newest anchor is
reached again. Figure 2 illustrates the process of cycle detection. The low
memory requirement comes with a time overhead: the algorithm might need
twice as long as would be needed in the optimal case.

This runtime can be improved by spending more memory, but less than
1 bit per node. One can store the nodes reached after k, 2k, 3k, . . . steps, and
check in each step if one of the stored nodes is reached again. This reduces
the overhead to at most k additional steps, but requires a search data structure
of size M = O(m/k) for a path of length m, which must be queried in each
step. Hence, the query time must be constant (at least if amortized over many
queries), for example by using a hash table with low utilization. The parameter
k can be chosen given the path length m and the memory size M . While the
latter is known for the computer to be used, the path length can only be guessed.
For a randomly chosen state transition function, the expected path length is
O(
√

n) [6]. However, there is no guarantee for this, so if the data structure
runs out of memory, it must adapt dynamically by throwing away every other
node stored, and increasing k to twice its former value. The data structure can

Figure 2 Cycle detection.
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also be used to shorten the time for sampling further paths: if one keeps the
nodes stored from previous paths, then one can stop following a further path
if one of these stored nodes is reached. Because of the tree structures in the
components (cf. Figure 1) the paths meet sooner or later in the tree. At least,
if two paths are in the same component, another complete walk around the
cycle can be avoided for the second path. As both the expected tree path4 and
cycle lengths are O(

√
n) with comparable constant factors [6], this on average

should reduce the length by a factor of 2. As the number of weakly connected
components is expected to be small (0.5 log n, see [6]) with one component
expected to dominate (0.75n), many paths will be in the same components,
and thus it normally pays off to increase k to be able to store nodes from all
paths sampled so far.

The runtime of this algorithm is proportional to the average length of
the paths and the number of starting points. As a small number of starting
points suffices, the average path length can be around 240 and still yield
reasonable analysis time. This restricts n to 280 if path lengths are around

√
n

(see above), which allows analysis of PRNGs or hash chains on a 64-bit state
space. The resulting tree and cycle structure for these samples might provide
valuable insights with respect to the security of the algorithm. Also, the sizes
of the connected components can be guessed from the fractions of starting
points belonging to each component, within a confidence interval. Please note
that there are comparable approaches for bijective functions, notably Knuth’s
algorithm [11] with an expected runtime of O(n log n), which can be made
linear in time by using 1 bit per node, or improved by using stored nodes as
described above.

3 Algorithms

For a PRNG with a short cycle, our strategy to increase the cycle length is to
cut the cycle at some node (which we will call a special state in the following)
by modifying the transition function to divert to a node somewhere deep in
the tree [18], as illustrated in Figure 3. There, the outgoing edge (ui, wi) of
cycle node ui is modified, and tree node vi becomes the new successor of ui.
The resulting cycle length will be the sum of the previous cycle length and the
length of the tree path from vi to wi. This modification of the state transition
graph will be called “Action A” in the following.

4The tree path is the path from the start node until the entry into the cycle.
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Figure 3 Breaking up a cycle to increase cycle length.

This can be done for each component of notable size, and even multiple
times within each component to achieve a larger increase of the cycle
length5. As the number of components is expected to be small, with only
a few components of notable size (see previous section), the total number of
modified edges will be small as well, and can be stored in a lookup table. The
modified PRNG state transition function can then be implemented as given
by Algorithm 1.

Algorithm 1 Modified state transition function.

Precondition: s is the current state of the PRNG, TRANS is the original
state transition function

1: function MODTRANSITION(s)
2: if s is special state then � access to lookup table
3: snext ← new successor of s from

lookup table
4: else
5: snext ← TRANS(s)
6: return snext

5Also other modifications can be applied: see Section 5 and [18].
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Please note that the time spent in the lookup table still increases the
execution time of the transition function, which could increase the energy
consumption. Hence, we split the test — which will fail most of the time,
because there are only few special states — into two parts: a very fast test,
that fails in most cases, and a follow-up test, that does the exact check but is
executed only seldomly. The first test uses a property that is easily testable,
e.g. that some bits of the state representation have a certain bit pattern. We
call these nodes candidates. The only restriction imposed by this test is that
states where the transition function shall be altered must be candidates, which
is however no serious restriction, cf. [18].

The difficult task is to find a small number of special states and new
edges going out from these special states. This must be done such that cycle
lengths are increased and other properties like statistic behavior of output is
not harmed. While this has to be done only once, i.e. is an offline task, it
requires to sample the state graph (see previous section), i.e. it might require
240 executions of the state transition function if the average path length is
232 and 28 starting points are chosen. To do this in a reasonable time calls for
a parallel algorithm.

