Rethinking the Use of Resource Hints
in HTMLS5: Is Faster Always Better!?

N. Vlajic, X. Y. Shi, H. Roumani and P. Madani

Department of Electrical Engineering and Computer Science,
York University, Toronto, Canada

E-mail: viajic @cse.yorku.ca; xueshi@my.yorku.ca;

roumani @cse.yorku.ca;, madani@cse.yorku.ca

Received 19 November 2017; Accepted 22 November 2017,
Publication 5 December 2017

Abstract

To date, much of the development in Web-related technologies has been
driven by the users’ quest for ever faster and more intuitive WWW. One
of the most recent trends in this development is built around the idea that
a user’s WWW experience can further be improved by predicting and/or
preloading Web resources that are likely sought by the user, ahead of time.
Resource hints is a set of features introduced in HTMLS5 and intended to
support the idea of predictive preloading in the WWW. Inspite of the fact
that resource hints were originally intended to enhance the online user
experience, their introduction has unfortunately created a vulnerability that
can be exploited to attack the user’s privacy, security and reputation, or to turn
the user’s computer into a bot that can compromise the integrity of business
analytics.

In this article we outline six different scenarios (i.e., attacks) in which
the resource hints could end up turning the browser into a dangerous tool
that acts without the knowledge of and/or against its very own user. What
makes these attacks particularly concerning is the fact that they are extremely
easy to execute, and they do not require that any form of client-side malware
be implanted on the user machine. While one of the attacks is (just) a

Journal of Cyber Security, Vol. 62, 195-226.
doi: 10.13052/jcsm2245-1439.625
This is an Open Access publication. (©) 2017 the Author(s). All rights reserved.

196 N. Vigjic et al.

new form of the well-known cross-site request forgery attacks, the other
attacks have not been addressed much or at all in the research literature.
Through this work, we ultimate hope to make the wider Internet community
critically rethink the way the resource hints are implemented and used in
today’s WWW.

Keywords: Resource hints, Unsolicited Web requests, User privacy, User
reputation, Browser forensics, Web attacks, HTMLS, Chrome.

1 Introduction

With the ever-growing importance and prevalence of WWW-based services
and applications, we are becoming increasing reliant on the use and perfor-
mance of Web browsers — software applications that allow users to access,
traverse and retrieve the WWW resources. And, while in the past Web browsers
were almost exclusively built for and used on desktop and laptop computers,
nowadays any device capable of connecting to the Internet (e.g., mobile
phones, smart watches [1], wearable tracking devices) are likely to host one
or multiple Web browsers. In fact, the modern-day dilemma is not so much
whether a Web browser should be available on an Internet-enabled device
(regardless of it size and capability), but what can be done to make the
performance of that browser faster and more user friendly.

Users’ quest for ever faster and more intuitive WWW has been the driving
force behind the evolution of Web-browser technology as well as numerous
Web-related protocols. (Namely, developers and designers of Web-related
technology are very well aware of the fact that faster Web-sites lead to better
user engagement, ultimately resulting in higher retention and conversion rates
[2].) One of the most recent stages in this evolution is driven by the idea
that a user’s WWW experience can further be improved by predicting and/or
preloading Web resources most likely sought by that particular user.

One specific mechanism that was recently introduced in order to make
the idea of ‘predictive preloading’ possible is the so-called resource hints
feature in HTMLS. In particular, resource hints is a term that covers four
different types of resource (pre)loading: preconnect, dns-prefetch, prefetch
and prerender — all four being implemented as a relation (rel) type/attribute
of HTML5’s Link Element <1ink> [3]. When found in a Web-page (i.e.,
HTMLS5 document) resource hints are intended to instruct the browser to
get hold of resources that are related to or are part of the most likely next-
page navigation, ahead of time. Thus, if/when the user actually decides to

Rethinking the Use of Resource Hints in HTML5 197

request the given page, the respective resources will be simply pulled out
from the ‘background’, giving an illusion of instantaneous (near zero-delay)
retrieval.

An average Web user is likely to consider the resource hints features
useful, as they undoubtedly have the potential to facilitate faster browsing
experience. As a result, in many browser types, including Google Chrome',
resource hints are enabled ‘by default’. This —combined with the fact that users
generally tend to keep the default settings of their applications unchanged [5] —
further implies that the execution of resource hints is likely to be enabled in
a significant number, if not the majority, of browser instances currently used
in the Internet.

While we do not intend to question the practical usefulness of resource
hints from the performance/speed point of view, the work presented in this
paper seeks to address the potential negative implications of their use. Namely,
the resource hints are generally designed to be executed without the user’s
direct involvement (i.e., knowledge or approval) and in an obscure ‘behind
the scenes’ manner. And even though this un-intrusiveness has its obvious
advantages when it comes to speed and convenience, it can also be easily
misused — both intentionally and unintentionally — by turning a browser into
a dangerous tool that acts without the knowledge of and/or against its very
own user. The goal of our work is to bring awareness to these possibilities,
and to make the wider Internet community rethink the way resource hints are
implemented and used in today’s WWW.

The reminder of this article is organized as follows. First, in Section 2,
we discuss the significance and implications of using IP addresses as a
means of identifying and tracking WWW users — a common Internet practice
that is a precursor to many resource hints related problems discussed in
this article. Then, in Section 3, we provide a detailed overview of the
four major resource hints features/tags, while in Section 4 we present
some of our experimental results concerning the execution of these tags
in Google Chrome. Subsequently, in Section 5, we describe six different
scenarios in which resource hints have the potential to negatively impact the
user’s privacy, security, reputation, and/or business profitability. Finally, in
Section 6, we close the article with conclusions and recommendations for
future research.

! According to [4], for over 70% of WWW users Google Chrome is the browser of choice.
Hence, most of our discussion will revolve around this particular browser. As for the other
browsers types, Firefox is used by 16%, Internet Explorer by 5%, and Safari by 3% of Internet
users.

198 N. Vigjic et al.

2 Background and Motivation
2.1 Relationship Between a User and His Computer/Browser

As today’s world grows ever more reliant on the WWW, the boundaries
between humans and their respective Internet-enabled devices and browsers
are becoming increasingly blurred. Namely, in many disciplines it has become
a common practice to assume that a user’s device and browser are nothing
but a mere extension of the user, and their only mission is to carry out the
tasks explicitly requested by the user. Consequently — in all but cases of a
verifiable device/browser infection by a computer malware — the user may be
considered fully accountable for actions or requests executed by their device/
browser.

The concepts of user tracking and Web-related forensics are perhaps the
best illustration of how tight the ‘coupling’ between users as persons and their
device/browser is. For example:

e In user tracking, the IP address and cookies? associated with a user’s
device (i.e., browser) are used to identify that particular user in the
‘on-line world’. Subsequently, all observed Web requests that happen
to carry those particular IP address and/or cookies are assumed to be
generated with the full knowledge and intent of the given user and, as
such, are used to track the user’s online behavior as well as gauge their
interest in different product and services [6]. User tracking mechanisms
put relatively little (if any) effort in distinguishing between genuine
user requests and those that were automatically generated by the user’s
browser.

e The goal of Web-related forensics is to gather information about which
Web sites and files a user has accessed while browsing the WWW, in
order to prove or disprove a claim of misconduct. The places where
forensics-related artifacts are typically collected include one or all of
the following: a) the browser history and cache on the user’s device (if
accessible), b) the log files of the edge gateway that connects the user
to the Internet, c) the log files of the Web server(s) hosting the disputed
files. If any evidence of the disputed files being accessed through the

2IP address is a unique identifier assigned to every computer connected to the Internet.
Cookies are small data files that a Web server stores on a user computer to keep track of
that user’s browsing. Between the two, the use of cookies is a preferred and more accurate
mechanism of user tracking in the WWW. However, in cases when cookies are disabled on
the client/user side, or are not deployed by the Web-site (according to [11], 50% of Web-sites
currently do NOT use cookies), IP addresses are used as an alternative means of user tracking.

