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Abstract

Smartphones usage have become ubiquitous in modern life serving as a
double-edged sword with opportunities and challenges in it. Along with the
benefits, smartphones also have high exposure to malware. Malware has
progressively penetrated thereby causing more turbulence. Malware authors
have become increasingly sophisticated and are able to evade detection by
anti-malware engines. This has led to a constant arms race between malware
authors and malware defenders. This survey converges on Android malware
and covers a walkthrough of the various obfuscation attacks deployed during
malware analysis phase along with the myriad of adversarial attacks operated
at malware detection phase. The review also unscrambles the difficulties
currently faced in deploying an on-device, lightweight malware detector.
It sheds spotlight for researchers to perceive the current state of the art
techniques available to fend off malware along with suggestions on possible
future directions.
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1 Introduction

The inverse relationship between malware and anti-malware has lead to the
coevolution of malware authors and malware defenders for decades. The task
of malware detection is a well-fought arms race between malware authors
who continuously update themselves to deceive anti-malware engines and
malware defenders who try to update and bring in better security mechanism
to handle the various malware attacks [1–7]. Even as technology for coun-
termeasures improves continuously, malware author designs malware with
the objective of bypassing the anti-malware engines by formulating novel
methods to evade detection and fulfill their malicious intent. Anti-malware
engine can be utilized to comprehend the functioning of malware and its
influence on the compromised node. The formulation of an anti-malware
engine embodies two connected components: malware analysis and malware
detection. Malware Analysis is the procedure of taking in the executable
under inspection and performing reverse engineering techniques on it to
extract features and determine the origin, functionality, and potential impact
of malware [8]. Malware detection ingests those features and perceives
whether the sample under inspection is a malicious or benign entity based
on patterns or functionality [9].

The attacks against malware analysis framework are obfuscation attacks
which tries to hinder the reverse engineering process by concealing the
internal malicious functionalities and makes the analysis and detection harder
[10–17].

Learning based solutions for malware detection [18,19] are progressively
adopted by anti-malware companies like Mcafee [20], Sophos [21], Cylance
[22], CrowdStrike, [23] to name a few. Learning based techniques such as
Machine Learning(ML) models and its subset Deep Learning(DL) models are
under the constant threat of well-crafted cyber-attacks known as adversarial
attacks, thus making it a fragile component in the security pipeline [24]. Thus,
the need to develop secure learning techniques which are immune to adversar-
ial attacks is on the rise and is emphasized by many government intelligence
agencies and technology sectors. DARPA’s Guaranteeing AI Robustness
against Deception (GARD) [25], Google’s Responsible AI Practices [26],
IBM’s Adversarial Robustness Toolbox (ART) [27], Microsoft’s Securing the
Future of Artificial Intelligence and ML at Microsoft [28], SecML [29] and



Android Malware Attacks vs. Countermeasures 179

Cleverhans [30] are few attempts to counter the adversarial attacks on ML
models on the image space. The available comprehensive literature review
articles on adversarial attacks against ML models and possible defenses in
the image space are [31–36] to name a few.

Sophos Threat Report for the year 2020 particularizes on the rise of
attacks against ML models deployed for malware detection [37]. Cylance’s
PROTECT anti-malware engine which deploys DL models has been recently
evaded by adversarial attacks [38]. Thus, ML based malware detectors are
under the constant threat of adversarial attacks [39–45]. This demands for the
development of robust and secure learning models to be deployed in malware
detectors which can withstand the adaptive adversarial attacks [46–52].

The progress made in the analysis and detection of malware have been
discussed in detail in recent review articles like [14, 19, 53–57]. Adversarial
attacks and possible defense for malware space is reviewed in [47, 58]. The
available literature survey articles have not addressed the malware space
problems in an all-inclusive manner. This has given rise to the need for
analyzing the current available approaches and to identify their shortcomings
and propose possible path for future contributions. This review article tries to
provide an end to end spotlight on the difficulties encountered in building an
effective and efficient malware detector for the Android domain. There are
now more than two and half billion active Android devices as reported by
Google in 2019 [59]. In its threat report for the year 2020, Mcafee affirms the
tremendous increase in mobile malware attacks in the recent years along with
an observation on how attackers are improvising their strategies for defeating
detection [60]. Android malware are on the rise due to Android’s open source
nature. The feasibility to download and install Android applications from
unverified sources makes it easy for malware authors to bundle and distribute
applications with malware. The rapidity in which malware evolves in terms
of volume and diversity makes it harder to be detected effectively.

The contribution of this review article are as follows:

1. Summarizes the possible attacks and current defenses that exist in the
Android malware threatscape.

2. Poses few research questions to encounter the challenges faced while
building an effective and efficient malware detector while responding to
the formulated research questions elaborately.

The rest of the review article is organized as follows: Few research ques-
tions are devised in Section 2. Background on malware and malware variants
is given in Section 3. Section 4 discusses about the generic anti-malware
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engine. Section 5 provides a brief overview of the factors to be considered
when designing a malware detector with emphasis to static analysis and
lightweight feature extraction. Various artifices of the malware author along
with possible attacks encountered by an anti-malware engine is covered in
Section 6. Section 7 elucidates the techniques available for increasing the
defense of the learning based systems and Section 8 concludes the survey
with possible future research directions.

2 Research Questions Framed: Android Malware
Dectection

The subsequent sections unravel each of the following research questions
in detail. These research questions enable to provide a wider and deeper
understanding of the overall Android malware detection.
RQ1: What are the Android malware variants? How can they be detected
effectively?
RQ2: How does an anti-malware engine work?
RQ3: How to collect Android apks from the wild?
RQ4: What tools are available for reverse engineering an Android apk?
RQ5: Which learning based technique is suitable for malware detection?
RQ6: What kind of attacks are to be dealt with when performing malware
analysis and detection?

3 Background on Malware and Malware Variants

As stated by Denning, it is strenuous to protect computer system and net-
works from intrusions [61]. Bace [62] describes intrusion as an attempt to
breach the Confidentiality, Integrity and Availability so as to bypass the
security mechanisms of a computer or network. Intrusion Detection and
Prevention Systems (IDPS) primarily focus on detecting possible intrusions,
attempting to stop them and reporting them to security administrators [63].
Based on the location of the information sources, IDPS can be categorized as
host based or network based approach [64]. Host based Intrusion Detection
System (HIDS) checks for suspicious activity at the host level [65]. A Net-
work based Intrusion Detection System (NIDS) checks for intrusions in the
network traffic at gateway and routers by analyzing network protocol activi-
ties [66]. Endpoint security solutions for smartphones, workstations, servers
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and other computing resources have to offer protection from malicious
attacks. Malware are unwanted software which imparts multi-sided concerns
such as sneaking, stealing, causing financial loss or gaining control without
the consent of the end-user. The following subsection introduces its readers
to a brief history of malware and its variants.

3.1 History of Malware

The emergence of computer virus was conceived around 1948 when John von
Neumann extended Alan Turing’s automata [67] by incorporating the theory
of self-reproducing automata [68]. He outlined the way in which a computer
program could replicate itself. Bob Thomas from BBN technologies wrote a
maiden self-replicating program, the Creeper system [69] to assess the theory
given by von Neumann. Fred Cohen affirmed von Neumann’s postulates
about computer viruses and explored malware characteristics like detection
and obfuscation [70]. Cohen phrased the term computer virus as a program
that can contaminate other programs by forming mutants of the original
program [71]. Since then, computer virus was the keyword used to group the
various malicious software including those that did not mandatorily infect
other software.

In 1990, Yisrael Radai pioneered the term malware to denote virus,
worm, trojan and other similar malicious entities [72]. Subsequently, the
term malware is used as the representative to denote any software which
exhibits any malicious activity. The journey of mobile malware [73] started
around the year 2000 when smartphone’s based on the Symbian Operating
System (OS) was introduced; Cabir worms [73] and Timofonica [74] were
some of the few malware which initially emerged and started causing havoc.
Google’s Android OS came in 2008 and it started attracting application
developers as well as malicious authors due to its open source nature. The
SMS.AndroidOS.FakePlayer.a trojan [75] was the first Android malware to
be detected in 2010. Since then the volume and veracity of Android malware
has had a tremendous increase.