If we ignore the case of encountering a component without a candidate
(that case can be handled by additionally using anchors, cf. Section 2), then
the selection of special states can be done using the construction of the
candidate graph, i.e. the graph of all candidate nodes reachable from the
chosen starting points. An edge in the candidate graph between two candidate
nodes ci and cj represents the unique path in the state graph from ci to cj ,
and is annotated with the length of this path. When the candidate graph has
been computed, the cycle lengths and the tree depths can be computed by
DFS as the candidate graph is much smaller than the state graph and will fit
into the memory. The special states can be chosen by changing edges such
that the increase in cycle length is maximized. This can be repeated until
all candidates of a connected component of the candidate graph are on a
cycle, or a maximum number of special transitions is achieved. For further
details about the determination of special states from the candidate graph,
see Section 5 and [18].

The computation of the candidate graph follows a simple paradigm: the
paths originating from the starting points are followed, and if two paths meet,
only one of them is followed further. While we are following a path, we record
all candidates that we visit. This leads to the following basic parallel algorithm,
cf. Algorithm 2.
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Algorithm 2 Parallel algorithm to compute candidate graph.

Precondition: S is the set of starting points, m = |S|, ISCAND checks if
a state is a candidate.

1: function COMPCGRAPH(S)
2: for all i← 1 to m do � Parallel Loop
3: pi ← si ∈ S
4: repeat
5: repeat
6: pi ← TRANS(pi)
7: until ISCAND(pi) � Reached next candidate
8: ADDEDGE(pi)
9: until pi is already visited by other path

Each thread follows a path from one candidate to the next. Then it checks
if that candidate has been already visited by another thread. If so, then the
thread stops, and the other thread continues. If not, then the thread follows
this path further in the next round. If two threads reach a candidate in the
same round, then the one with the smaller ID continues. Please note that we
hide some details here. First, to construct the candidate graph, not only nodes
but also edges with distances must be added. Also, one thread will reach the
cycle and there meets a candidate visited earlier by itself, which must also be
detected. Finally, it is not guaranteed that a path contains a further candidate
(although this is unlikely), so that in addition, other measures are necessary
to detect if a cycle has been reached (cf. Section 2).

The parallel algorithm partitions each tree in the graph into chains that
correspond to the paths that the threads follow. A chain always starts in a
starting point si and ends in a candidate reached by more than one path and
where si is not the closest starting point. Put otherwise, when the path from
si reaches the candidate, it has been visited before by another thread. Figure 4
illustrates this with five starting points A to E, where the paths starting in
A and B meet in candidate X , and only the path from A is followed further.
Similarly, the paths starting in C, D and E meet in candidate Z, where only
the path from C is followed further until candidate Y , where it meets the path
from A, that is followed further around the cycle. The different chains are
indicated by different colors.

The runtime of the algorithm is then determined by the longest chain, i.e.
by the longest sequence of candidates found from this set of starting points,
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multiplied with the average distance between candidates. The average distance
between candidates is n/c if there are n possible states and c candidate states,
assuming that the transition function is random enough that the deterministic
choice of the candidates makes their distribution in the graph similar to a
random distribution. The standard deviation is high, however, so that the
maximum distance occurring in one round can be much higher than the
average, leading to load imbalance and idling threads. In order to avoid
this, each thread follows several paths in each round, so that the resulting
runtime better approaches the average. In addition, this occurs quite naturally
as the number of followed paths m can be larger than the number p of threads
available, even considering a massively parallel environment like a GPU with
several thousand hardware threads. The technique to follow multiple paths
per round with subsequent query for visited candidates has been used before
in a parallel program [8], although with a different intention: by bundling
multiple queries and querying more seldom, the high communication cost in a
message-passing machine could be amortized. This does not play a role in our
current research as the graph is small enough to be kept in a shared memory.
Still, in a GPU, the access to the global memory is slow, so that infrequent
coordinated access helps performance.

If the number of followed paths gets smaller after some time, a load
balancing can be performed to handle load imbalance as far as possible. As
soon as the number of followed paths gets smaller than the number of threads, a
load imbalance necessarily occurs. This load imbalance hurts if the difference
between the maximum chain length and the majority of chain lengths is large.
As the small example in Figure 4 illustrates, after two rounds only two of
the five chains are left, and after three rounds only one chain is left, which
continues for another four rounds.