Rethinking the Use of Resource Hints in HTMLS5 199

user’s device/browser (while in the user’s possession) is found in either
a), b) or c), the user himself could be held responsible — even without
an explicit proof that the user, not the browser, was the one who actually
initiated those requests.

The study presented in this article is motivated by the fact that the resource
hints features outlined in the preceding section, when combined with our
tendency to assume that devices and browsers are nothing but innocuous
and trustworthy ‘extensions’ of their owners/users, can lead to a number
of potential misuses. To lay a foundation for further discussion of this
issue, we proceed by providing an outline of a typical WWW client-server
architecture and its most significant elements and interactions as pertaining to
our study.

2.2 Typical WWW Client-Server Architecture

The below figure outlines the most significant elements of a typical WWW
client-server architecture, and those include:

a. The client, which in the case of the WWW is a Web browser running on the
user’ device. The device could be either ‘fixed’ (e.g., a desktop computer)
or ‘mobile’ (e.g., alaptop, tablet or smartphone), and is uniquely identified
either with a static IP address (common scenario in fixed enterprise
networks) or a dynamic IP address (common scenario in cellular and
public WiFi networks).

b. The edge network, which provides physical connectivity between the
user device and the rest of the Internet. This could be either an enterprise

client/browser
HTTP GET request

http://www.server.com /\m\,
(files)
enterprise
or ISP edge
— communication
| fined device path N
? THE INTERNET \/server

client/browser

(((.))) enterprise _éﬂ

1 or ISP edge ? e - HTTP response —

ﬁ’ <html>
mobile device ? !;htm 1> ’

Figure 1 Typical WWW client-server architecture.

200 N. Vigjic et al.

edge network (e.g., when the device is used at work), or an ISP edge
network (e.g., when the device is used at home). In either case, the edge
network typically contains one or multitude of specialized devices which
engage in monitoring and/or logging of the passing traffic (e.g., gateway
routers, firewalls, proxies, ...).

c. The Internet core, which is responsible for routing packets, including
those that carry client-server HTTP requests and responses, from their
source to the intended destination.

d. The server, which in the case of the WWW is a machine capable of
hosting and sharing Web-pages (i.e., files) over the Internet, and typically
performs continuous and detailed logging of all incoming traffic.

Now, whenever a particular client requests a Web-page from a particular server
(by means of a GET HTTP request), various types of ‘artifacts’ related to this
event get recorded at various points along the communication path between
the two entities. For example:

i. On the client side, the URL of the requested page gets recorded in the
browser history, while the resources that the requested page is composed
of get stored in the browser cache (once they actually arrive from the
server). As earlier indicated, browser history and cache are of great
significance from the perspective of Web forensics, since they can help
prove that a particular Web request has taken place. Nevertheless, the
main challenge of relying on browser history and cache as forensics
evidence is that they are owned by and directly accessible to the user,
and as such could be easily modified or deleted (intentionally or unin-
tentionally), or simply rendered unavailable if the user decides to deny
access (in which case a search warrant is required to be able to access these
resources).

ii. The given HTTP request is likely recorded, together with the traffic of
other users, in the logs of the specialized devices in the edge network
(gateway, firewall or proxy). It should be noted, however, that edge
networks are not always mandated to record these logs, hence from the
forensics point they may have limited practical relevance.

iii. The intermediate routers in the Internet core could also keep a record of
the given HTTP request in their own traffic logs. However, due to the
high volume of passing/recorded traffic, these logs are generally kept for
a very short interval of time. Consequently, their practical use as forensics
evidence is rather limited, similar to ii.

Rethinking the Use of Resource Hints in HTML5 201

iv. The server logs is the final place where the given HTTP request gets
recorded’. In general, server logs have particularly important significance
from the forensics point of view, for two main reasons. Firstly, most
organization tend to retain their Web server logs over long periods of
time. Secondly, in most organizations Web server logs are well protected
and could only be altered by the site administrator. Hence, when a record
of a Web request arriving from a particular client/host (i.e., IP address)
is found in these logs, it is impossible to deny the authenticity of the
given event — unless one can prove that the logs were altered (e.g.) by a
malicious site administrator or some form of malware implanted on the
server system.

With the above facts in mind, we further focus on the following fundamental
question: foran HTTPrequest generated by the client/browser, is there a way of
determining whether the given request was generated a result of an intentional
action by the user, or perhaps it was generated without the user’s knowledge
and approval (e.g., due to the execution of a resource hint tag/command found
in a rendered Web-page)? Put another way, we are set to examine whether the
artifacts collected along the given communication path, and specifically on the
client and server end, provide enough information to tell these two different
types of requests apart.

3 Resource Hints Execution in Chrome

In this section we provide a more detailed look at the four different types of
resource hints mechanisms that can prompt a browser to perform various forms
of resource preloading, without the user’s explicit knowledge and intervention.

3.1 Resource Hints in HTML5

Hypertext Markup Language (HTML) is a well-known and widely used
interpreted tagged markup language that enables creation of Web-pages
(hypertext documents). In the most recent version of the protocol (HTMLY),
which was first published in 2014, a special new set of features have been
introduced in order to support the idea of ‘instant’ (zero-delay) Web-page load.

3Web server logs collect a wealth of data, including which specific pages/resources were
requested, at what time, and from which IP address. This data is then used to deduce information
about the overall number of visitors to the given site as well as to analyze their browsing
behavior.

202 N. Vigjic et al.

Namely, as pointed in [8] and [9], a browser that starts downloading a
Web-page only after the page has been explicitly requested by the user
will inevitably result in substandard browsing experience that is riddled
with various types of network delays. (These delays include: DNS lookup
delay, TCP handshake delay, SSL negotiation delay, delay to obtain base
HTML page ...[2, 8].) The only way to spare the user from experiencing
the browsing/network delays is by trying to anticipate their requests ahead
of time, and then preload the most critical resources associated with those
requests even before the actual ‘click on the link’ action occurs. That way,
the resources will be readily available when the user actually requests them,
giving an illusion of an instantaneous (zero-delay) download.

Now, the idea of ‘instant’ browsing is not entirely new. This concept was
originally supported through the implementation of Web-cache — a memory
location where the resources of previously visited Web-pages are stored,
allowing that these resources be instantaneously retrieved whenever the user
decides to subsequently revisit them. Unfortunately, as such, Web-cache is
of no use when it comes to the retrieval of new pages that have not been
previously requested. To enable zero-delay browsing of pages that are to be
visited for the first time, or pages that have been purged or expired from the
cache, HTMLS5 has come up with a set of features commonly referred to as
resource hints.

