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Abstract

Intrusion detection has attracted a considerable interest from researchers
and industry. After many years of research the community still faces the
problem of building reliable and efficient intrusion detection systems (IDS)
capable of handling large quantities of data with changing patterns in real time
situations. The Tor network is popular in providing privacy and security to
end user by anonymizing the identity of internet users connecting through a
series of tunnels and nodes. This work identifies two problems; classification
of Tor traffic and nonTor traffic to expose the activities within Tor traffic
that minimizes the protection of users in using the UNB-CIC Tor Network
Traffic dataset and classification of the Tor traffic flow in the network. This
paper proposes a hybrid classifier; Artificial Neural Network in conjunction
with Correlation feature selection algorithm for dimensionality reduction and
improved classification performance. The reliability and efficiency of the
propose hybrid classifier is compared with Support Vector Machine and naive
Bayes classifiers in detecting nonTor traffic in UNB-CIC Tor Network Traffic
dataset. Experimental results show the hybrid classifier, ANN-CFS proved a
better classifier in detecting nonTor traffic and classifying the Tor traffic flow
in UNB-CIC Tor Network Traffic dataset.
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1 Introduction

The computing world has changed over the past decade due to the rapid
development of internet and new privacy enhancement technologies to circum-
vent internet censorship. Tor which is popular in fighting internet censorship
has been deployed to serve thousands of users transferring terabytes of data
daily [1, 2].

Tor is an overlay network designed to provide privacy and anonymity
over the internet for TCP based applications like browsing. It operates by
anonymizing the identity of users connecting through a series of tunnels and
nodes. A user browses the web firstly by sending a request anonymously to
Tor routers from one of the directory servers [2, 3]. Once a connection is
established, traffic is relayed to the first router also called the Entry Guard. A
session key is then generated between the client and the Entry Guard using
Deffie-Hellman key exchange [4]. The same process is repeated on one router
(hop) at a time to extend the circuit each time with established session keys for
the previous routers. The last hop called the exit router communicates directly
with the destination as a proxy [1]. With the establishment of three routers, the
circuit is ready for internet traffic. The design of TOR network which includes
the use of three hops and session keys helps to maintain anonymity through a
concept called ‘perfect forward secrecy’[2, 5].

Tor networks are created to give internet users their privacy, freedom of
speech, illegal tapping traffic and surveillance of network threatening users’
personal identity [6]. Besides Tor network being used for good, greater portion
of its traffic are port scans, hacking attempts, exfiltration of stolen data and
online criminality [2].

Over the last decade, Tor traffic classification has advanced in its applica-
tions in systems like quality of service (QoS) tools or Security information and
Event management (SIEM) [7]. A considerable interest have been attracted
from researchers and the industries to the study of these technologies and
developing classification techniques [7-9].

To this effect intrusion detection system (IDS) plays an important role
in Tor networks. Intrusion Detection Systems are placed on the networks to
monitor and detect anomalies [10]. In general IDS can be categorized into two
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components, based on the detection technique. Signature-based and Outlier-
based IDS. Most IDs employ a signature-based detection approach where the
network traffic is monitored and compared against database rules or signature
of known anomaly in network traffic, [10]. An alarm is raised on detection of
a mismatch. Signature based is the most common as they do not necessarily
have to learn the network traffic’s behavior. Although it is effective in detecting
known anomalies, it cannot detect unknown anomalies unless the signature
and rules are updated with new signatures [13, 14]. Signature based is known
to have a significant time lapse between detection of an attack and activation
of its corresponding signature [12]. Signature based techniques are mainly
human-dependent in creating, testing and deploying signatures.

The outlier technique is a behavioral based detection system. It observes
changes in normal activity of network traffic and builds a profile of the network
traffic being monitored [15, 16]. An alarm is raised whenever a deviation from
the normal behavior is detected. It has the ability to detect unknown anoma-
lies. However outlier detection based IDS have the disadvantage of being
computational expensive because the profile generated over a period needs to
be updated against each system activity [12, 17]. Machine learning techniques
have the ability to learn the normal and anomalous patterns automatically by
training a dataset to predict an anomaly in network traffic. One important
characteristic defining the effectiveness of machine learning techniques is
the features extracted from raw data for classification and detection. Features
are the important information extracted from raw data. The underlying factor
in selecting the best features lies in a trade-off between detection accuracy
and false alarm rates. The use of all features on the other hand will lead
to a significant overhead and thus reducing the risk of removing important
features. Although the importance of feature selection cannot be overlooked,
intuitive understanding of the problem is mostly used in the selection of
features [18].