3.2 Understanding Malware Variants

Malware are characterized according to their propagation procedures and
their activities accomplished on the infected system [76]. Figure 1 illustrates
the categorisation of malware along with the possible diverse cyber security
breaches. The categorization of the malware types can be centered on the
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Figure 1 Categorisation of malware along with the possible diverse cyber security breaches.

attacker’s objective into conventional or mass malware and targeted or smart
malware [77]. Mass malware attempts to affect any victim machine and cause
damage as much as possible. These are less sophisticated and can be defended
easily. Targeted attacks or smart malware are Advanced Persistent Threats
[APT] [77] which utilize cutting edge cyber-security techniques and puts in
consistent and continuous efforts to gain access. It tries to remain undetected
for long term and causes substantial damage to the specific target.The mass
malware threat landscape constituting diverse malware avatars with various
capabilities can be roughly categorized based on the functionality to the
following groupings [78].

3.2.1 Infectious
Infectious malware are those that spread to infect new victims. Malware
spreads through disks, e-mail, messaging services, Internet protocols, com-
promised legitimate websites, advertisements, to name a few. Infectious
malware can be categorized as:

• Virus:
Analogous to the biological virus which infects a living cell and takes
control, the computer virus is a code fragment which necessitates a host
program to execute its functionality [76]. Virus inserts its malicious
contents into a legitimate program and infects it. When the host program
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is executed, the parasitical program takes control, executes its payload
and reveals its contemplated behavior. It ubiquitously propagates by
infecting applications executing on the host node and other nodes acces-
sible through network connections. A few examples for cross platform
mobile virus are Crossover, Dust, Lasco and CardTrap [78].

• Worm:
A worm [76] is an unallied and self-reliant program which propagates
and replicates by spawning itself on infested nodes and explores further
vulnerable nodes via accessible network and copies itself on these nodes.
Some of the worms available for mobile are Cabir, ZeuS MitMo, Beselo
and CommWarrior.

3.2.2 Concealment
Concealment malware are those that takes measures to hide its detection.
They employ persistence mechanism to make them undiscoverable. They can
be categorized as follows:

• Trojan Horse:
In general, a trojan [76] is any malware that deludes its authentic
purpose. To bait the innocent user, they disguise and advertise as
legitimate entities with alternate useful functionality but their payloads
perform malicious activities. User assistance for installing and executing
the infested program is imperative for the infection to take place as
Trojans neither spread nor require any host program to work. A few tro-
jans which created havoc in smartdevices include DownAPK, GatSPY,
MasterKey, Fontal, Liberty Crack and Infojack [54].

• Trapdoors or Backdoors:
Backdoors [76] are malware which surreptitiously gain access to entities
such as system or processes in a fabricated way that is not supported by
its designers. The typical payload of a worm or a trojan is to setup a
backdoor so attackers would gain control in an unauthorized manner
to corrupt, delete or steal sensitive contents. A few examples include
Brador which is a backdoor targeted for pocket PC hand-held devices
with Windows mobile OS [79], Twitoor [80] which is an Android back-
door and botnet that imitates like a MMS app and accepts commands via
tweets.

• Logic bombs:
Analogous to a delayed-action bomb whose detonation could be
delayed, logic bomb [76] or slag code are code fragments programmed
with malignant purpose which remain inactive in the host. The code gets
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triggered when specified criteria is satisfied and gets executed to cause
the expected sabotage to the host. This attack is usually inflicted by
an insider having privileged access. Remote Control System Android
(RCSAndroid), a spying malware stealthily waits for SMS messages
from certain contacts [81]. Holy Colbert waits for reboot of the device
and then checks for device date against the specified hard coded date. If
the dates match, it starts sending spam messages to contacts [82].

• Rootkits:
Rootkits [83] are a set of software tools typically used by a malicious
actor to gain and maintain privileged access to a compromised system in
an unauthorized manner. A rooted host is one with a rootkit installed on
it. The rootkit facilitates remote access to the malicious actor to dispatch
further attacks or collect intelligence. The malicious actor executes
clandestinely without the user’s permission as rootkits are equipped
with sophisticated techniques to alter system files to be undetected. The
rootkit, DroidDream [84] injected few root exploit activities in some
of the Google Playstore apps in 2011. HummingBad rootkit installs
fraudulent apps and performs clickfraud to generate revenue for its
parent company, Yingmob [85].

3.2.3 Malware for stealing information
These malware infringe to steal sensitive information and misuse them
against the user. They are categorized as

• Keyloggers:
Keyloggers [11] records the keystrokes of a user which may include sen-
sitive information such as banking credentials, login details and exposes
them to the attacker. Mysterybot which is a keylogger, ransomware
and a banking trojan records the location of the user’s touch gesture
screen position and predicts the corresponding key pressed on a virtual
keyboard [86]. Mspy,a spyware and a keylogger records all keystoke
usage on the smartphone [87].

• Spyware:
Spying software [88, 89] usually violate user’s electronic privacy by
illegally inspecting user activities. Surreptitiously, such software try to
steal sensitive personally identifiable information, passwords, financial
details which can be used for illicit financial benefit. They stealthily
collect clickstream data, keystrokes, browsing behavior and transmit
them to the attacker when connected to the Internet. Spyware do not
self-replicate and are usually payloads of Trojans. Flexispy monitors
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the target device activities by intercepting emails, SMS, inspects Social
media apps and listens to calls [87].

• Adware:
Similar to spyware, adware [88] illicitly collect and transmit user prefer-
ences but are primarily used for marketing purposes. Activities such as
displaying hand-picked commercial advertisements, redirecting user’s
browser to intended sales websites are performed to generate revenue
for attackers. Few unethical adware apps are Car Racing 2019 and
Mobnet.io Screen Stream Mirroring [90].

3.2.4 Profit seeking malware
Malware can also be used to create revenues for the attacker. They are
categorized as follows:

• Scareware:
Scareware deceive users into purchasing needless software by inducing
some form of fear through fake alerts. AndroidDefender is a scareware
and fake mobile anti-virus providing fake alerts and insists user to buy
their product to protect the end user device [91].

• Ransomware:
Ransomware [92] are coercion software that either encrypts file contents
or locks user access out of the system and ordains the user to pay a ran-
som to release hostage of the computing resources. Some ransomware
families like Maze, Sodinokibimb forces the victim to pay the ransom
by threatening to disclose the data [93, 94]. Android ransomware like
Filecoder [80] are disseminated through online forum links, spreads to
device contacts through SMS with malicious links, encrypts device con-
tents and demands ransom. other notable Android ransomware include
WannaLocker, LeakerLocker and Xbot [95].

• Spam-sending malware:
These malware utilize the infected machine to send spam messages and
tries to generate revenue for the attackers [11].

• Crypto-mining malware:
Malice crypto-mining or Cryptojacking is an emerging profit seeking
malware attack which does not damage infected device or steal infected
device data. It instead loots the resources of the infected device like
CPU processing power to convert computing resources into digital
electronic money called cryptocurrencies by performing mining opera-
tions which are complex mathematical encryption operations. Attackers
misuse the infected devices without the victim’s consent by stealing their
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computational resources by executing complex scripts to mine cryp-
tocurrency. Unlike ransomware, which threaten user’s and gain profit,
cryptojacking software conceals itself from the victim’s attention. The
victim suffers the damage caused by cryptojacking malware like device
performance slow down, consumption of electricity and device life-time
reduction [96]

3.2.5 Botnet
Resembling the backdoor, where an attacker can access and operate on the
specific infected machine, all systems infested with the same botnet take in
the same instructions from a sole command and control server [11]. The
compromised machines or zombies are utilized to launch attacks against
other computing resources such as bringing down a legitimate website using
distributed denial of service attacks, spreading spam contents and performing
click frauds. Geost botnet can access user personal information, control the
infected device by redirecting the network traffic,send SMS and perform bank
communications [97]. In Chaois [98] the infected device user is tricked into
SMS scams and unknowingly pay cybercriminals through premium SMS
fraud tricks. Twitoor [99] is an Android backdoor and botnet which imitates
like a MMS app and accepts commands via tweets.