According to [2], there are four different types of resource hints provisions
in HTMLS.

a) dns-prefetch is a resource hint option that can be used to suggest a
browser to perform a DNS prefetch (i.e., IP lookup) for a particular
hostname. The following is a situation where this feature might be useful
in practice. Imagine the user is currently visiting page_A.html hosted
on server_1.com, and there is a high likelihood that the Web-page the
user is going to visit next is page_B.html located on another server
(server_2.com) — as illustrated in Figure 2. To expedite the loading of
page_B.html (if and when the user requests it), the below tag could be
placed in the <head> section of page_A.html:

<link rel=''dns-prefetch'' href=''//server 2.com''>

That way, the browser would start performing the DNS lookup for
sever_2.comright away (while the user is still viewing page_A.html),
making sure that the IP address of server_2 is obtained even before the
user actually clicks on http://server_2.com/page B.html.

Rethinking the Use of Resource Hints in HTML5 203

@ _http://server_1.com/page A.html

<html>
<link rel=“dns-prefetch”

href="//server_ 2.com”>

</html>

\page_A.html|
THE INTERNET)

server_l.com hyperlink
i obtain server 2.com IP \\? i P
s ~ 4
L -

]

> &=

server_2.com

DNS server

Figure 2 Linked pages hosted by different servers.

b) preconnect is a resource hint option that can be used to initiate an early
connection with a Web server, which includes the DNS lookup, TCP
handshake, as well as optional TLS negotiation. As such, preconnect
clearly goes step further in minimizing/masking networking delays
relative to dns-prefetch.

In the example of Figure 2, the following tag placed in the <head>
section of page_A.html would prompt the user’s browser to establish
an early (pre)connection with server_2.com.

<link rel=''preconnect'' href=''//server 2.com''>

Also, in the given example, the decision whether to use preconnect or
just dns-prefetch for server_2. com should be closely tied to the actual
probability that the user navigates to page_B.html from page_A.html.
Clearly, the higher this probability, the more reasonable it would be to
place the preconnect resource hints option referring to server_2.com
in the HTML head/body of page_A.html.

c) prefetch is a resource hint option that further builds on the functionality
of a) and b). Namely, in addition to performing the DNS resolution
and establishing a connection with a particular server, prefetch also
allows that some actual resources (e.g., the base HTML file of a Web-
page, images, JavaScript-s, CSS-s, etc.) be downloaded from this server
ahead of time and stored in the browser cache. For example, in the
scenario of Figure 2, the following tag placed in the <head> section of

204 N. Vigjic et al.

page-A.html would prompt the user’s browser to download and cache
the base HTML file of page_B.html — the key Web resource (and the
first one to be retrieved) during the rendering of this page.

<link rel='"'prefetch'' href=''//server_2.com/
page B.html''>

Clearly, by allowing that whole parts of a page be obtained by the
browser - even before the page gets actually requested — prefetch enables
even further reduction in networking/browsing delays. However, given
the communication and storage overhead associated with prefetch, it is
recommended that this resource hints option be used only in cases when
the probability that the user actually navigates to a specific page is greater
than in the case of a) or b).

d) prerender is the most encompassing resource hints option — it allows
not only that the base HTML file and all other components of a page
get preloaded ahead of time, but also that the page itself gets fully laid
out, its respective CSS-s applied and JavaScript-s executed. Put another
way, it is as if the page is open in a hidden tab, and the moment the user
navigates to the page’s URL, the hidden tab is immediately swapped into
view [2]. As such, prerender is the only resource hints option that can
truly cut the browsing delay down to zero, giving an illusion of truly
instantaneous browsing.

In the scenario of Figure 2, the following tag placed in the <head>
section of page_A.html would prompt the user’s browser to prerender
(i.e., preload and preassemble) the entire page B.html.

<link rel=''prerender'' href=''//server_2.com/
page-B.html''>

Now, it should be pretty clear that out of all four resource hints options,
the use of prerender is associated with the most significant communication,
storage and processing overhead. Consequently, the use of this option should
be reserved only for cases when the navigation to a specific page is highly
probable if not absolutely certain.

The above suggestions are merely recommendations pertaining to the
resource hints options in HTMLS as outlined by World Wide Web Consortium
(W3CO) [3]. Unfortunately, the actual implementation of the resource hints
options in real-world browsers has neither been standardized nor mandated.
As a result, there has been a significant variation in the number and actual
implementation of different resource hints options by different browser types.
(For more see [2, 8, 9]). Given that for the majority of Internet users

Rethinking the Use of Resource Hints in HTML5 205

Resource Hints: prefetch m-wo Globa

Informs the browsers that a given resource should be prefetched
5o it can be loaded more quickly. This is indicated using <link
rel="prefetch® href="(url)">

[3 Edge Fief Creome 230 Opera 08 Satan © Opara M

Android * Chroma fof
Rrowgar Android

Figure 3 Support for HTMLS prefetch option by different browser types as of November
2017 [10].

Google Chrome happens to be the browser of choice [4], our discussion
largely focuses on this particular browser type. Specifically, in the pro-
ceeding section, we present some of our experimental results pertaining to
the behavior of Google Chrome when encountering different resource hints
options in the browsed pages. The experimentations were originally performed
on Google Chrome v.52, which supported all four types of resource hints
options discussed in this paper. For the most recent support of different
resource hints options by various browser types the reader is referred to
the site https://caniuse.com/. (E.g., according to his site, the current support
for prefetch resource hints option by various browser types is as show
in Figure 3.)

4 Experimental Set-Up and Results

In order to gain a better understanding of how Google Chrome deals
with different HTMLS resource hints options when encountering them
in a browsed page, we built an experimental client-servers framework
as outlined in Figure 4. The ‘client’ in this framework was the latest
version of Google Chrome (Chrome v.52) running on a laptop PC. The
‘server’ was set up on the Amazon Cloud (http://ec2-54-186-72-100.us-west-
2.compute.amazonaws.com) and was hosting a repository of test Web-pages.

206 N. Vigjic et al.

download as a result of an -

intentional user request (S e e R S s -
‘ —,'Web page that b
~ | ‘hides’ dns-prefetch
download as a result of an / for A_hidden.php

unsolicited browser-initiated request/ A-php A_hiddgn.php
*'I‘ TRRRRRRRRERERNRRRRRRRRRRRRRRRIOEITY lI||]|l|IIllllllllllllllIlllllIIIIIIIIlIIlIIIIIlII

-,'Web page that
[| == | ‘hides’ ‘preconnect

B_hidden.ph
B.php for B_hidden.php B_hidden.php

T

—' Web-page that S
‘hides’ prefetch
for C_hidden.php

server

C.php

~' Web-page that >
| | == | ‘hides’ prerender

for D_hidden.php | D_hidden.php|

\ p.php

Figure4 Experimental framework for evaluation of Chrome behavior when browsing pages
with resource hints options.

We chose to code the pages of this repository in php instead of plain html in
order to be able to prevent their caching on the client side, as well as to be able
to implement and examine the general impact of cookies on pages referenced
in resource hints tags.

The test pages of our framework were grouped into two sets. The pages
of the first set were are designed to be directly visible/accessible to the user,
and each of them hid one particular resource hints option in its respective
php/html code (A.php, B.php, C.php, D.php). The other set was comprised
of pages referenced in the resource hints tags of the first set, and this set
was not intended to be directly visible/accessible to the user (A_hidden.php,
B_hidden.php, C_hidden.php, D_hidden.php). With this structure, if the pages
of the second set — or their respective resources — ever got requested, that
was a clear indication that the browser itself (not the user) had triggered those
requests while processing the resource hints tags in the pages of the first set.
(Note that, because of the way resource hints are intended to work as well as
the way our framework was designed, requests for the pages of the second set
not only got generated without the user’s direct knowledge and involvement,
but the user also never got to know when those resources actually arrived at
their browser.)