The runtime could be improved if such long chains could progress faster
relative to other paths. Note that this is possible as a thread follows several
paths in each round, so that instead of advancing t paths to the next candidate,
the thread could advance t − 2 paths to the next candidate and one path
to the next but one candidate. Thus, the latter path would progress twice
as fast as the other paths. As the thread now only handles t − 1 instead
of t paths, a different distribution of paths onto threads is necessary, but
presents no problem. Unfortunately, the long chains are only known at the
end of the algorithm, so it is not clear which path should progress faster than
the others.

In order to still improve load balance, we borrow an analogy from
nature: when an ant meets the path of other ants, it tends to follow this
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Figure 4 Parallel sampling of paths.

path, thus strengthening this path by placing further pheromone. Ant colony
algorithms have successfully been used to solve problems related to graph
theory, e.g. in [5]. Here, if a path meets a candidate that has been already
visited by another path, it strengthens that path by “donating” its own time
slot to the other path, which is possible as the first path need not be followed
further. Hence, if the other path is a long chain, it will progress faster. While
this simple heuristic will not help a long chain where no other paths end,
that situation is unlikely due to the ragged structure of the trees in random
deg-1 graphs. Obviously, this donation cannot be continued long in a linear
fashion, because each thread follows at most m/p paths in one round, and
therefore an acceleration of a path that got donations from more than m/p
others would slow down a round. Hence, the most advantageous form of
acceleration must be found out by experiments, as the optimum acceleration
cannot be determined at runtime. Furthermore, the donation can be transitive,
i.e. a path that got donations from other paths, and donates its own time to
another path, would also donate the time it got itself from others.

To motivate the concept of donation further, let us assume we start from
m starting points and explore the candidate graph from there. If the candidate
graph comprises q nodes after exploration, and we employ p ≤ m processors,
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then a trivial lower bound is q/p steps, where a step represents the (average)
time to bridge the distance between two candidate nodes.Another lower bound
arises from the structure of the candidate graph. If the shortest path from a
starting point to the first candidate on the tree comprises t0 candidate nodes,
and the cycle comprises c candidate nodes, then the minimum runtime of
any (sequential or parallel) algorithm is t0 + c. Consequently, the processors
cannot be fully used, leading to low parallel efficiency, if q/p < t0 + c, i.e.
if p > q/(t0 + c). The extreme case happens if all m starting points have a
common successor candidate, from which a single path leads to the cycle (see
Figure 5).

In such a graph, q = m + t0 + c, and at most p = 1 + m/(t0 + c)
processors can be employed. As t0 and c can be assumed to be around

√
n,

and m normally is smaller, this would restrict us to using p = 2 processors.
However, even if q/p is the sharper lower bound, it is not obvious how

to balance the load onto the processors, because the lengths of the different
chains are unknown. In the (hypothetical) case where we would know all
chain lengths hi in advance, we could proceed as follows. The processors

Figure 5 Candidate graph with minimum parallelization potential.
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would still work in rounds, but not all chains would be processed with the
same speed. By speed, we here mean the number of links in the chain to be
processed in one round. The speed of chain i would be proportional to hi/q, as∑

i hi = q, so that if a chain is twice as long as another, it gets processed twice
as fast. In this manner, all rounds could be completely filled, and all processors
employed, as all chains would be completely processed at the end. We admit
that we simplify a bit, because the workload must still be distributed over the
processors, and non-integral values of hi/q must be handled, but both issues
are more technical than challenging. Figure 6 depicts that the chain lengths

Figure 6 Chain lengths of Logistic Map (above) and MD5 (below).
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in practice indeed vary widely. For candidate graphs of the logistic function
and MD5, both with 10,000 starting points, the distributions of chain lengths
in the largest connected component are shown.

The consideration of the hypothetical case shows that in order to have
a parallel algorithm with high parallel efficiency, it is best to process long
chains faster than short ones. In our real case, we do not know anything
about the length of the chains initially, we just know the starting points. When
following the chains, some will terminate early. This means, that they have
been processed too fast, and the others too slow. This motivated the donation
strategy to accelerate the processing of long chains. The simplest indicator to
identify a potentially long chain is the fact that the chain reached a candidate
earlier than another.

The experiments in Section 4 illustrates that simple strategies are sufficient
to turn this nature-inspired analogy into a real advantage.

4 Experiments

To quickly assess the advantage of our parallel algorithm with path accelera-
tion over the straight-forward parallel implementation, we use a simulator. The
simulator reads in a candidate graph that has been produced in our previous
research [18]. It then simulates the threads one by one and round by round. As
the candidate graph structure is already available, the inner repeat-until loop
from Algorithm 2, that searches for the next candidate, can be reduced to one
step. Still, as the distance between succeeding candidate nodes is stored in the
graph, the exact runtime of a round (in terms of maximum number of calls to
function trans per thread) can be given.