The evolution of malware into its innumerous avatars have now recently
reached the fileless malware approach also known as Advanced Volatile
Threats (AVTs) [100, 101]. AVTs execute its malicious activities in the
volatile main memory and is able to escape anti-analysis techniques as
the infection traces are available only in memory during its execution. It
tricks common tools like PowerShell, Windows Management Instrumenta-
tion, command prompt, .NET framework, Remote Desktop Protocol (RDP)
into attack vectors [56, 100–102].

Fileless malware utilize scripts like JavaScript, Visual Basic for Applica-
tions script and compiled HTML files under the hood of a system process
[103]. Currently, fileless malware work with Windows OS platform, but
security analyst are predicting that it will slowly creep into other platforms in
the near future [104].

4 Anti-Malware Engine

An anti-malware engine intakes an executable and segregates it as malware or
not by utilizing two stages namely malware analysis and malware detection
as given in Figure 2.



Android Malware Attacks vs. Countermeasures 187

Figure 2 Anti-malware engine.

Malware Analysis is employed to understand the risk and intentions of
malware [8]. Malware analysis can be categorized into static, dynamic and
hybrid approaches. Static analysis also known as structural analysis or code
analysis [8] dissects and extracts features without executing the code. These
techniques have high code coverage and can provide faster interpretation
of the sample and are easily scalable. But, they face the mammoth draw-
back of the inability to resolve malware utilizing obfuscation techniques
[105]. Obfuscation mechanism are those that obscure the reverse engineering
process by applying procedures such as encryption, compression, dynamic
linking, dead code insertion, polymorphism, to name a few. Dynamic analysis
or behavioral analysis technique [19] can overcome these issues by executing
the sample in a constrained environment such as a sandbox or an emulator
for a limited period. The behavioral parameters such as API calls, instruction
traces, registry changes and memory writes are observed. This resource inten-
sive technique has the drawback of producing a single path code coverage and
could be vulnerable to malware utilizing system-call obfuscation techniques
and anti-analysis techniques [19]. Hybrid methods exploit the advantages of
both static and dynamic approaches by utilizing both the techniques together.
Features from static analysis and dynamic analysis are combined to perform
hybrid analysis [1, 106].

Malware detection could be zoned into signature based methods and
anomaly based techniques. Signature based or misuse detection methods
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encompasses a repository of known malware signatures against which it
compares the incoming samples to categorize them. The huge hindrance
in this traditional technique is that it needs to keep the repository up to
date [8, 9, 107] else it cannot detect unknown samples. Anomaly based also
known as heuristic based detection techniques make use of the behavioral
approach of learning. It comprehends the normal patterns and any devi-
ations observed are designated as malicious. However, not all abnormal
activities are malicious, so it is prone to false positives. This approach has
the benefit of detecting unknown malware and zero day attacks. Zero day
attack targets security flaws that is unknown or unpatched by the software
vendor [2]. Anomaly detection based security solutions [19] can deploy
expert systems, string matching, state modeling,rule-based systems, genetic
algorithm, immune system models and learning based techniques. Learning
based models have superior performance when trained appropriately using
large volume of data. They can extract better patterns by utilizing deeper
networks thereby reducing false positives [19].

5 End2End Framework for Android Malware Detection

The end2end framework for Android malware detection is given in figure 3
which involves three phases such as dataset collection, malware analysis and
malware detection.

5.1 Data Collection

For effective malware detection, Android applications comprising a balance
of benign samples and malicious samples should be collected. Data collection
should be a representative of the various malware families in the wild.
Table 1. gives a picture of possible sources where apks can be collected and
assimilated to form a comprehensive dataset. Android applications executed
on the Android operating system are packaged as Android Application Pack-
age(.apk) archive files. The APK files are digitally signed with the application
developer’s certificate. Figure 4 adapted from [108] illustrates the major
directories and files encompassed in the .apk file which are explained as
follows:

• AndroidManifest.xml holds the permissions, application version and
libraries used by the application. This core manifest file is in the Android
binary xml format.
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Figure 3 End2End framework for android malware detection.

• LIB folder contains native libraries which are shared non-java libraries
loaded by the Java Native Interface(JNI) at run time. Processor specific
and platform dependent compiled code are placed in the LIB folder.

• META-INF folder contains the signatures files CERT.RSA, CERT.SF
and the MANIFEST.MF.

• resources.arsc contains the precompiled compressed resources.
• RES folder contains resources which have an ID assigned during

compilation.
• ASSETS folder contains application assets like media files, fonts,

HTML contents which are accessible through the Asset-Manager class.

5.2 Malware Analysis

This section brings to light the steps involved in understanding how an
executable can be converted to a format that can be given as input to a learning
based algorithm. The executable is converted from machine language format
to interpretable format using reverse engineering tools, from which features
are extracted to construct either tabular or sequential based features for the
learning based techniques. The rest of this subsection explores the commonly
available feature extraction methods, followed by exploring techniques which
emphasize on lightweight methods for feature extraction. Options available
for training and deploying the model are also articulated in this section.

5.2.1 Reverse engineering
Reverse engineering techniques take in the binary instructions and reveal
the working logic of the inspected program by utilizing various tools and
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Table 1 Android dataset sources
S. No. Dataset Description

1 Rmvdroid [109] 9,133 malware samples

2 Android PRAGuard [17] 10479 samples

3 AndroZOO [110] Millions of samples

4 F-Droid [111] Repository for Benign samples

5 appsapk [112] Repository for Benign samples

6 apkpure [113] Repository for Benign samples

7 DroidFusion [3] 5,560 malware+ 9,476 benign

8 CICInves And Mal2019 [114] 426 malware + 5,065 benign

9 AMD Project [115] 24,553 malware samples

10 CIC And Mal 2017 [116] 4,354 malware + 6,500 benign

11 CICAAGM dataset [117] 250 Adware + 150 General Malware + 1500 Benign

12 Android Botnet [118] 1929 android botnet

13 Drebin [119] 5560 malware + 123453 benign

14 ContagioDump [120] 189 malware samples

Figure 4 APK structure.

frameworks. A myriad of features can be extracted by feeding the samples
from the collected dataset into the tools for reverse engineering the apks.

The extracted features from static malware analysis can be represented as
a sparse binary feature matrix where columns represent the various features
extracted. The presence or absence of a particular feature can be identified
by checking the binary value at the particular index position of the feature
vector as either a ‘1’ or ‘0’. Dynamic analysis results in providing a sequence
of API calls invoked with respect to various system related operations such
as memory, process, file and network activity.
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In static analysis, the Android APKs are unpacked, decompiled and
inspected for malicious contents without executing them. Static features are
extracted from the Android-Manifest.xml and the DEX code file. Although
fast, it can be easily fooled by malware making use of obfuscation techniques.
Androguard [121], apktool [122], dex2jar [123], radare2 [124], dexter [125]
and IDAPro [126] are few static analysis tools available for converting the
.apk format to an interpretable format for analyzing and extracting features.
RemNux [127] and Android Reverse Engineering (A.R.E) [128] are few
reverse engineering frameworks readily available for malware analysis.

The design process of an anti-malware engine should take into consider-
ation the presence of obfuscated malware. The designer of the anti-malware
engine should explore various obfuscation techniques that could be deployed
and use appropriate methods to overcome obfuscation based attacks. Pro-
Guard [129], DexGuard [130], DexProtector, [131] are few tools available
for working with Android obfuscation techniques.