This paper analyses the performance of Artificial neural network (ANN)
and Support vector machines (SVM) in terms of overall accuracy in detecting
nonTor traffic in a Tor network traffic dataset data from the University of New
Brunswick (UNB), Canadian Institute for cyber security (CIC) using a hybrid
anomaly based approach. As part of the work, the results are compared with the
results of [7] being the only study published to the best of our knowledge using
the UNB-CIC Tor Network Traffic dataset. A. Lashkari et al. [7] extracted 23
time based features from the dataset. A combination algorithm Cfs-SubsetEval
+ BestFirst (SE + BF) and Infogain + Ranker (IG + RK) was used to reduce



174 E. Hodo et al.

the number of features from 23 to 5. The results from the feature selection
algorithm was used to test different machine learning algorithms (ZeroR, C4.5
and KNN) using 10 fold cross validation and measured the weighted average
precision and recall. Their results showed C4.5 was the best classifier.

In the proposed approach 10 features are selected out of the 28 features
of the dataset using Correlation based feature selection (CFS) for training and
testing the classification algorithm.

The rest of the paper is organized as follows: Section 2 describes intrusion
detection systems, Section 3 describes the UNB-CIC Tor Network Traf-
fic dataset, Section 4 introduces Artificial neural network, Support vector
machines and Naive Bayes classification algorithms used in the experiment
respectively, Section 5 discusses experiments and analysis of experimental
results, conclusion and future works are presented in Section 6.

2 Intrusion Detection System

Intrusion detection system is a software application or a device placed at
strategic places on a network to monitor and detect anomalies in network traffic
[19, 20] as shown in Figure 1. The main features of IDS are to raise an alarm
when an anomaly is detected. A complementary approach is to take corrective
measures when anomalies are detected, such an approach is referred to as an
intrusion Prevention System (IPS) [21]. Based on the interactivity property of
IDS, it can be designed to work either on-line or off-line. On-line IDS operates
on a network in real time by analysing traffic packets and applying rules to
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Figure 1 Intrusion Detection System model.
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classify normal and analogous traffic. Off-line IDS operates by storing data
and after processing to classify normal and anomaly.

3 UNB-CIC Tor Network Traffic Dataset

The UNB-CIC Tor Network Traffic dataset [22] is a representative dataset
of real-world traffic defined as a set of task. Three users were set up for
browser traffic collection and two users for the communication parts such
as chat, mail, p2p etc. from more than 18 representative applications such
as Facebook, skype, Spotify, Gmail etc. The dataset contains 8 types of Tor
traffic as shown in Table 1 and non-Tor traffic. The dataset contains 8044
(11.86%) records of Tor traffic and 59790 (88.14%) records of nonTor traffic.
The non-Tor traffic captured in the dataset contains unique characteristics
differentiating it from the Tor traffic. These characteristics are called features.
The UNB-CIC Tor Network Traffic dataset contains a total of 28 features listed
in Table 2.

Table 1 Description of UNB-CIC Tor Network Traffic

Type of Traffic Description

Browsing HTTP and HTTPS traffic generated by users while using Firefox and
chrome.

Email Traffic samples generated using a Thunderbird client and two other

accounts holders. Mails were delivered through SMTP/S and received
using POP3/SSL in client 1 and IMAP/SSL in client 2.

Chat Instant messaging applications were identified under the chat label.
The label was associated with Facebook and hangouts through web
browser, skype and IAM and ICQ using an application called pidgin.

Audio-Streaming Traffic was captured from Spotify identifying audio applications that
require a continuous and steady stream of data.
Video-Streaming Traffic was captured from YouTube and Vimeo services using Chrome

and Firefox identifying video applications that require a continuous
and steady stream of data.

File Transfer This traffic was generated from skype file transfers, FTP over SSH
(SFTP) and FTP over SSL (FTPS) traffic sessions identifying the
traffic applications sending or receiving file documents.

Voice over Internet  This is the traffic generated by voice applications using Facebook,

Protocol (Voip) Hangouts and Skype.

P2P This traffic was generated from torrent files from the Kali linux
distribution to identify file sharing protocols.
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Table 2 Description of captured features

Feature Name

Feature Description

Source IP

IP address sending packets to destination

Source Port

Port sending packets from source

Destination IP

IP address receiving packets from source

Destination Port

Port receiving packets

Protocol Type of the protocol used

Flow Duration Length of connection in seconds

Flow Bytes/s Number of data bytes

Flow Packets/s Number of data packets

Flow IAT Mean Packets flow inter arrival time Mean

Flow IAT Std Packets flow inter arrival time Standard deviation

Flow IAT Max Packets flow inter arrival time Max.