In our experimentation, we first performed intentional requesting/retrieval
of pages A.php to D.php (Figure 4) through the client — Chrome v.52 browser

Rethinking the Use of Resource Hints in HTML5 207

operating on a machine in our departmental network. Subsequently, we
examined the collected artifacts pertaining to these requests both on the client
and on the server side. The most significant of our observations are presented
in Table 1, and can be summarized as follows:

1. The requesting of pages A.php and B.php (i.e., pages that contained DNS-
prefetch and preconnect resource hint options in their respective HTML5
code) did not leave any permanent artifacts related to A_hidden.php and
B_hidden.php — either on the client or on the server side. Such a result
could have been expected, as these two particular resource hints options
do not ‘trigger’ application-level preloading of resources referenced in
their <link> tags. Instead, DNS-prefetch and preconnect facilitate only
‘lower level’ (DNS and TCP) domain-name resolution and connection
set-up.

2. On the other hand, the requesting of pages C.php and D.php (i.e.,
pages that contained prefetch and prerender resource hint options in
their respective HTMLS5 code), did leave a number of artifact related
to C_hidden.php and D_hidden.php on the client and on the server side.
In particular:

2a. On the client side, both (prefetched) C_hidden.php and (preren-
dered) D_hidden.php were not only retrieved but also ended up
being stored in the browser cache. Furthermore, a cookie associated
with each of these pages was created and placed in the browser’s
cookie cache. Finally, a DNS record pertaining to both pages was
stored in the browser’s DNS cache. All in all, the way the browser
went about retreiving C_hidden.php and D_hidden.php was not
much different from the way A.php to D.php were retrieved — even
though the latter group of pages was explicitly requested by the
user, while the user had no way of knowing that the former group
of pages was ever requested and/or retrieved. (The only noticeable
difference between the two groups is that the retrieval of A.php to
D.php was recorded in the browser history, which was not the case
for C_hidden.php and D_hidden.php).

2b. On the server side, HTTP GET requests for both C_hidden.php and
D_hidden.php appeared in the server logs. More importantly, these
two requests looked identical to the requests for pages A.php to
D.php, in terms of their (HTTP) content. In other words, based
on what was recorded in the sever logs, it was impossible to
distinguish between the user’s intentional requests — for A.php

208 N. Vigjic et al.

to D.php — and the requests that were issued automatically by
the browser without the user’s knowledge and approval (for
C_hidden.php and D_hidden.php).

Following the experimentation with the framework outlined in Figure 4, we
conducted another experimental study, where the Web objects referenced
in A.php to D.php were pages hosted on another server. The observations
concerning the recorded artifacts in this experiment were identical to the ones
presented hereinabove (i.e., in Table 1).

Our experimentation also looked at the use of multiple prerender and
prefetch tags inside the same Web-page. Our observation is that in case of
multiple prerender tags in a Web-page, only one of these tags is executed
at the time, while the respective (prerendered) page gets placed in the
browser’s RAM*. (The likely reason why Chrome and other browser do not
allow simultaneous prerendering of multiple pages is to prevent potential
overloading of the browser’s RAM, which would degrade the overall browser
performance.) On the other hand, there seem to be no limit on the number
of prefetch tags that get executed in a Web-page. Once retrieved, each of the
prefetched resources ends up being stored in the browser’s cache.

5 Resource Hints Implications on User Privacy,
Reputation and Business Performance

In this section, we present six different scenarios in which resource hints are
used as the main attack vector against a targeted Web user. The names of these
attacks and their respective targets (i.e., user ‘assets’ that they are ultimately
impacting) are summarized in Table 2. The key characteristics of all six attacks
is the fact that they are extremely easy to execute, as they do not require that
any form of client-side malware be implanted on the victim machine. The only
precondition for their successful execution is to be able to lure the targeted
user (victim) into visiting a specially crafted decoy Web-page. As indicated in
[12], there are numerous well-known and very effective techniques which the
attacker could deploy to lure a victim into visiting a decoy Web-page — ranging
from various site-promotion techniques (e.g., in blogs and social media sites)
to the use of targeted phishing emails.

*Our research has shown that, theoretically, it would be possible to have multiple prerender
tags, from one single Web-page, executed. Though, this would require that each of the
prerendered Web-pages comes with the auto-refresh functionality, and a relatively short
auto-refresh interval.

Rethinking the Use of Resource Hints in HTML5 209

(syoeo (11s1a pareniut
ur punoj o3ed ssorun) Iosn € se owes) qyoed UI
IOAISS AU} T8 PIATOORI pIodar dn pamoys
93ed parepuaraxd uoepuels 93ed
Iojisonbar ygn e poIeaId sarjood e sedn pamoys paropuoraid J09]J° ou Jopudzaxd
(eyoed ur AUoed ur
punoj oo1nosa1/a3ed ssofun) As-qom Surjed dn pomoys
IOAISS AU} T8 PIATORI ay 90IN0SaI
93ed/ao1nosa1 payojejard JO 90In0SaI-qns /o3ed
Iojisonbar ygn e paIeaId SAjood e se dn pamoys payoejaid J09]J° ou yojagaad
IOAISS o)
J& PoAIdaI Isanbal 1D ou 199132 ou 1991J2 ou 109)J° ou J09)J° ou 3o3uu0ddxd
IOAISS o)
J& PaAIdaI Isanbal 1D ou 199132 ou 1991J2 ou 109)J° ou J09]J° ou yo3ajaad-SNa
307 IpIS JAIIS SANj00) yoe) yoe) £10)STH uondQ
uo 199 SN dwoay) woay) woay) sjurg
uo 19934 uo 194 uo 19954 92Jn0s3YyY

S)OBJI)IY IPIS-IIAIIS

SJORJIIY IPIS-1ISMOIg

a3ed-qopp © ur punoj suondo JUTy 90IN0SAI USYM OPIS JOAIIS PUR JUII[O UO PIJOI[[0J SIOBJIIY T d[qeL,

210 N. Vigjic et al.

Table 2 Impact of different attacks performed using prefetch/prerender on user reputation,
security, privacy and business profitability

Attack Performed Using
Prefetch/Prerender Attack’s Primary Target
Framing Attack user reputation
Targeted DoS user security
(i.e., availability of a site which user wants to access)
CSRF user security

(i.e., integrity of requests issued by user’s browser]
Data-Analytics Pollution business profitability
ETag Tracking user privacy
Cookie Stuffing business profitability

Scenario 1: Framing Attack.

The term ‘framing attack™ was introduced in [12], and it refers to a scenario
in which false (digital) evidence is planted on the victim’s computer, without
requiring physical or remote access to their machine and without involving
any form of client-side malware. The sole goal of this attack is to incriminate
or discredit the victim in the context of their social, workplace, business or
political life.

To provide an illustration of how a framing attack could be accomplished
by means of HTMLS5 resource hints, imagine a situation where Trudy is a
disgruntled employee working at a research company. Trudy holds a special
grudge towards Bob — a manager that she directly reports to. As a form of
revenge against Bob, Trudy decides to format one of her upcoming reports
as an HTML5 document. Inside this document, she ‘hides’ several dozens (or
more) of resource hint tags — each prefetching® a highly inappropriate (e.g.,
child pornography or terrorism-related) Web-page. By means of JavaScript,
Trudy also ensures that the execution of each prefetch tag occurs at a different
point in time, thus mimicking the way a human user would go about retrieving
a sequence of such Web-pages.