5.2.2 Feature extraction
The various features that can be extracted by malware analysis for Android
applications are:

• Permissions used [106, 132, 133]
An Android application indicates the requested permissions it needs
before installation. The applications gets installed only when the user
grants these permissions. Android security framework uses this method
to enforce a permission based model to restrain admittance to end-user
personal contents.

• Application components [134, 135]
An Android application has four application components encompass-
ing Service, Activity, Content Provider and Broadcast Receiver. Ser-
vice components execute in the background without user interaction.
Activity components furnish user interfaces. Exchange of data across
applications is facilitated by using Content Providers. System-wide
announcements are handled by Broadcast Receivers.

• Filtered intents [136–138]
Intents are messages sent between components used by Android mes-
sage passing system. Each component’s action is indicated through
the filtered intents. Intent-filters are used by each of the application
component to register itself to obtain the Intents.

• API calls [139, 140]
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API calls are used by the application to work with the device in order to
accomplish the core functionalities.

• Network addresses [141–143]
Network addresses can be used to access the URLs, IP addresses used
by the application.

• Opcodes [142, 144]
Operation Codes, their frequencies and opcode sequences used in the
apps can be accessed.

• Native code [16, 17]
Native code are function calls invoked on external binaries including
shared libraries.

• Hardware components [119, 145, 146]
Application access to hardware components such as camera, USB, GPS
can be extracted.
Apart from the above specified features which are directly extracted
from the .apk file, few techniques have been developed to extract graph
based data structures for better and efficient malware analysis which
encompasses:

• API Call Graph (CG) [147–149]
Api Calls made between modules are marked as a directed graph
with the nodes representing each API. Edges denote the directed links
between the caller and the callee.

• Control Flow Graphs (CFG) [133, 150]
The set of all paths traversed during program execution can be rep-
resented using a Control Flow Graph. The nodes can represent basic
building blocks and edges correspond to transitions from one basic block
to another using jump statements or branching statements. A basic block
comprises of a set of sequential instructions with no branch statements.

• Data Flow Graphs (DFG) [149]
Data Flow Graph can be used to visualize and observe the flow of
sensitive information across the application between different entities.
The above techniques are considered as heavy weight approaches for
feature extraction. They perform offline detection of malware with no
constraints in regard to computing capabilities or handling huge scale of
samples for data processing when compared to the energy and computa-
tion resources restrictions available on mobile device. This makes them
harder to be considered as on-device detection models instantaneously.
This has given rise to the need for identifying features which can be
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retrieved in a light-weight manner while providing efficient detection of
malware.

5.2.3 Light-weight feature extraction
Few models have been developed keeping in mind the requirement of
lightweight analysis [5, 12, 13, 151–153]. These techniques try to understand
the raw extracted multitudinous features and select only those features that
help in discriminating malware better and keeping the analysis simple.

RevealDroid [13] identifies malware along with its possible family cat-
egory. Lightweight feature subsets utilized in Revealdroid includes Android
API usage at package-levels (PAPI), Android API usage at method-levels
(MAPI), resolution of APIs caused by reflection calls and function calls
carried out by native binaries. Usage of these features enable Revealdroid
to achieve obfuscation resilience along with enhanced performance when
compared to its counterparts deploying complex program analysis or methods
utilizing huge feature sets. Revealdroid tends to expand its capabilities on
exploring rooting malware and cryptocurrency mining malware.

LightDroid [12] bestows a lightweight malware detection which can be
effectively implemented on mobile devices but with the trade-off of providing
accuracy at an acceptable margin. It extracts a group of picture-based features
by considering the raw pixel representation of first thousand bytes from
the Dalvik executable files along with a nominal set of features from the
AndroidManifest file. It fits a Convolutional Neural Network (CNN) model
and has a comparatively faster detection at inference time when compared
with RevealDroid [13] and Drebin [119]. Lightdroid finds obfuscated mal-
ware by incorporating a computationally complex method into its training
phase and yields a lightweight inference phase model deployable in mobile
devices. The article constructs another obfuscation resilient model named
ORDroid which detects transformed and obfuscated malware samples. It
uses a different set of features comprising the PAPI, MAPI and reflection
features from RevealDroid along with sequences of opcodes from the DEX
file. ORDroid builds a Gated Recurrent Units (GRUs) model which has
performance better than Revealdroid and Drebin.

A methodical investigation on feature engineering is performed in Droid-
Seive [152] to build a heterogeneous feature set capable of adapting to
different malware yet being lightweight and computationally reasonable.
It constructs a map relating the classes of extracted features comprising
syntactic and resource centric features. Resource centric features take into
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account the artifacts and footprints left behind by hiding or repacking a mali-
cious content. Syntactic features build on API calls, permissions and derive
features from meta-information and explicit intents. ExtraTrees are used
to build up the model. DroidSieve performs malware detection and family
classification. Dataset utilized involves combination of obfuscated and non-
obfuscated malware samples. DroidSieve is capable of detecting obfuscated
malware utilizing native code, encryption and reflection. DroidSieve reflects
how methodical feature engineering can yield better learning based malware
detectors.

Tinydroid [151] employs an instruction simplification technique to build
a lightweight static ML detection model which extracts opcodes from all
the Dex files in an Android application. Tinydroid includes reflection API
features and function calls to identify native binaries invocation as part of its
features. It constructs simplified symbolic instructions by taking assistance of
N-gram technique and feature reduction by using information gain technique.
Affinity propagation clustering method is used for exemplar selection to
reduce the number of training samples. It uses Random Forest, Support
Vector Machine and Naive Bayes for classification and compares its per-
formance with current AV tools. Tinydroid utilizes malware samples from
Drebin dataset and benign samples from Google Play market.

1D-CNN [5] does not utilize any feature engineering or specific set of
features from the apk file. Instead it considers the last 512 bytes to one
kilo bytes of the raw APK which is converted into an image and fed into
an one-dimensional CNN. The dataset comprises malicious samples from
AMD [121] and Drebin [119]. Goodware samples are collected from App-
sapk [112]and Apkpure [113] The performance of the model is not clearly
explained by the author.

DroidKin [153] addresses the problem of identifying similarity between
cloned and plagiarized applications. DroidKin develops a lightweight and
robust approach utilizing meta-data and N-gram based opcode sequences
from dex files to infer the relationships among similar applications. Sim-
plified Profile Intersection (SPI) metric has been proposed as a similarity
measure for evaluating source code author profiles through frequency anal-
ysis. Relationship between related applications such as twins, siblings, step-
siblings, false step-siblings and cousins are identified based on the decreasing
order of closeness. Droidkin applied few obfuscation transformations and
analyzed its corresponding impact on the similarity determination of how
and why applications could be related to each other.
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5.2.4 Feature extraction for on-device lightweight testing
applications

On-Device lightweight static learning based malware detection techniques
usually train a model off-line in a high end system. As training with huge
datasets utilizing DL models is resource intensive and time consuming; this
is usually difficult with mobile devices which have limited capability. The
optimal trained model with its fixed parameters after fine tuning is then
transplanted into the on-device application for prediction purposes.

IntelliAV [154] is a freely available and deployable on-device lightweight
learning based anti-malware for Android devices built using TensorFlow
library. Lightweight features comprising of APIs from the Dex file, intent
filters, permissions and application component statistics are extracted from
the Manifest file to build the feature vector which comprises 4000 features.
IntelliAV used 9,664 malware and 10,058 benign samples collected from
VirusTotal and builds a model using TensorForest which is an ensemble based
Random Forest model in TensorFlow. The trained model after fine tuning its
performance is embedded on-device in the IntelliAV Android application.
IntelliAV application offers QuickScan and CustomScan capability to scan
all installed apps and downloaded/dropped APKs respectively in real time
and associate a risk score for each. For testing an application on the device,
IntelliAV extracts the application’s features and feeds it to the optimized
model which computes the risk associated with the application. IntelliAV
claims to have low overhead on real devices and can analyze an application in
less than 10 seconds. IntelliAV is a good start as an on-device anti-malware
approach which can in future become more robust against adversarial ML
attacks and pervasive malware obfuscation attacks.