Flow IAT Min Packets flow inter arrival time Min.

Fwd IAT Mean Forward inter arrival time, the time between two packets Sent
forward direction Mean.

Fwd IAT Std Forward inter arrival time, the time between two packets sent
forward direction Standard deviation.

Fwd IAT Max Forward inter arrival time, the time between two packets sent
forward direction Max.

Fwd IAT Min Forward inter arrival time, the time between two packets sent
forward direction Min.

Bwd IAT Mean Backward inter arrival time, the time between two packets sent
backward Mean.

Bwd IAT Std Backward inter arrival time, the time between two packets sent
backward Standard deviation.

Bwd IAT Max Backward inter arrival time, the time between two packets sent
backward Max.

Bwd IAT Min Backward inter arrival time, the time between two packets sent

backward Min.

Active Mean

The amount of time a flow was active before becoming idle
mean.

Active Std The amount of time a flow was active before becoming idle
Standard deviation.

Active Max The amount of time a flow was active before becoming
idle Max.

Active Min The amount of time a flow was active before becoming idle Min.

Idle Mean The amount of time a flow was idle before becoming active
Mean.

Idle Std The amount of time a flow was idle before becoming active Std
deviation.

Idle Max The amount of time a flow was idle before becoming
active Max.

Idle Min The amount of time a flow was idle before becoming active Min.
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3.1 UNB-CIC Tor Network Traffic Dataset Description

The features were generated by a sequence of packets having the same values
for {source IP, source Port, destination port and protocol (TCP and UDP)}. All
Tor traffic was TCP since the flow does not support UDP. The generation of
flows was done by a new application, the ISCX Flow Meter which generates
bidirectional flows [7]. The overview of network traffic of the UNB-CIC
dataset is shown in Figure 2. The overview gives the percentage of the
particular records of network traffic in the dataset.

4 Classification Algorithms

4.1 Artificial Neural Network

Artificial neural network (ANN) consists of information processing elements
known to mimic neurons of the brain.

In this experiment, the neural network which is a Multilayer perceptron
(MLP) is presented with a labelled training set which it uses to learn a mapping
from input features listed in Table 2 represented as x in Figure 2 to outputs as
y in Figure 2 given a labelled set of inputs-output pairs

d = {(zs, y0)}y (1)

Where, d is called the training set and N is the number of training examples.
It is assumed that y; is a categorical variable from some infinite set, y; €
{1...C} [23]. The technique used to train the MLP neural network is the
Back Propagation hence the name MLP-BP.
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Figure 2 Records distribution of Tor Traffic.
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Figure 4 Artificial Neural Network Model used in experiment.

The MLP-BP neural network is consists of layers of non-linear elements
which form complex hypotheses. Each node takes an element of a feature
vector. The structure of the ANN consists of three layers feed-forward neural
network as shown in Figure 4. Nodes labelled x;...... xp, have been used to
represent the input feature vectors to the ANN.

Hidden inner nodes aj...... a, make up the hidden layer with an
output layer of yy...... yn nodes denoting different output classes. The
interconnection between the nodes is associated with scalar weights with an
initial weight assigned to the connection. During training, the weights are
adjusted. Evaluating the hypotheses is done by setting the input modes in a
feed-back process and the values are propagated through the network to the
output. At this stage gradient descent is used so as to push the error in the
output node back through the network by a back propagation process in order
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to estimate the error in the hidden nodes. The gradient of the cost — function
is then calculated [24].

4.2 Support Vector Machines

Support Vector Machines (SVM) are a class of learning algorithms that learn
to classify data using points labelled training examples falling into two or more
classes. Binary classification is the most frequently employed approach [25].
For multi-class classification, a model is defined that comprises k Models of
SVM, where k denotes the number of classes (Tor and NonTor). x; and ys
SVM represented as Ith SVM is trained with all the examples in the [/th class
labelled 1 and the other labelled 0.