The ‘reporting’ day has come, and Bob opens the document that Trudy has
referred him to. The (visible) content of the document seems very relevant, and
Bob spends quite some time viewing the document in his browser. Clearly,
while Bob is reading the visible content, his browser (in the background)

SPlease note that in a few research works, such as [13], the term ‘framing attack’ was used
to refer to a version of ‘clickjacking attack’. However, the type of attack discussed in [12] as
well as this paper has a very different context and outcome.

%In this case, prefetching of a Web-page/URL would mean that its respective top-level
resource (most often a base HTML file) is requested and retrieved by the browser.

Rethinking the Use of Resource Hints in HTML5 211

~ Research Company’s Network

Trudy

(2) prefetch requests

-
generated without
Bob’s knowledge =
d’ -
”
- -
- -
-
= -

0|z

(1) Bob receives
a page that
generates many
prefetch requests
for inappropriate
content

(3) responsesgatheredon Firew.

Bob’s computer without
Bob's knowledge i
(4) &

Figure 5 Framing attack.

retrieves/prefetches the inappropriate pages (i.e., hidden resource hints) one-
by-one, as illustrated in Figure 5. Bob, obviously, remains completely unaware
that these downloads are taking place.

At the same or later point in time, the company’s Web-content firewall
generates an alert pointing to Bob’s machine (i.e., his machine’s IP) as the
source of requests for inappropriate content. The company’s authentication
system verifies that the requests were generated while Bob was logged in and
using the machine. From the forensics point of view, these pieces of evidence
are often enough to ‘point fingers’ to Bob, and hold him accountable.

Now, depending on how severe the company’s policy pertaining to
inappropriate use of resources is, Bob could experience a whole range of
possible outcomes — from receiving a simple warning to facing serious
disciplinary actions and possibly termination. The only way Bob could avoid
these repercussions and clear his name is by providing aggregate browsing-
related artifacts from his computer (spanning over a period of time before
and after the actual incident) to relevant authorities. While an adequate expert
analysis of these artifacts could potentially succeed in putting ‘all the pieces of
the puzzle together’, and identify the actual cause of the inappropriate requests,
the implications on Bob’s privacy could be significant — especially if Bob had
used his own personal device (as in the case of BYOD) to view Trudy’s page.
In addition, by the very virtue of being linked with actions that are considered
ethically and/or legally unacceptable, Bob is likely to experience unnecessary

212 N. Vigjic et al.

scrutiny with all the accompanying negative implications on his professional
and personal life. (The best illustration of this are the cases of Julie Amero
[14] and Michael Fiola [15]. These two people, in two different instances,
were wrongly charged with downloading of child pornography. In both cases
it was ultimately proven that the downloading of the inappropriate material
was caused by malicious software and their respective names were cleared.
Still, as stated by both people, the conducted trials have had lasting negative
effect not only on their lives but also on the lives of their families.)
According to our knowledge, [12] is the only other research work that, in
addition to introducing, has also studied the actual mechanisms of executing
a framing attack. The idea specifically suggested in [12] is similar to the
one outlined in Figure 4, except that the obscure/decoy requests are not
generated via resource hints tags (prefetch of prerender) but instead by means
of two better known and more widely used HTML tags — <iframe> and
. However, as indicated in [12], for these framing attacks to actually
be successful, the attacker needs to take extra measures towards ‘obscuring’ the
objects/Web-pages referenced in the decoy <iframe> and tags (i.e.,
make sure that they go unnoticed by the victim once they are retrieved/rendered
by the browser). Possible approaches to ensuring that the decoy <iframe>
and objects remain ‘invisible’ include: 1) minimizing their size to
0x0 pixels, 2) hide them under another overlaid iframe/image, 3) make them
invisible through CSS (e.g., by setting their display attribute to none). It should
be noted, though, that the same object obfuscation techniques are required and
deployed by many other types of browser-based attacks, such as clickjacking
and cross-site request forgery. These specific attacks have been around for
more than a decade, and as a result, the majority of today’s Web-vulnerability
scanning tools (e.g., Burp [16]) are programmed to spot and block Web-pages
suspected of object obfuscation. Consequently, a framing attack based on
the use of <iframe> and decoy tags (as proposed in [12]) could
potentially be detected and prevented by these tools. On the other hand, a
framing attack based on the use of HTMLS resource hints (as suggested in
this work) would virtually go unnoticed by these same scanning tools. Namely,
while a ‘malicious’ <iframe> and could be detected (i.e., labeled as
such) by looking for signs of obfuscation, there are no clear mechanisms or
indicators which could help in distinguishing between a benign and a malicious
<prerender> or <prefetch> tag. (Recall, the very purpose of these tags is to
facilitate ‘invisible’ preloading of Web object. Furthermore, the preloaded
objects are supposed to remain hidden until explicitly requested by the user.)

Rethinking the Use of Resource Hints in HTML5 213

Scenario 2: Targeted DoS Attack.

Now, imagine that in the previously depicted story, instead of tarnishing Bob’s
reputation within their organization, Trudy decides to execute her revenge
by affecting the ‘outside’ reputation of Bob’s machine (i.e., IP address),
with the ultimate goal of having Bob’s IP address blacklisted and denied
service.

In particular, imagine that Trudy knows of a Web-site that Bob likes to
frequently visit, such as the Web-site of his bank or a specific news-agency
Web-site. In that case, Trudy could hide a very large number of prefetch
references targeting this particular Web-site (its various pages/resources)
inside her ‘malicious’ Web-page, as illustrated in Figure 6. As many other
similar organizations, Bob’s bank is likely to perform comprehensive intrusion
detection monitoring of the incoming Web traffic, in order to spot and blacklist
all misbehaving users. Given that the avalanche of requests coming from
Bob’s machine is very reminiscent of a denial of service (DoS) attack, it is
quite possible that Bob’s IP would end up on the bank’s blacklist, at least for a
period of time. Consequently, during that period of time, even Bob’s legitimate
requests would be rejected (since they originate from the same IP), and Bob
would be cut off from the online services of his bank. We refer to this attack
as ‘targeted DoS’, as it ensures that one specific user is denied (i.e., not able
to access) service of one particular Web-site.

Research Company’s Network

Bob’s Bank

(2) prefetch requests
generated without
Bob’s knowledge -

(1) Bob receives
a page that
generates many
prefetch requests

to his bank

(3) responsesgatheredon
Bob’s computer without
Bob’s knowledge

Bob

Figure 6 Targeted DoS attack.

214 N. Vligjic et al.

Scenario 3: Cross-Site Request Forgery Attack.

Cross-site request forgery (CSRF) is a well-known type of attack that occurs
when a malicious Web-site causes a user’s browser to perform an unwanted
action on a trusted site for which the user is currently authenticated [17].
More specifically, CSRF attack requires that the user first gets successfully
authenticated to a legitimate Web-site (e.g., by means of cookies), as illustrated
in Figure 7. If following that action the user visits a malicious (Trudy’s) Web-
page,(as shown in Figure 8, the malicious page can force the user’s browser
to make unsolicited request towards the site for which the user is currently
authenticated. By default, the browser will attach the legitimate previously set

Amazon
Web-page

amazon.com

<html>

Y e

Fo s
(1) Bob receives

</html>
malicious Web-page 4
from Trudy

(2) Bob’s browser sends authenticated HTTP request
triggered by obfuscated tag in Trudy’s page

" - _—
———— S R————— " & N
v' = ‘ /{‘_‘?\W\

4 g '
(3) target server sends a response “@'
since unable to distinguish between amazon.com

genuine and malicious requests

Figure 8 CSRF attack following user authentication.