Drebin [119] is a famous lightweight detector which does a linear sweep
of an Android application using the Android AssetPackaging Tool and
extracts around 5,45,000 different features from the manifest and dex files.
The features are embedded in a vector space indicating presence or absence
of a feature in an application. A linear SVM model is constructed by offline
learning using 5560 malicious and 1,23,453 benign applications and the opti-
mal learned model is transferred to the mobile device. The Drebin working
model is not available publicly. The results mention that Drebin takes around
ten seconds to scan an application and calculate its risk score. Drebin tries
to address obfuscation attacks and code loading by monitoring the relevant
loadClass and getInstance APIs. It discusses about Drebin’s possible future
extensions to address the inherent possibilities of an attacker performing
mimicry attack and poisoning attack on its learner, handling reflection and
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encryption attacks, utilization of better representative samples for its training
dataset with frequent retraining using sanitized datasets.

Qualcomm’s Snapdragon Smart Protect [155] is an on-device holistic ML
based anti-malware commercial product whose specific design or feature set
used are not publicly available.The model decides dynamically the optimal
set of features to consider for the learning and the model is said to have a
unique characteristic of the ability to prune the classifier to a lean classifier
which works on this reduced feature set. The model is said to have good
detection of zero-day malware and reflection based malware.

5.2.5 Feature extraction for on-device lightweight training and
deployment apps

Previous section discusses on-device malware detectors that work by training
the learning model in a dedicated server which is then embedded to the
mobile device. This section discusses on on-device training which is usually
challenging owing to the resource limitations inherent in the mobile devices.

Yuan introduced BL-AMD [4], a broad learning based lightweight on-
device Android malware detector which can be either completely or incre-
mentally trained directly on-device. Broad Learning (BL) enables fast train-
ing speed as it utilizes one shot computations for its parameter calculation.
It provides better generalizations by making use of sparse autoencoders and
hierarchical feature transformations. Incremental learning facilitates model
retraining with new samples. A total of 379 static features are extracted from
API calls, intent actions and permissions to construct a binary feature vector
of an app which is then fed to a three layer neural network. The first two
layers are data-processing units comprising feature layer and enhanced layer
which extracts representations of the data provided to them. The third layer
which is the output layer processes the outputs of both feature layer and
enhancement layer to provide the probabilities of the app to be malicious
and benign. The results mention that BL-AMD scans applications averagely
in about 0.2 seconds. The model tests its robustness to black box adversarial
attack MalGAN [156] and demonstrates better performance achieved through
its incremental retraining capability.

5.3 Malware Detection

Commonly used ML and DL models have been successfully used for Android
malware detection [19,55]. Few architectures improve the classification accu-
racy by making use of the distinct properties of the domains in which they
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are used. For computer-vision applications, Convolutional Neural Networks
architectures are commonly used as they are better on input containing
translation invariant properties that are found in images. Recurrent Neu-
ral Networks are commonly used in hand-writing recognition and natural
language processing as they perform better with input that has to be pro-
cessed sequentially. The binary indicator vector used to represent the Android
applications does not possess the structural properties that are present in the
above mentioned applications. So, Deep Neural Networks that are based on
regular feed forward neural network architecture can be used for malware
classification. The model has to be evaluated in a temporally consistent
manner for better generalization capabilities.

6 Artifices of Malware Author

While manual analysis of malware and successive construction of signatures
is at stake, malware authors tend to generate a number of different malicious
samples from a single malware. This section discusses the attacks that can
be launched against an anti malware engine. It considers obfuscation attacks
which are employed during malware analysis and adversarial attacks on the
ML models deployed in the malware detection phase.

6.1 Obfuscation Attacks – Disturbance caused during Malware
Analysis

Given the tremendous upsurge of malware, the necessity to develop auto-
mated analysis and detection techniques with least human intervention is the
need of the hour. Every day, there are new malware detected even though in
reality only few thousands of malware families may exist. Increase in creation
of malware variants by the authors is motivated by the need to evade malware
detection. Malware authors continue to expand their threat vector by scaling
up on the types and functionality of the malware along with the increase in
the volume of the new malware samples being generated. The end goals such
as evading detection and generating new variants from existing samples are
achieved by the usage of obfuscation techniques. Obfuscation techniques are
used to deliberately convert readable code into obscured code while retaining
the code functionality. These techniques were initially developed to protect
from pirates who pried protected software and stole intellectual properties of
software developers [157].

Adversely, malware authors started utilizing obfuscation techniques to
conceal the internal malicious functionalities and to make analysis and
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detection harder [10, 11]. Obfuscation techniques utilized by Android mal-
ware exploit the open source nature of Android framework [16, 17]. These
anti-analysis techniques are usually categorized based on the malware
analysis technique to be invalidated. To deter static analysis, obfuscation
techniques like compression, encryption, code obfuscation, anti-disassembly
and polymorphic techniques are engaged [14]. To thwart dynamic analysis,
malware authors employ anti-debugging, anti-virtual machine, anti-sandbox
techniques using sophisticated environment aware approaches [14, 15].

These obfuscation attacks can also be categorized into transformations
which without modifying source code can thwart signature based static anal-
ysis and transformations which modify the source code files like classes.dex,
AndroidManifest.xml or String.xml without changing the intended semantics
of the application as given in Figure 5.

6.1.1 Anti-static techniques
Some of the anti-static techniques are given below:

• Compression and Encryption:
These techniques encrypt and/or compress classes in the .dex file and
place them in the data array. During runtime, a corresponding decom-
pressor/decrypter will decrypt and/or decompress and load the malicious
module in memory [16]. Packing programs [11] use one or more layers
of compression on the sensitive payload of the malware executable. As a
result, a static analyzer has access only to the packed file and the original
content cannot be accessed directly. Crypters deploy simple encryption
techniques like encrypting sensitive strings using XOR operations to
confine access to static analyzers [11, 16].

• Code and Data Obfuscation:
Malware authors use code transposition to reorder the code sequence
while retaining the intended behavior. They utilize placement of uncon-
ditional branching statements, jump instructions and swapping of inde-
pendent instructions. Binary footprint of the application can be altered
by increasing the bytecode size. This can be done through the addition
of Dalvik No-Operations (NOP) into arbitrary disassembled methods to
alter the ordinance of the program code [17]. Data obfuscation involves
trivial transformations like identifier renaming and modifying package
names [16].

• Anti-disassembly:
Malware authors write their malicious programs in high level languages
and convert them into target binaries and distribute them. To analyze
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the target binaries, malware analyst converts the machine code into
interpretable form by reverse engineering tools like disassemblers [8].
A disassembler converts machine code into assembly level language.
Malware authors target the way disassemblers work and take benefit of
few assumptions which disassemblers usually make and tricks them to
produce a false disassembly listing [11, 17].

• Polymorphism:
Polymorphic malware incorporates multiple obfuscation techniques to
generate innumerable variants to thwart signature matching. Tech-
niques such as reassignment of registers, supplementing No-Operations
(NOP), performing XOR operation and reordering of sub-routines are
performed [16].

• Android specific obfuscation techniques:
Some additional options at hand for malware authors specific to Android
applications includes:

– Repack: Repacking and realigning of android applications is pos-
sible without any bytecode changes to hinder signature based
anti-malware [16, 17].

– MultiDex: Applications split into multiple dex files can be used
to hide the malware payload across multiple dex files and hinder
detection [16, 17].

– Native code: Native code are function calls invoked on external
binaries like shared libraries. Malware misuse this functionality and
embed malicious payload in external binaries which are invoked
during run-time [16, 17].

– Reflection: Reflection is the capability of an application to monitor
itself at runtime to perform some bug fixes or upgrade to latest ver-
sions. Malware can utilize this capability for executing malicious
content [11, 17].