Where, z; € RYy; € {1,0},i = 1...... Nandy; € {1...... k} is
a class of z;. Introducing a slack of positive variables &;, that measures the
extent of constraint in a non-linear situation. The prima Optimisation problem
becomes [26]:

N
: 1 INT 1 l
Jnin, )W+ 06
(whTp(x); + b >1— € if yi = N, )
(whTp(z); +b' < —1+¢€if yi= N,
g>0i=1...... N,

Where the training set x; are mapped into higher dimensional space by the
function ¢ and C, where C is a parameter which trades off wide margin
with small number of margin failures. Minimisation of %(wl)Twl implies

maximising m, which is the margin between the two data points. The SVM

then searches for a balance between the regularisation term %(wl )Tw! and the

errors in training the dataset. Solving (2) gives k decision functions:

(w)

1T

o(z) + bt

: 3)
(W) p(x) + "

where X is the class having the largest value of the decision function:

v = argmazi=y..;((w) " ¢(z) + b)) )



180 E. Hodo et al.

The dual problem of (2) having the same number of variables as the number
of data in (2). Thus k N-variable quadratic programing problems are solved.

4.3 Naive Bayes Networks

Naive Bayes (NB) is a graphical modelling tool used to model the probability
of variables of interest. Itis a directed acyclic graph where each node represents
a discrete random variable of interest. Each node contains the states of the
random variable in a tabular form representing the conditional probability table
(CPT). The CPT specifies the conditional probability of the domain variable
with other connected variables [27, 28]. The probability is computed based on
the Bayes theorem and assumes the predictions are conditional independent
given the class labels [29]. The Naive Bayes algorithm estimates the densities
of the predictors in each class and models the posterior probabilities based on
the Bayes rule expressed as:

)
Where ¢; corresponds to a random variable in the class index. A is the total
evidence on attributes nodes where A can be grouped into smaller evidence
say, a1, as, . . ., Gy relative to the features Ay, Ao, ..., A, respectively.
Since in Naive Bayes network it is assumed the these features are
independent (given the parent node), their combined probability is:

P(ay|c;).Plag|ci), ..., P(an|ci).P(c)

(6)

The algorithm makes use of the estimation of the posterior probability of each
class to classify an observation and assigns the observation to the class with
maximum posterior probability.

5 Experiments and Results Analysis

5.1 Results Evaluation Metrics

The effectiveness of a classification algorithm requires high Overall accuracy
(ACC), high Recall (Rc), high Precision (Pr), a high F-measure (F1) as well as
low false positive rate (FPR). The performance of IDS in general is evaluated in
terms of overall accuracy, detection rate and false positive rate. The confusion
metrics shown in Table 3 is used to evaluate these parameters.
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Table 3 Confusion Metrics
Target Output

Output Negative  Positive
Predicted output  Positive ~ TP FP
Negative FN TN

Where, True Negative (TN): a measure of negative records correctly classified.
True Positive (TP): a measure of positive samples classified rightly.

False Positive (FP): a measure of negative records incorrectly classified as
positive.

False Negative (FN): a measure of positive records incorrectly classified as
negative.

Accuracy: This is the proportion of total number of records correctly classified
correctly as positive or negative.

TP+TN
A ACC) =
ceuracy (ACC) = F o TN+ FP+ FN
Recall Rate: The proportion of the positive records classified correctly to the
total number of the negative that are classified correctly positive or incorrectly
as negative.

TP
Recall R,a.te (RC) = m

False Positive Rate: It gives a measure of the proportion of negative records
that are correctly classified

FP
False Positive rate (FPR) = FPLTN

Precision: The proportion of positive records correctly classified to the total
number of records that are classified as positive.

TP
Precision (Pr) = m

F-Measure: This is the harmonic mean of precision and recall and gives a
better indication performance of an unbalance dataset.

2 x Recall x Precisi
F-Measure (F1) = eca recision

Recall + Precision
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5.2 Feature Selection Algorithm

This paper proposes correlation based feature selection (CFS) to select the
relevant features out of the 28 features.

CFS is a filtering algorithm using a correlation based heuristic evaluation
function to rank feature subsets. A good set of features are highly correlated
with the class (target) and at the same time uncorrelated to each other.
Redundant features are ignored because they have low correlation with class
and will turn to highly correlated with one or more of the remaining features.
A feature is accepted based on the extent it predicts classes in areas of the
instance space which has not been predicted by other features.

Equation (7) shows the CFS feature subset evaluation function.

_ krey
~ VE+k(k— 1)

Where M, is heuristic “merit” of a feature subset s containing k features, 7.
is the average feature class correlation. The numerator can be thought of as
giving an indication of how predictive a group of features are; the denominator
of how much redundancy there is among the features [30].

The CES algorithm reduces the dimensionality of the dataset, reduces
overfitting and gives a shorter training time. Table 4 shows the 10 selected
features based on the appropriate correlation measure and heuristic search
strategy.