Rethinking the Use of Resource Hints in HTML5 215

cookie(s) to each of the unsolicited/malicious requests, which will make the
server’s job of distinguishing between genuine user requests and those that
were triggered by the malicious Web-page hard if not impossible.

CSREF attack have been traditionally accomplished by ‘hiding’ the unso-
licited HTTP requests of the malicious page inside and <iframe>
HTML tags, as in the case of the framing attack described in [12]. However,
we have already explained that many of today’s Web-vulnerability scanning
tools are capable of detecting such ‘basic’ variants of CSRF attacks, simply
by looking for signs of or <iframe> obfuscation. Consequently, from
the attacker’s point of view, hiding the unsolicited CSRF HTTP requests
inside <prefetch> and <prerender> tags is a viable and far more lucrative
alternative, as today’s Web-vulnerability scanning tools generally do not look
for signs of misuse in any of the four resource hints options.

(According to our knowledge, no previous work has looked at the use
of resource hints options in the context of CSRF attacks. Our group has
recently conducted a study on the feasibility of CSRF attacks on amazon.ca
and ebay.ca by means of resource hints, which resulted in the discovery of
open vulnerabilities in both sites. The findings of this study are currently under
submission to [18].)

Scenario 4: Data-Analytics Pollution Attack.

(Similar to Framing and Targeted DoS, this particular type of attack has also
not been previously discussed in the literature. Its main aim is to impact the
performance of an on-line business, and ultimately its financial profitability,
by distorting its Web-site based data analytics.)

As the premise for this attack, we imagine Trudy to be the owner of a small
business, and Alice to be her direct business competitor. Both businesses have
online presence which is critical for the success of their operation. Namely,
not only that the two businesses advertise and sell their products through
their respective Web-sites, but they also heavily rely on the Web (server-log)
analytics to better understand where their customers come from and what they
are looking for.

In order to ‘pollute’ the logs of Alice’s Web server, and thus negatively
impact Alice’s business intelligence, Trudy has come up with the following
plan: In the Web-page(s) of her own Web-site, Trudy has hidden numerous
prerender and prefetch tags referencing various (strategically chosen) pages
from Alice’s Web-site. Thus, whenever Trudy’s customers visit her Web-site,
their respective browsers end up generating a slew of ‘polluting’ requests
towards Alice’s Web server — see Figure 9. Obviously, because of the way

216 N. Vigjic et al.

Trudy’s Web Site

(1) pages that generate
prefetch requests for various
resources on Alice’s site

(2) prefetch requests generated Alice’s Web Site
without users’ knowledge

=

(3) prefetch/prerender responses
received without users’ knowledge

visitor’s to Trudy’s site

Figure 9 Data polluting attack.

the resource hints are intended to work, Trudy’s customers will be completely
unaware that their browsers have participated in a ‘data polluting’ attack.
At the same time, the performance of Trudy’s Web-site will remain entirely
unimpacted by the attack, as the retrievals of prerender/prefetch resources
from Alice’s Web-site will always take a lower priority and occur only during
the browser’s idle times.

As for Alice’s ability to detect this attack and identify all the polluting
requests — the only piece of information that she possibly could rely on is
the referer field in the incoming HTTP requests. (Referer field identifies the
address of the Web-page from which the user/browser has accessed, or moved
to, the current Web-page.) In the case of Trudy’s attack, this field would be
referring to the pages of her Web-site, thus indirectly revealing the true origin
of the ‘polluting’ requests targeting Alice’s site. Though, if Trudy wanted to
make her attack particularly stealthy, she could implement the following meta
tag in the <head> section of her Web-pages used to refer to resources in
Alice’s Web-site:

<meta name=''referrer'' content=''none''>

That way, HTTP requests arriving to Alice’s Web-site by means of Trudy’s
Web-pages would not contain any referral data. Consequently, Trudy’s attack
would remain virtually undetectable.

Rethinking the Use of Resource Hints in HTML5 217

Scenario 5: ETag Tracking Attack.

As explained in Section 2, two most commonly deployed techniques of user
tracking in the WWW are: (1) tracking that utilizes the [P-address of the user’s
device, and (2) tracking that utilizes Web-cookies stored in the user’s browser.
According to [19], (1) falls in the category of the so-called fingerprinting-
based, while (2) falls in the category of the so-called storage-based user
tracking techniques. The third lesser known category of user tracking are the
so-called cache-based techniques, with ETag tracking’ being its best-known
representative.

Cache-based is somewhat similar to storage-based tracking, as it also
makes use of persistent client-side storage to achieve its objective. However,
the main difference between the two is that cache-based tracking avoids
storing explicit tracking data (e.g., Web cookies) in the client’s memory, but
instead relies on data/objects that get implicitly and automatically stored in the
browser’s cache memory during the standard process of Web-page retrieval.
Namely, in most browser types, after a Web-page with all of its inline objects
is downloaded and displayed to the user, the browser will identify objects that
are marked ‘cacheable’ and place them in its Web cache in order to speed up
their delivery next time they are requested. Now, to facilitate the process of
user tracking, there is nothing preventing the server from adding one ‘dumb’
cacheable tracking object (e.g., a small or invisible image or a javascript) to
all its hosted pages, while hiding some unique user-related ID in this object’s
meta-data. Subsequently, the given object together with its meta-data could be
exploited to track the respective user. One of the most convenient places for
hiding such user-related meta-data is the so-called Entity Tag (ETag) field of
HTTP Response Header. ETag is an opaque non-mandatory identifier assigned
by the host server to a specific version of an object found at a particular URL.
If the given object ever changes, while keeping the same URL, a new and
different ETag should be assigned to it. As such, ETag is intended to be an
additional HTTP field/feature that allows Web browsers to verify whether the
objects stored in their respective Web cache are up-to-date. Nevertheless, there
are no specific rules about how ETag values should be set or initialized. Hence,

"The first practical use of ETag tracking was noted in 2011 [19]. Initially this technique
created a lot of controversy, since it was seen as an easily obscurable way of implementing cross-
domain user tracking that worked even for user sessions in private browsing mode. (Recall,
cross-domain user tracking generally should NOT be used unless explicitly consented to by the
user.) Today, however, this technique is seen as ‘mainstream’, and the privacy policies of many
major Web-sites mention the use of ETags as a possible means of user tracking implemented
by these sites.

218 N. Vigjic et al.

::j hidden user-trackingimage for server ABC: trackingimg.jpg

(1) Bob visits the
Bob 15 Web-page

hosted by
[server ABC E SENEFABC

| GET /trackinglmg.jpg HTTP/1.1
7 = Image Etag: 12345 |-
R ",
= bt Ty / \
NN\N
(2) trackingimg.jpg D%
gets stored in (3) Bob visits the
browser’s g i " :VZI;,‘PGQE’\\ -
Web-cache ™% psied oy S = =
L server ABC N ! GET /trackingimg.jpg HTTP/1.1
ETag: 12345] .jlf-None—Match: 12345
~| [HTTP/1.1 304 Not Modified |

(4) trackinglmg.jpg
is retrieved from
browser’s 4o

Web-cache ™%,
ETag: 12345

Figure 10 User tracking by means of ETag.

it is possible to send a completely different ETag value to every single visitor
retrieving exactly the same object. This, ultimately, can be exploited to turn
ETag into an effective means of user tracking. The actual idea of using ETag
for the purpose of user tracking is illustrated in Figure 10.