– Dynamic Code Loading: Malware can possibly extend their mali-
cious functionality through dynamic loading of untrusted contents
from remote websites by harnessing the Davik class loading
capability [16].

6.1.2 Anti-dynamic techniques
Even though the signature is modified, the behavior of the generated malware
remains identical. So utilization of behavioral analysis techniques like sand-
boxing, emulators can be used to detect malware [8]. But malware authors
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have scaled up their skills and have developed analysis avoidance tech-
niques encompassing anti-debugging, anti-emulation, anti-virtual machines
and anti-sandboxing techniques [14].

• Anti-Debugging:
Debuggers help to dissect the diverse tasks performed during execution
of a running program and analyze its live memory content. Anti-
debugging techniques investigating the presence of a debugger can serve
as a hint to the malware that it is being analyzed [56].

• Anti-Virtual machine and Anti-Emulator:
Malware analysts prefer to analyze malware in an emulated or virtual
environment owing to the benefits such as the ability to roll back to
a clean state after infection, re-observing the behavior of the malware
through snapshots and concurrent execution of multiple samples. This
also helps in analyzing malware without impacting any production
workstations. To thwart the above analysis, malware authors utilize
anti-virtual machine and anti-emulation techniques. These techniques
check their current execution environment parameter values against
possible physical environment parameter values and exhibit dormant
behavior based on deviations observed [56].But, nowadays employing
these techniques will be less effective as more potential real users utilize
virtual machines with the increased usage of virtualization technology
and cloud computing paradigms.

• Anti-Sandbox:
Sandbox [11] enable the execution of malware in a safe and controlled
scenario by making use of virtualization techniques. This behavioral
analysis technique helps observe the behavior of the malware and pro-
vides meta-data like file, network and registry activities. Anti-sandbox
evasive techniques deployed by malware authors include observing user
interaction such as user mouse clicks and keyboard movements [56],
fingerprinting virtual hardware, delaying execution and awareness of
the environment. Awareness of the environment comprises observing
deviations in a real physical environment against a sandboxed environ-
ment such as system properties. This includes system uptime, network
traffic, cookies, system files, rebooting of the OS, checking total physical
memory size and checking registry relevant artifacts.
Evaluation frameworks for assessing anti-malware detection perfor-
mance to various obfuscation techniques have been extensively analyzed
in [16, 17, 158].
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Figure 5 Attacks on anti-malware engine partially adapted from [36].

6.2 Adversarial Attacks – Disturbance caused during Malware
Detection

Adversarial attacks are attacks launched on the learning based models incor-
porated in anti-malware engine to disrupt its working [31, 33, 159–164]. An
adversarial attack is one which violates few statistical assumptions made
by the ML models to some degree so as to confuse the model behavior.
Gartner [165] reports the risks arising from adversarial attacks in its February
2019 report. Intelligent adversaries perform deliberate assaults on ML based
systems to suppress the model from providing Confidentiality or Integrity
or Availability, the CIA triad. The Integrity issues of learning based mod-
els [161] encountered in an adversarial environment utilized for malware
detection scenario are to be analyzed in depth. Data Integrity and System
Integrity [166] issues of learning based models questions the authenticity of
the model’s predictions against the real data generating distribution’s out-
come. Traditionally, most ML models were developed with a delicate threat
model intended for non-malignant environments [24]. ML models inherently
operate on the Independent and Identically Distributed (IID) assumption
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[167]. IID assumption states the usage of the same data distribution to gener-
ate independent samples for training and testing phases. These assumptions
are possible vulnerabilities which could be exploited by an attacker. Data
scientists are usually more concerned about the efficiency of the model but
they tend to miss on the security and robustness aspects of the model. ML
models under adversarial environment is termed as Adversarial Machine
Learning (AML) [161, 162]. AML attempts to hamper the learning models
by crafting adversarial inputs. Adversaries attempt to cause the model to get
confused and give erroneous outputs. AML [161] specifies techniques used
by an intelligent adversary to alter the input samples with the intention to
break a ML model when it is being trained or when it is making inferences.
This creates room for various forms of attack models to compromise the
security of the learning systems [7,31–33,48,161,162] [34–36,164,168–172].

The main aim of adversarial example crafting in malware detection
[7, 48, 164, 168] is to misguide the malware detection system so as to
change the detection for a given application as per the desire of the attacker.
Therefore, the development of secure and robust ML models is necessary
to protect against the adversarial attacks. Adversarial attack threat model
helps us define the attack and its risk level. Attacks can be categorized based
on various parameters like attack timing, attacker knowledge and attacker’s
goal [36, 161].

6.2.1 Attacker’s knowledge
The knowledge possessed by the attacker can be based on his exposure to
the various factors used for threat modeling like data used, features, learning
model, architecture and model parameters. Based on the knowledge level of
the attacker on the these factors, the attacks can be categorized as White Box
attack for Perfect Knowledge (PK), Grey Box attack for Limited Knowledge
(LK) and Black Box attack for Zero Knowledge (ZK) [161]. In Black box
attack, the attacker has the base knowledge of whether static or dynamic
analysis is performed to extract the features.

6.2.2 Attack timing
As per the NIST Taxonomy for AML, [36] the attacker can aim to disturb
during the training phase or the inference phase as given in the Figure 5.

(a) Attacks during training phase
Attacks at training phase can be categorized as poisoning attacks and data

access attacks.
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(i) Poisoning attacks:
Poisoning attacks or causative attacks tend to intervene with the model

building process or the training sample contents. This attack makes the model
to produce correct outcomes for most of the inputs but yields wrong outcomes
for few specific inputs. The different methodologies in poisoning attack are
as follows:

• Data injection attack:
Poisoning can be done by contaminating the dataset by the addition of
spurious data. When this manipulated data samples are used for training,
it results in data injection attack.

• Data manipulation attack:
In this attack, the adversary performs transformation of existing samples
which are of two subtypes:

– Label manipulation attack:
In this method, the label of a training sample is modified [173].
The adversary has access only to interfere into the training labels.

– Input manipulation attack:
The adversary is capable of altering the input feature values in
addition to the labels of the training points as per the adversary
requirement [174].

• Logic corruption attack:
When an adversary alters the learning logic, a logic corruption attack
is launched. Adversary makes sufficient alterations to interfere into the
learning logic of the model thus manipulating the complete model.

• Indirect poisoning attack:
The adversary [175] tries to poison the raw data. As direct access may
not be available to the preprocessed features which are fed for training
the model.

(ii) Data Access attacks:
In data access attack, the adversary gets partial or full access to the data

used for training the model, using which a substitute model can be built.
Adversary can use this surrogate model to later launch evasion attacks on this
trained model [52].

(b) Attacks during Inference Phase:
Inference time attacks or Exploratory attacks [36, 161] which happens

during the inference phase to disturb the trained model. It can be classified
into Oracle and Evasion attacks.
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(i) Oracle attacks:
Oracle attacks are similar to chosen plaintext attacks in cryptanalysis

[176]. These attacks use the input-output pairs obtained from the model as the
attacker does not have access to the intricacies of the model. Oracle attacks
can be classified into extraction attack, inversion attack and membership
inference attack.

• Extraction attack tries to extract the parameters of the model based
on the input-output pairs derived from the model. With the obtained
information about the internal structure of the model, the adversary will
train and produce a substitute model with the exact behavior of the target
model [177].

• Inversion attack tries to reconstruct user’s private data causing violation
of privacy [178].

• Membership Inference attack enquires whether an adversarial generated
sample is part of the data distribution used for training [179].

(ii) Evasion attacks:
In evasion attacks [36, 180] the attacker crafts adversarial samples by

perturbing the input samples which when fed to the trained model causes
misclassification. Evasion attacks can be gradient based or gradient free.

• Gradient based attacks:
In these attacks, we assume the adversary has access to the gradient of
the model and utilizes the same to craft the adversarial samples. This
includes single step attacks and iterative attacks.