(N

S

5.3 Experiments

To verify the performance of the proposed hybrid algorithm two scenarios, A
and B is considered. In Scenario A, the focus was on detecting nonTor traffic
and in Scenario B, the focus was to classify the generated flows in the TOR
traffic. The experimental model involves two phases: the classification training
phase and validation phase as shown in Figure 5. In the training phase, the
algorithm learns the distribution of the features with corresponding classes.

Table 4 CFS features selection
No. Feature Name No. Feature Name
Destination Port 6 Idle Min
Bwd IAT Mean 7 Flow Bytes/s

wn AW =

Idle Max 8 Flow IAT Std
Fwd IAT Min 9 Source IP
Source Port 10 Destination IP
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Figure 5 Experimental Model.

During the validation phase, the trained model is applied to a test set which
has not been previously seen by the training phase.

Scenario A: The dataset was created by A. Lashkari er al. by merging
Tor traffic dataset [7] and a public dataset of encrypted traffic generated
by Draper-Gil et al. [31] which included the same application on the same
network. The Tor traffic dataset flows were labelled Tor and all flows from
Draper et al. [31] as nonTor. The experiment was performed by training
ANN, ANN-CFS, SVM, SVM-CFS, NB and NB-CFS with UNB-CIC Tor
and nonTor Network Traffic dataset to detect nonTor Traffic in a Tor network.
The classification is a binary task where the output indicates the system’s
certainty that the given observation is a nonTor or Tor. In the first set of
experiment, the classifying algorithms were trained with all 28 features of
the dataset. The ANN model used in the experiment had 20-hidden neurons
and trained with Levenberg-Marquardt (trainlm) training function. The SVM
model used in the experiment uses a Gaussian kernel. The Naive Bayes
model was a kernel density estimation which is a non-parametric density
estimate for classification. In the second set of experiment the classification
algorithms were trained with 10 features selected using CFS algorithm based
on the appropriate correlation measure and heuristic search strategy. The
ANN hidden neurons were reduced to 6 with Levenberg-Marquardt training
function (trainlm) for learning. The SVM and Naive Bayes models remained
unchanged.

Scenario B: The Tor traffic dataset [7] flows which were labelled according
to the application type (Audio, browsing, chat, filetransfer, mail, P2P, video,
voip) executed on the work station was used in Scenario B. The results
were obtained by applying ANN-CFS, SVM-CFS and NB-CFS classification
algorithms to the UNB-CIC Tor traffic dataset. The aim of the experiment was
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to compare the classification performance of the three hybrid classification
algorithms as a multi class classifier. The classification is a multiclass classi-
fication where a one-vs-All technique was implemented. The training model
for SVM and NB classifying algorithms remained the same as in Scenario A.
In the case of ANN-CFS the hidden neurons were increased to 10.

5.4 Results Analysis

In this section, an analysis of the validation process is discussed and presented
in detail.

5.4.1 Scenario a results analysis

The performance of the classifiers on Scenario A dataset were evaluated and
measured using the following metrics: False positive rate (FPR), Accuracy
(ACC), Precision (Pc), Recall (Rc) and F-measure (F1). The dataset was
divided into 70% training set, 15% test set and 15% validation set.

Table 5. shows the classification performance metrics of the ANN,
ANN-CFS, SVM, SVM-CFS, NB and NB-CFS classification algorithms in
classifying Tor and nonTor traffic. The results show ANN-CFS presents the
best results in all the performance metrics used to determine the classification
performance of the classifying algorithms. It can be seen in Table 6. that
NB-CFS shows an FPR of 0.01% for non-Tor detection as compared to
ANN-CFS recording 1.2%. Also, NB shows 0.02% in the detection of Tor
as compared to ANN-CFS recording 0.03% Regarding ANN-CFS FPR for
detecting nonTor, 1.2% of its alarm associated with a true security event is
an acceptable percentage for an efficient IDS under normal conditions. A.
Lashkari et al. [ 7] proposed a hybrid C4.5 Decision tree algorithm in classify-
ing Tor and non-Tor traffic using only the time based features of the dataset.