In Figure 10, server ABC has placed a tracking image (trackinglmg.jpg) in
all its hosted pages. At the time of Bob’s visit to the first (of possibly several)
server ABC’s pages, Bob’s browser ends up making HTTP GET requests for
all inline objects of this page, including trackinglmg.jpg. As aresponse, server
ABC sends trackinglmg.jpg back to Bob’s browser together with an assigned
ETag value that is unique to Bob (12345) and a maximum possible cache-
control age, which will ensure that the tracking image gets stored and kept in
the browser’s Web-cache for a sufficiently long period of time. As a result,
if/when Bob clicks on (i.e., requests) any other page from server ABC®, the
browser will attempt to revalidate the copy of trackinglmg.jpg already stored
in its cache by sending a HTTP GET request to server ABC with ‘If-None-
Match’ field set to the previously received value of ETag (12345). When this
re-validation request arrives at server ABC, the server will not only learn
that the request for the respective/originating Web-page has been made by a

8Recall, all other pages also contain a copy of trackingmg.jpg. Hence, to properly render
any of these pages, the browser will have to re-fetch a copy of trackinglmg.jpg — either from
the Web cache, if the cached copy of the image is still valid, or otherwise from the server.

Rethinking the Use of Resource Hints in HTML5 219

returning visitor, but will also be able to reveal the visitor’s actual (previously
assigned) identity —12345.

To understand how HTMLS5 prefetch or prerender functionality can be
combined with ETag caching for the purpose of covert cross-domain track-
ing, let us imagine the scenario outlined in Figure 11. Here, Trudy — the
owner of the site frudy.com — is not only interested in knowing whether the
visitors to the pages of her site are ‘new’ or ‘returning’, but also whether
at any point prior to coming to trudy.com these visitors have also visited
the Web domain mallory.com owned by her friend Mallory. Trudy wants
to gather this information surreptitiously, without the use of cookies. To
achieve her objective, Trudy has asked Mallory to add the following simple
prefetch reference into all Web-pages of her site: <link rel=''prefetch''
href=""http://trudy.com/trackingImg. jpg>. Now, assume Bob is
one such user who has come to http://mallory.com prior to visiting trudy.com.
Given that http://mallory.com contains the embedded prefetch reference to
Trudy’s trackinglmg.jpg, Bob’s browser will request (obtain and cache) this
image from trudy.com during the rendering of http://mallory.com. Moreover,
since Bob’s HTTP GET request for trackinglmg.jpg also contains 'Referer:
http://mallory.com’ initself, server trudy.com will be able to extract and
embed this information into ETag value of the returned trackinglmg.jpg image
(observe the returned and cached ETag value in Figure 11 — mallory_12345).
That way, when Bob eventually visits a Web-page from trudy.com — which
will also contain trackinglmg.jpg® — Bob’s browser will recognize that the
given image has already been retrieved and stored in its cache. Subsequently,
the browser will attempt to re-validate this image by sending a GET request
to trudy.com with 'If-None-Match' set to mallory_12345. By receiving
such request trudy.com will be easily able to deduce that the visitor to the
respective/originating Web-page (i.e., Bob) is one of the visitors who has
previously, at some point, also visited mallory.com.

It should be quite obvious that with very little additional effort
the scenario from Figure 11 can be extended to allow Trudy: a) to
learn/extract the exact time of Bob’s visit to mallory.com (e.g., by putting
the encoded/encrypted timestamp associated with the first arrival of prefetch
request for trackinglmg.jpg into ETag value), and b) to track the movement
of her visitors across more than one other ‘partner’ site of interest (e.g., by
placing the tracking image to all such sites, and by monitoring the Referer
field of all revalidation requests for trackinglmg.jpg).

%Recall, Trudy also wants to be able to track returning users on her own domain, hence all
pages of trudy.com will also contain trackinglmg.jpg.

220 N. Vligjic et al.

::: hidden user-trackingimage for server ABC: trackingimg.jpg

http://mallory.com

<html>
<link rel="prefetch”
href=“http://trudy.com/trackingImg.jpg”>

(1) Bob visits the -:}timtml‘)
a Web-page
hosted by server mallory.com
server mallory

(mallory.com) — |re— %
— = e

GET http://trudy.com/trackinglmg.jpg HTTP/1.1
Referer: http://mallory.com

(2) server ABC’s. server trudy.com
trackinglmg.jpg
gets stored in
browser’s gu >

Web-cache ™" -
ETag: mallory,_ 12345 [1mage Etag: mallory_12345 | PR

Figure 11 Cross-domain user tracking with ETag and HTMLS prefetch.

Scenario 6: Cookie Stuffing Attack.

Online affiliate marketing is a form of online marketing that is particularly
popular among businesses which, in addition to advertising their prod-
ucts/services, also sell these products/services online [20]. The three key
players in any online affiliate marketing program include: 1) online retailer
or merchant — the person or company selling something (e.g., amazon.com),
2) publisher or affiliate — the person or company which promotes the retailer’s
product(s) in exchange for a commission on the sale of those products (e.g.,
the owner of a popular blog site), and 3) user or customer — the person that
buys the product(s) based on the affiliate’s referral.

From the technical standpoint, there are two key enablers of online affiliate
marketing (see Figure 12): 1) unique affiliate identifier which is used to create
a special redirect link between the web-site of a particular affiliate and the web-
site of a particular retailer, and 2) affiliate cookie which is created by the retailer
and stored in the browser of each users that has arrived to the retailer’s site by
following the affiliate’s redirect link. The affiliate cookie allows the retailer to
identify and give credit to the right affiliate in case of an actually accomplished
sale. For example, in the scenario illustrated in Figure 12, the cookie planted
on Bob’s computer during his visit to http://www.amazon.com/productXYZ
via trudy_blogger.com will ensure that Trudy gets credit for Bob’s potential
purchase of this product irrespective of the exact time when such a purchase
takes place — right away, or at some later point in time (as long as the cookie
does not get overwritten by another affiliate’s cookie).

Rethinking the Use of Resource Hints in HTML5 221

(1) Bob visits trudy blogger.com Trudy = affil
Bob = customer and clicks on the redirect link rudy = affiliate

related to product XYZ on
amazon.com

v

direct link
(2) Bob’s browser retrieves the with Trudy’s
page pertaining to XYZ from tracking ID

amazon.comcarrying

Trudy’s tracking ID trudy_blogger.com

http://www.amazon.com/productXYZ?affiliatelD=Trudy
g

%
" -y (3) amazon.com places a cookie
on Bob’s browser — cookie

contains Trudy’s tracking 1D

damazon.com

Figure 12 Mechanism of affiliate tracking.

Cookie stuffing is a form of fraudulent activity occurring within the
framework of affiliate marketing [20]. In particular, the term refers to a
range of scenarios and techniques by which an affiliate — without any
knowledge or consent of the users visiting her Website — manages to trick
the browsers of these users into following the redirect link to the retailer’s
site and, ultimately, get them ‘injected’ with her affiliate cookie. A situation in
which cookie stuffing is performed by means of HTMLS5 prefetch/prerender
functionality is shown in Figure 13. Here, by simple virtue of visiting

http://trudy blogger.com

<html>

<link rel=“prefetch”
href="http://www.amazon.com/productXyYz?affiliateID=Trudy” >

</html>

Bob = customer Trudy = affiliate
(1) Bob visits trudy_blogger.com [69 e] e
o —

(2) Bob’s browser prefetches the

page pertaining to XYZ from

amazon.com carrying

Trudy’s tracking ID
-_in jts URL

trudy_blogger.com

http://www.amazon.com/productXYZ ?affiliatelD=Trudy

2 B
o0 cm— P,/ b \}\
.. - - n
\C .-y (3) amazon.com places a cookie
on Bob’s browser— cookie
contains Trudy’s tracking 1D Amazon-camn

Figure 13 Cookie stuffing by means of prefetch/prerender.