– In Single step attacks: The perturbations are generated by com-
puting the gradient of the loss function only once. These attacks
are also called as one shot attacks. An example method for one
shot adversarial crafting is the Fast Gradient Sign Method (FGSM)
[181].
The adversarial sample is calculated as given in Equation (1):

x′ = x+ ∈ .sign(∇xJ(θ, x, y) (1)

where,
x represents the original malicious input.
y represents the targets associated with x, the label as malware.
x′ represents the adversarial sample

J(θ, x, y)
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represents the loss function of the model.
This method calculates the gradient of the loss function with
respect to each input only once.

– Iterative attacks:
Computes the gradients iteratively and crafts the adversarial sam-
ples. The commonly used iterative attack based on the gradients
for better sample generation is the Jacobian Saliency Map Attack
(JSMA) [182]. JSMA computes the Jacobian matrix for the sample
x using Equation (2).

JF =
δ(F (x))

x
=

[
δFj(x)

δxi

]
i∗j

(2)

Where, F denotes the logits layer of the model.
This matrix helps to find the input features which are contributing
more to the target label. The model can be fooled by adding
perturbations to the most significant features found using Jaco-
bian matrix. This method iteratively finds the significant features
until the maximum iterations are reached or the model incorrectly
classifies the target label.

• Gradient free attacks access the model’s confidence score to craft the
adversarial samples [183].

6.2.3 Attacker’s goal
Classifier’s output integrity can be impacted by the choice of the attacker’s
goal. The goals can fit into confidence reduction, misclassification and
source/target misclassification [162]. Confidence reduction is to reduce the
end user’s confidence on the model prediction. Model produces wrong output
for all instances irrespective of benign or malware sample. Misclassification
causes the effect similar to an untargeted attack where the model’s output
is different from its actual label. In malware scenario, the attacker’s goal
is generally to cause misclassification of the malware instance into benign
instance. Source/target misclassification causes the output of a particular
input instance to be classified as a specific class label.

Usually model training phase is inaccessible to malware authors as most
of the commonly used anti-malware solutions are proprietary. This results
in evasion attacks being common [32, 168]. Table 2 summarizes adversarial
attack techniques applied in the malware domain. The abbreviations used in
Table 2 are expanded in Table 3.
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Table 3 Summary of abbreviations used in Table 2
E – Evasion FGSM – Fast Gradient

Sign Method
RF – Random Forest

P – Poisoning JSMA – Jacobian Saliency
Map Attack

kNN – k-Nearest
Neighbors

PK – Perfect Knowledge SVM – Support Vector
Machine

LR – Logistic Regression

LK – Limited Knowledge NN – Neural Network CNN – Convolutional NN

ZK – Zero Knowledge DNN – Deep NN FFNN – Feed Forward NN

CW – Carlini-Wagner MLP – Multi Layer
Perceptron

RNN – Recurrent NN

GD – Gradient Descent DT – Decision Tree GBDT – Gradient Boosted
DT

7 Defense Modelling

Defense methods to handle adversarial attacks against learning based mal-
ware detectors can be modelled as active or passive techniques depending
upon whether they are actively identifying the adversarial samples or pas-
sively increasing the robustness of the underlying classifier to such attacks.
They aim to improve the robustness of the model to provide a secure learning
model. Defense methods deployed can be build against specific attacks or
can be attack agnostic which [58, 164, 168, 185, 189] be the preferred case.
Defense methodologies [7, 46, 48, 49, 190, 191] can be roughly summarized
as but not limited to the following:

• Monotonic classification techniques hardens the model by increasing
the cost of deceiving the classifier. The classifier is trained by ordain-
ing monotonicity on particular selected features which improves the
robustness of the classifier [46].

• Security by obscurity relies on stealth for protection like defensive
distillation [192].

• Perimeter defense model such as adversarial retraining does retraining
of the classifier with adversarial samples included with correct labels
[181, 182, 193]

• Defense in depth model use robust approaches like data sanitization
methods, (Reject on Negative Impact RONI [194]), generative models
(defense GAN [170], denoising techniques (Magnet [195], high-level
representation guided denoiser [172]), feature squeezing techniques



210 S. G. Selvaganapathy et al.

T
ab

le
4

Su
m

m
ar

y
of

ad
ve

rs
ar

ia
ld

ef
en

se
te

ch
ni

qu
es

fo
r

m
al

w
ar

e
D

at
as

et
U

se
d

/[
R

ef
]L

ea
rn

er
/D

ef
en

se
S.

N
o

A
ga

in
st

(P
/E

)
D

ef
en

se
Pr

op
er

tie
s

1
W

in
do

w
s/

[4
6]

/X
G

B
oo

st
/E

va
si

on
at

ta
ck

T
he

cl
as

si
fie

r
is

tr
ai

ne
d

by
or

da
in

in
g

m
on

ot
on

ic
ity

on
pa

rt
ic

ul
ar

se
le

ct
ed

fe
at

ur
es

w
hi

ch
im

pr
ov

es
th

e
ro

bu
st

ne
ss

of
th

e
cl

as
si

fie
r.

M
on

ot
on

ic
cl

as
si

fic
at

io
n

ha
rd

en
s

th
e

m
od

el
by

in
cr

ea
si

ng
th

e
co

st
of

de
ce

iv
in

g
th

e
cl

as
si

fie
r.

2
A

nd
ro

id
/[

48
]/

FA
R

M
/I

nc
re

as
ed

fa
ke

A
PI

pa
ck

ag
e

ca
ll

at
ta

ck
,i

nc
re

as
ed

pe
rc

en
ta

ge
of

pe
rm

is
si

on
s

at
ta

ck
an

d
re

du
ce

d
pe

rc
en

ta
ge

of
A

PI
pa

ck
ag

e
ca

ll
at

ta
ck

A
pp

lie
s

ir
re

ve
rs

ib
le

tr
an

sf
or

m
at

io
ns

su
ch

as
la

nd
m

ar
k

ba
se

d,
fe

at
ur

e
cl

us
te

ri
ng

ba
se

d
an

d
co

rr
el

at
io

n
gr

ap
h

ba
se

d
tr

an
sf

or
m

at
io

ns
to

tr
an

sf
or

m
s

th
e

ex
tr

ac
te

d
fe

at
ur

es
in

to
ne

w
fe

at
ur

e
sp

ac
e

w
hi

ch
im

pr
ov

es
ro

bu
st

ne
ss

to
at

ta
ck

s.

3
W

in
do

w
s/

[1
99

]/
Se

cD
ef

en
de

r/
E

Pe
rf

or
m

s
fe

at
ur

e
m

an
ip

ul
at

io
ns

to
en

ha
nc

e
th

e
ro

bu
st

ne
ss

ag
ai

ns
ta

tta
ck

s.

4
A

nd
ro

id
(D

re
bi

n,
C

on
ta

gi
o)

/[
20

0]
/S

ec
-S

V
M

/
O

bf
us

ca
tio

n
at

ta
ck

s,
an

d
ev

as
io

n
at

ta
ck

s
w

ith
fe

at
ur

e
ad

di
tio

n
an

d
fe

at
ur

e
re

m
ov

al

D
efi

ne
s

a
no

ve
l,

th
eo

re
tic

al
ly

-s
ou

nd
le

ar
ni

ng
al

go
ri

th
m

to
tr

ai
n

lin
ea

r
cl

as
si

fie
rs

w
ith

m
or

e
ev

en
ly

-d
is

tr
ib

ut
ed

fe
at

ur
e

w
ei

gh
ts

.

5
A

nd
ro

id
/[

49
]/

C
ou

nt
fe

at
ur

iz
at

io
n

te
ch

ni
qu

e
fo

r
fe

at
ur

e
sp

ac
e

tr
an

sf
or

m
at

io
n/

A
dv

A
tta

ck
,(

E
)

Im
pl

em
en

ts
co

un
tf

ea
tu

ri
za

tio
n

fo
r

fe
at

ur
e

m
an

ip
ul

at
io

ns
av

ai
la

bl
e

to
an

ad
ve

rs
ar

ia
la

tta
ck

,a
nd

in
tr

od
uc

es
so

ft
m

ax
fu

nc
tio

n
w

ith
ad

ve
rs

ar
ia

l
pa

ra
m

et
er

.