The simulator is applied to a graph with paths from m = 104 randomly
chosen starting nodes, using as transition function the cryptographic hash
function MD5 with output restricted to 64 bits6. The candidate set was defined
as the set of nodes with bits 4 to 25 set to 1.

The simulator is run in several configurations: either with p = 100, 500
or 1000 threads, to test differing ratios of m/p. We use two simple donation
functions: either linear or logarithmic in the number of donated time slots (up
to m/p). Additionally, we use the straight-forward implementation, where no
donation occurs. For comparison, we also give the sequential runtime. Please

6We are aware that MD5 is outdated, and used SHA-3 in [18]. Both graph structures are
quite similar to random deg-1 graphs, and thus should behave similarly with respect to the
parallel algorithm.
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Table 1 Simulated runtimes of parallel algorithm for different thread count and donation
strategies

Donation Strategy

p No Linear Logarithmic

1 155,524 – –

100 1,614 1,553 1,598

500 379 371 380

1000 226 225 229

note that by runtime, we mean the number of edges from one candidate to
the next that a thread follows during the algorithm. We skipped the more
exact measure of calls to function trans in order not to model the load
balancing.

Table 1 presents the results for the different configurations. We see that for
p = 100, the linear donation strategy brings a runtime advantage of 4%, which
seems small but is notable given that less than 100 rounds are done in the par-
allel algorithm, so that it will take a while before time slot donation can show
effect. Also, for an algorithm with a sequential runtime of many hours, this
increase still saves a minute in the parallel version. For larger p, the advantage
is smaller, as more edges have already been processed before the donation
can show effect. The logarithmic donation strategy brings a small advantage
for p = 100 but is slightly slower than the straight-forward implementation
without time slot donation. Hence, the linear donation strategy should be
chosen. We also note that the parallel efficiency of our algorithm is high: still
70% for p = 1000, demonstrating scalability for massively parallel computing
engines like GPUs. While it would be desirable to formulate parallel efficiency
as a function of p, this is not possible as it also depends on the structure of the
state graph.

Figure 7 shows the average cycle length of this reduced version of MD5
after a repeated application of Action A with 100 iterations. It can be seen that
a significant increase in average cycle length is achieved.

We also tested the algorithm with the logistic map f(x) = a · x · (1− x)
for a = 3.99 and x implemented by double precision IEEE754-compliant
arithmetic, as an example of a chaotic PRNG [18], but that graph is too small
and too flat. It comprises only 20,295 edges outside cycles for 10,000 starting
points. Thus, no runtime difference between the different donation strategies
could be observed. However, the parallel efficiency of the algorithm is high:
99% for p = 100 to 88% for p = 1000.
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Figure 7 MD5 cycle length after repeated Action A application.

5 Further Improvements

The results presented in Section 4 show that the gain in average cycle length
by the repeated application of Action A saturates after a certain number of
iterations. This can easily be explained: let us assume that the initial tree
path that is selected for Action A has a length of t0 and the cycle length
of the respective component is c0. Then it applies that ci+1 = ci + ti, as
the cycle length increases by the former tree path and ti+1 = α ∗ ti with
0 < α < 1 if we assume as a simplification that the remaining, smaller
tree has a depth that is only a fraction α of the previous depth. Solving
these equations leads after s iterations to cs+1 = c0 + t0 + t1 + · · · + ts
and ti = t0 ∗ αi, which is a partial sum of a geometric series and
therefore cs+1 = c0 + t0 ∗ (1− αs+1)/(1− α).

As c0 and t0 are typically similar in size, the first iterations increase
the cycle length by a factor of two. Subsequent iterations lead to an
increasingly smaller growth of the cycle length. In the case that t0 is sig-
nificantly smaller than c0, the growth is even smaller. Using the data from
the experiments in 7, the α value was calculated to be ∼0.94 in average,
while c0/t0 was ∼1.045.

In order to increase the cycle length growths again, a different method for
the break-out that is based on two known components i and j can be applied.
If one of the components has a significantly larger cycle length ci > cj , the
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components can be joined by breaking up the cycle of the smaller component
and break-out to the deepest known tree node of the larger component.This will
transform the smaller component into a partial tree of the larger component.
As a result, the average cycle length of the state space graph is increased,
because the smaller cycle length has been eliminated. The cycle length of
component i would be unchanged, but its size would grow to ñi = ni + nj .
The node with the longest tree path would be ṽi = vj , with a tree path
length of

t̃i = ti + cj + tj . (1)

As as result, the average cycle length would increase by

Mi,j = ci(ñi − ni)/n− cjnj/n = (ci − cj)nj/n. (2)

Figure 8 depicts the approach, which will in the following be denoted as
“Action B”. Please note that Action B increases the tree depth of the larger
component, so that subsequent Actions A can improve the cycle length better
again.