222 N. Vligjic et al.

(i.e., rendering) trudy_blogger.com, Bob’s browser is ‘lured’ into requesting
the redirect page with Trudy’s tracking ID from amazon.com, and as a result
it gets injected with Trudy’s affiliate cookie. Through all this action, Bob
remains completely unaware that his browser has ever had any interaction
with amazon.com. Moreover, Bob also remains clueless to the fact that Trudy
might rake in financial benefit from his potential purchase of productXYZ if,
for example, he stumbles upon and buys this product through a direct search
on amazon.com.

It is worth pointing here that in the scenario of Figure 13, Bob is neither
solely nor the primary victim of the outlined attack. Namely, with potentially
thousands of users visiting trudy_blogger.com, amazon.com would be the one
ultimately experiencing the most significant financial impact of Trudy’s cookie
stuffing ploy.

6 Conclusions and Future Work

The goal of this article is to raise awareness of a slew of vulnerabilities that
have been created with the introduction of HTMLS resource hints. We have
provided examples of specific threats and attacks that are easy to mount and
can have serious implications.

In order to mitigate these risks, further work is warranted and it can be
structured within the general framework of handling threats; namely, to deter
and block, and failing that, to be able to recover from an attack. These can be
achieved by a combination of one or more of the following measures:

1. Browsers should have an option to disable resource hints so users can
block potential attacks. Chrome provides such an option but is set to
“allow” by default.

2. Browsers should make resource hints transparent, so that users are aware
of them, without impacting the user experience.

3. Discriminating browser-initiated loads from user-initiated ones is cur-
rently done through the HTTP Purpose header, which is not logged by
most servers. We propose that this be elevated to arequest parameter (i.e.,
Ipurpose=prefetch) so that it can be readily available during forensics
investigations.

4. Increase awareness, particularly amongst expert witnesses and analysts,
of the footprint left by resource hints. For example, if a page appears in
a browser’s cache but not in its history is a telltale sign that this was not
a deliberate user-initiated retrieval.

We plan to pursue some of these directions in future works.

Rethinking the Use of Resource Hints in HTML5 223

References

[1] Web Browser for Android Wear (2017). Google Play. Available at:
https://play.google.com/store/apps/details 7id=com.appfour.wearbrowser
&hl=en

[2] Grigorik, 1. (2013). High performance browser networking: What every
web developer should know about networking and web performance.
“O’Reilly Media, Inc.”

[3] Resource Hints (2016). W3C Working Draft. Available at: https://www.
w3.org/TR/resource-hints/

[4] StatCounter Global Stats (2015). Top 5 Desktop, Tablet & Console
Browsers. Available at: http://gs.statcounter.com/?PHPSESSID=0c1i9
oue7por39rmhqq2eouoh0

[5] Arthur, C. (2013). Why the default settings on your device should be right
first time. theguardian.com, Available at: https://www.theguardian.com/
technology/2013/dec/01/default-settings-change-phones-computers

[6] Bichler, M. (2001). The future of e-markets: Multidimensional market
mechanisms. Cambridge University Press.

[7] February 2016 Web Server Survey. Netcraft (2016). Available
at: https://news.netcraft.com/archives/2016/02/22/february-2016-web-
server-survey.html

[8] Grigorik, I. (2013). High Performance Networking in Google
Chrome. Available at: https://www.igvita.com/posa/high-performance-
networking-in-google-chrome/

[9] Jackson, B. (2016). Resource Hints — What is Preload, Prefetch and
Preconnect? KeyCDN Blog. Available at: https://www.keycdn.com/blog/
resource-hints/

[10] W3Tech Web Technology Surveys (2016). Usage of Cookies for
Websites. Available at: https://w3techs.com/technologies/details/ce-
cookies/all/all

[11] Deveria, A. (2017). Can I use ? Available at: https://caniuse.com/

[12] Gelernter, N., Grinstein, Y., and Herzberg, A. (2015). Cross-site fram-
ing attacks. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC’15), CA, USA, 161-170. ACM.

[13] Rydstedt, G., Bursztein, E., Boneh, D., and Jackson, C. (2010). Busting
Frame Busting: a Study of Clickjacking Vulnerabilities on Popular
Sites. In IEEE Symposium on Security and Privacy (S&P’10). Oakland,
California.

224 N. Vlgjic et al.

[14] PC World. (2008). The Julie Amero Case: A Dangerous Farce. Available
at: http://www.pcworld.com/article/154768/julie_amero.html

[15] The Register. (2009). How malware frames the innocent for child abuse.
Available at: https://www.theregister.co.uk/2009/11/09/malware _child_
abuse_images_frame_up/

[16] Burp. Available at: https://portswigger.net/vulnerability-scanner/

[17] Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet (2017).
OWASP, Available at: https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

[18] Basit, A., and Vlajic. N. (2017). CSRF Attack Using HTMLS5 Resource
Hints: A New Face of an Old Enemy. In IEEE Cyber Science and
Technology Congress.

[19] Bujlow, T., Carela-Espaiol, V., Solé-Pareta, J., and Barlet-Ros, P. (2017).
A Survey on Web Tracking: Mechanisms, Implications, and Defenses. In
Proceedings of the IEEE, 105.

[20] Snyder, P., and Kanich, C. (2015, December). No Please, After You:
Detecting Fraud in Affiliate Marketing Networks. In WEIS, Amsterdam,
Netherlands. Available at: https://www.cs.uic.edu/~ckanich/papers/
snyder2015noplease.pdf

Biographies

Natalija Vlajic is an Associate Professor at the Lassonde School of Enginee-
ring, York University. The main areas of her research include: user privacy
and anonymity, DDoS, Internet bots and botnets, network and application-
layer security, IoT security, machine learning. Prof. Vlajic has co-authored
numerous journal and conference articles on a range of topic pertaining to
computer security and privacy. She currently serves as an Associate Editor of
IEEE Communication Magazine.

Rethinking the Use of Resource Hints in HTML5 225

b &

Xue Ying Shi is currently working for Tier| CRM Inc. as a full stack software
developer developing CRM related applications. She received B.Eng. in
Computer Engineering from York University in June 2017. She was a recipient
of the Undergraduate Student Research Award from Lassonde School of
Engineering, at York University, in the Summer of 2016.

Hamzeh Roumani received his Ph.D. in Theoretical Particle Physics in 1980
from the University of Illinois and has since been in academia at various
Physics and Computer Science departments. His main area of interest is
computer security and quantum computing. Hamzeh is a 3M Fellow and a
recipient of numerous awards including the Ontario Leadership, the York
University-Wide Award, the Faculty of Science Excellence in Teaching, the
Lassonde Educator of the Year, and the Computer Science Mildred Baptist
award.

Pooria Madani is a Ph.D. candidate at the Lassonde School of Engineering,
York University, specializing in the areas of computer security and privacy, as
well as adversarial machine learning. He obtained his M.Sc. from University
of New Brunswick in 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