Table S Performance metrics of classification algorithms
Performance ANN CFS-ANN SVM CFS-SVM NB-CFS NB-CFS C4.5]7]

Rc (Tor) % 93.7 98.8 67 98.4 96.74 98.6 93.4
Rc (nonTor) % 99.2 100 98 99 97.62 95.9 99.4
Pc (Tor) % 98.3 99.8 79 80 84.5 76.6 94.8
Pc (nonTor) % 99.8 99.8 96 88 99.6 99.8 99.2
FPR (Tor) % 0.21 0.03 2.3 1.8 0.02 0.04 -
FPR (nonTor) % 1.6 1.2 32.8 2.6 0.03 0.01 -
F1 (Tor) 0.95 0.99 0.72 0.88 0.9 0.86 -
F1 (nonTor) 0.99 0.99 0.97 0.93 0.98 0.97 -

Overall ACC. %  99.1 99.8 94 96.1 97.52 96.26 -




Machine Learning Approach for Detection of nonTor Traffic 185

% (°9) TTEeO=SY

(b) Pc Accuracy

% (Pa) uorsTooxg

(d)F1 Accuracy

(a—d): Comparison of Rc, Pc, FPR and F1 accuracy classifying Tor and non-Tor

Figure 6
traffic.



186 E. Hodo et al.

Overall ACC. %

SYM NB- NB-

102

Accuracy %
N B

100
CFS- CFS-

98
96
9
9
90
ANN ANN SVM | CFS CFS

M Overall ACC. % | 99.1 | 99.8 94 96.1 | 97.52 | 96.26

Figure 7 Comparison of Overall Accuracy classifying Tor and non-Tor traffic

Comparing the Precision and Recall results in [7] to ANN-CFS shows ANN-
CFS recorded 99.8% and 98.8% respectively for the detection of Tor traffic
whilst A. Lashkari ef al. recorded 94.8% and 93.4% respectively. Regarding
nonTor traffic, the proposed hybrid algorithm (ANN-CFS) recorded 99.8% and
100% respectively for Precision and Recall whilst A. Lashkari et al. recorded
99.2 and 99.4 respectively for Precision and recall. The best values in detection
accuracy, Recall, Precision, F-measure, and overall accuracy with a low false
positive rate in the classification of Tor and nonTor traffic recorded by CFS-
ANN makes it a promising detection system for nonTor traffic. The reduction
in dataset size is an important factor in the run time for detection by the
classifying algorithm. Figures 6 and 7 show a comparison of the performance
metrics of the classification algorithms.

5.4.2 Scenario B results analysis

In this section the performance of the proposed hybrid classification algo-
rithm (ANN-CFS) is compared with SVM-ANN and NB—CFS classification
algorithm to classify 8 different types of traffic in the Tor dataset. In this
classification, we are being faced with a multi class problem involving a One
vs All classification where one class is considered with the others taken as a
single alternative class. The problem is then simplified to a binary classification
task for each particular class. The results are presented as a weighted average
of F-measure, Precision and Recall.

Considering the three performance metrics, F-measure is considered the
most important in Scenario B. F1 which is the harmonic mean of Precision
and Recall gives a better presentation of the prediction performance of
unbalanced dataset. The best value of F1 is at 1 and the worse is at 0.
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Figure 8 Weighted Average classification performance metrics.

Figure 8 shows the results of One vs All weighted average performance metrics
for 8 different traffic in the Tor dataset using ANN-CFS, SVAN-CFS and NB-
CFS classification algorithms. It can be observed that ANN-CFS presents the
best overall results. Considering that ANN-CFS records F1 of 0.84 and an
overall accuracy of 89.4 as compared to the other classifiers indicate that the
proposed algorithm can classify unbalanced dataset with high accuracy.

6 Conclusions

This paper presents experimental study of two classification scenarios to
evaluate the performance of a propose hybrid machine learning algorithm
in detecting non-Tor traffic in UNB-CIC Tor Network Traffic dataset. The
first scenario mainly focuses on detecting nonTor traffic in a representative
dataset of real-world traffic to expose the activities within the Tor-traffic that
downgrades the privacy of users. Experimental results show the proposed
algorithm detects nonTor with an overall accuracy of 99.8%. The proposed
algorithm performed better than SVM, SVM-CFS, NB, NB-CFS and a hybrid
C4.5 decision tree proposed by A. Lashkari et al. [7]. The proposed hybrid
classifier reduces the dimensionality of the data size by 65% removing the
less effective features thereby lowering computational cost and training time.
The second scenario demonstrates the application of the proposed algorithm in
multi class classification. The results presented show that ANN-CFS performs
better than SVM-CFS and NB-CFS with the best precision, Recall and F-
measure. Additionally, F-measure value of the propose algorithm indicates
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that it can deal with unbalanced and noisy datasets. Considering the good
performance of the proposed algorithm, investigations will be performed in
future to explore its capabilities on datasets from critical infrastructures.
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