6
PD

F
/[

20
1]

/W
ra

pp
er

-B
as

ed
A

dv
er

sa
ri

al
Fe

at
ur

e
Se

le
ct

io
n

(W
A

FS
)

SV
M

w
ith

th
e

R
B

F
ke

rn
el

/
G

ra
di

en
t-

de
sc

en
tb

as
ed

ev
as

io
n

at
ta

ck
s

Pr
ov

id
es

ro
bu

st
ne

ss
to

ev
as

io
n

at
ta

ck
s

us
in

g
fo

rw
ar

d
fe

at
ur

e
se

le
ct

io
n

an
d

ba
ck

w
ar

d
fe

at
ur

e
el

im
in

at
io

n
al

go
ri

th
m

s.

7
A

nd
ro

id
/[

19
0]

/S
ec

C
L

S
(F

ea
tu

re
Se

le
ct

io
n

M
et

ho
d)

Se
cE

N
S

(E
ns

em
bl

e
L

ea
rn

er
)/

Fe
at

ur
e

M
an

ip
ul

at
io

n
us

in
g

br
ut

e-
fo

rc
e

at
ta

ck
s

E
nf

or
ce

s
at

ta
ck

er
s

to
m

an
ip

ul
at

e
a

la
rg

e
nu

m
be

r
of

fe
at

ur
es



Android Malware Attacks vs. Countermeasures 211
8

W
in

do
w

s/
[2

02
]/

E
ns

em
bl

e
of

N
N

ba
se

d
cl

as
si

fie
rs

/G
ra

di
en

td
es

ce
nt

ba
se

d
ad

ve
rs

ar
ia

l
tr

ai
ni

ng

Sy
st

em
at

iz
es

fe
w

pr
in

ci
pl

es
fo

r
en

ha
nc

in
g

th
e

ro
bu

st
ne

ss
of

ne
ur

al
ne

tw
or

k
cl

as
si

fie
rs

.

9
A

nd
ro

id
/[

50
]/

D
N

N
/J

SM
A

,G
D

-K
D

E
,C

W
at

ta
ck

,M
im

ic
ry

at
ta

ck
U

se
s

ha
sh

fu
nc

tio
ns

w
ith

a
ce

rt
ai

n
lo

ca
lit

y-
pr

es
er

vi
ng

pr
op

er
ty

to
tr

an
sf

or
m

sa
m

pl
es

to
en

ha
nc

e
th

e
ro

bu
st

ne
ss

of
D

N
N

s.
U

se
s

a
D

en
oi

si
ng

A
ut

o-
E

nc
od

er
(D

A
E

)
re

gu
la

ri
ze

r.

10
W

in
do

w
s/

[2
03

]/
W

ei
gh

td
ec

ay
de

fe
ns

e
D

N
N

/
JS

M
A

D
em

on
st

ra
te

s
th

at
ad

di
ng

ad
di

tio
na

lh
id

de
n

la
ye

rs
to

N
N

m
od

el
s

do
es

si
gn

ifi
ca

nt
ly

in
cr

ea
se

th
e

cl
as

si
fie

r’
s

ro
bu

st
ne

ss
to

ad
ve

rs
ar

ia
la

tta
ck

s.

11
W

in
do

w
s/

[5
1]

/P
ro

po
se

d
SL

E
IP

N
IR

fr
am

ew
or

k/
FG

SM
,M

ul
ti-

St
ep

B
it

G
ra

di
en

tA
sc

en
t,

M
ul

ti-
St

ep
B

it
C

oo
rd

in
at

e
A

sc
en

ta
tta

ck

In
ve

st
ig

at
es

m
et

ho
ds

th
at

re
du

ce
th

e
ad

ve
rs

ar
ia

lb
lin

d
sp

ot
s

fo
r

N
N

m
al

w
ar

e
de

te
ct

or
s.

T
hi

s
is

ap
pr

oa
ch

ed
as

a
sa

dd
le

-p
oi

nt
op

tim
iz

at
io

n
pr

ob
le

m
.

12
PD

F
/[

20
4]

/E
vi

de
nc

e-
ba

se
d

M
L

th
re

at
m

od
el

in
g/

E
va

de
M

L
Su

gg
es

ts
us

ag
e

of
co

ns
er

ve
d

fe
at

ur
es

w
hi

ch
ar

e
co

ns
tr

ai
ne

d
to

re
m

ai
n

un
m

od
ifi

ed
in

th
e

pr
es

en
ce

of
ev

as
io

n
at

ta
ck

.



212 S. G. Selvaganapathy et al.

which offer model hardening [196] and ensemble based approaches
[197]

• Game theoretic techniques [169] can be used which are theoretically
sound but are computationally demanding and has scalability issues to
large data.

• Utilize the data transformation techniques which could block the back-
ward flow of gradients. Such data transformations must satisfy following
three requirements: Non-Differentiable, computationally intractable and
preserve the distribution of input representation [198].

• Utilize robust feature transformation method like FARM [48]

Table 4 summarizes adversarial defense methods applied in the malware
domain. Performance indicators utilized specifically for AML are evasion
rate and distortion rate [182].

Evasion rate is used for measuring how vulnerable a learner is. It is
defined as the percentage of malware samples that are classified as benign
after being altered but were correctly classified before. Distortion rate is the
average number of modifications required to modify the malware sample to
achieve misclassification.

Most of the existing works on adversarial learning are in the context
of images. Images are continuous space where perturbations can be crafted
anywhere in the image to cause misclassification. In the malware space,
the attacker faces few constraints when crafting the adversarial samples
[7, 48, 164, 168].

• Attack has to deal with discrete binary space instead of continuous
space.

• Adversarial attacks have to be crafted using the good word attack
approach [205], or follow the Mimicry attack [206]. Features can be only
added to the malware sample and existing features cannot be removed
as it may change the semantics of the malware’s intended functionality.

• The cost of creating the adversarial sample should be lesser than the
value gained by performing the attack.

8 Conclusion and Future Work

Digitization has brought about vast improvements and increased sophisti-
cation for users of technology. Simultaneously, however, the development
of technology has also subjected users to a higher level of risk in security
and privacy infringement. This review article provides an in-depth study on
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existing Android malware and techniques for malware analysis and detection.
It also elaborates on the challenges faced in using the existing tools and
techniques. These limitations put forward the need to untangle -the difficul-
ties in development of an anti-malware engine recommending an adversary
aware pro-active approach.Hence, it is necessary to build a robust obfuscation
resilient malware detector. This can be achieved by devising techniques and
models to answer the following queries:

• How to collect data with a balanced set of samples comprising malware
and benign samples. Within the malware samples, how to compile
samples from the diversified malware families available?

• How to combine static and dynamic analysis for effective and efficient
feature retrieval?

• How to extract features? What are the tradeoffs between lightweight
versus heavyweight feature extraction techniques?

• Which feature selection techniques to use? What is the threshold on the
number of features to use?

• How to anticipate and handle obfuscated attacks?
• Which learning technique to be deployed? What is the choice of the

classifier for binary and multi-class classification? The detection of
the family of a malware app can be coarse grained (e.g., Trojan,virus,
worm, spyware, etc.) or finer grained(e.g., Droid-KungFu, DroidDream,
Oldboot, etc.) .

• How vulnerable is the learner to the prevalent adversarial attacks?
• How to safeguard the learner and harden its defense against the adver-

sarial attacks by incorporating the principle of security by design
approach?

• How to evaluate the performance of the model from the perspective of
generalization and robustness against attacks?

• How to develop on-device malware detection application for real-time
scanning of malware?

In short, the discussions briefed in this technical review can foster research in
Android malware detection.
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