Figure 9 shows the average cycle length over the number of iterations for
Action A only (blue dashed graph) over the combination of Action A and B
(red solid graph) for the reduced version of MD5 used in the previous section.
Action B is applied as often as possible, i.e. twice for the 100 starting points,

Figure 8 Merging two components.
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Figure 9 MD5 cycle length after repeated Action A and B application.

as it merges two components that have been identified. It can be seen that the
increase in average cycle length by Action B is not very large, however the
following Action A produces a notable increase, because a much deeper tree
is available. This is expected, because if component i is increased in size in
one step by Action B, the maximum tree path length is increased significantly
at the same time, so that i will be a good candidate for Action A in the next
steps.

After 99 iterations and an increase by a factor of 25.4, no further improve-
ment could be achieved, as all candidates except one are on one cycle, and the
last has a tree path length so small that it is excluded from further action. The
use of Action B is important, as it allows twice the total increase compared to
Action A alone: 25.4 vs. 12.7.

It is notable that while the two large connected components have 61
and 37 starting points respectively, the larger component initially has a
shorter cycle length than the smaller one: 2.03 · 109 versus 3.39 · 109.
Also, the maximum tree path length is larger in the smaller component:
4.68 · 109 vs. 4.02 · 109.

In order to evaluate the behavior for large numbers of iterations, the same
analysis was performed for a reduced version of SHA-3, this time for a
large candidate graph based on 1000 start values. SHA-3 was chosen as a
candidate with already exceptional good state space properties, to investigate
if similar improvements can be achieved on an algorithm that has no apparent
weaknesses in the state space structure. In order to be able to perform the
analysis in a reasonable amount of time, the output was again restricted to
64 bits by selecting only the lower 64 bits from the actual 224 bits that the
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Figure 10 SHA-3 cycle length after repeated Action A and B application.

algorithm is specified for as a minimum. Figure 10 shows the result of a
repeated application of Actions A and B.

It can be seen, that the cycle length increase with a factor of 16.6 after 943
actions is still significant, which shows that the breakout method is also useful
to improve the cycle length of SHA-3. The figure furthermore shows that for
a repeated application of Action A and B, the average cycle length increase
also becomes smaller for an increasing number of iterations. It runs into a
saturation, similar to the behavior for Action A only. This can be explained by
the fact that the algorithm that choses the components to be merged during
Action B based on the size of the component, so the merged components get
smaller for each application. At the same time, the gain of the Actions A that
follow an Action B becomes smaller accordingly.

In order to evaluate the potential positive or negative impact of the break-
out method to the statistical properties of the PRNGs, the original and modified
versions of the algorithms have been analyzed with the NIST statistical test
suite. The NIST suite has been chosen, because it covers a wide range of
different tests and is easily applicable on a larger number of input values.

Figure 11 depicts the percentage of passed NIST tests for the 100 sequences
of the shortened version of MD5 that have been analyzed. The results are
simply ordered by percentage to allow an easy overview. The blue dashed
line is the result for the unmodified function and the grey dotted line for the
breakout using Actions A and B.

Figure 12 shows the same data for the 1000 sequences of the shortened
version of SHA-3. It can clearly be seen that there is only a negligible
difference between the original and the versions modified using Actions
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Figure 11 Passed NIST Tests for MD5.

Figure 12 Passed NIST Tests for SHA-3.

A and B. The dashed and the dotted lines are congruent, as the same p-values
are calculated for both versions. This shows that the statistical properties of
the PRNGs are not negatively impacted by the application of the breakout
mechanism.
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6 Conclusion

We have presented a parallel algorithm for finding promising candidate states
to modify the state transition function of a pseudo-random number generator.
Use of these candidates allows to increase the cycle length notably, which is
helpful if the state space itself cannot be enlarged due to resource constraints
such as performance and energy in embedded devices. The inherent load
balancing problems of this algorithm can be resolved by the use of an ant
colony-like strategy: paths that are not followed further because of meeting
another path donate their time to the other path that can then progress faster.
This illustrates once more how nature can inspire improvements in security-
related algorithms. The resulting parallel algorithm exhibits regular structure
and high efficiency even for large thread count, and thus is suited for massively
parallel computing engines like GPUs.

As future work, we would like to extend our work towards similar
primitives such as stream ciphers. Here, Spritz [16] might be a good candidate,
as it would also allow to extend our work from non-bijective towards bijective
transition functions.
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