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Abstract

The Internet has become an indispensable part of people’s work and life, but it
also provides favorable communication conditions for malwares. Therefore,
malwares are endless and spread faster and become one of the main threats
of current network security. Based on the malware analysis process, from the
original feature extraction and feature selection to malware analysis, this paper
introduces the machine learning algorithms such as classification, clustering
and association analysis, and how to use these machine learning algorithms
to effectively analyze the malware and its variants.

Keywords: Malware analysis, Machine learning, Classification, Clustering,
Association analysis.

1 Introduction

Malicious software, or malware, plays a part in most computer intrusions
and security incidents. Any software that does something that causes harm to
a user, computer, or network can be considered malware, including viruses,
trojan horses, worms, rootkits, scareware, and spyware [1].
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In recent years, due to the widespread of malwares in the network, the
number of network security incidents is increasing year by year, the relevant
statistics show that the number of network security incidents caused by
malwares increased by more than 50% per year from the 1990s [2]. These
network security incidents not only reflect the vulnerability of system and
network security, but also lead huge losses to the current development based
on Internet infrastructure. They may cause economic losses to the network
users and businesses, even lead to network paralysis.

There are two fundamental approaches to malware analysis: static and
dynamic. Static analysis involves examining the malware without running
it, while Dynamic analysis involves running the malware in virtual or real
environment [1]. Both approaches analyze the malware based on different
features. Static analysis uses internal code features and Dynamic analysis uses
external behavior features on the system or in the network. Static analysis
is straightforward and can be quick, but it can miss important behaviors.
Dynamic analysis can capture some important behaviors, but it won’t be
effective with all malware. Therefore, it is a more common solution how
to use static analysis together with dynamic analysis in order to completely
analyze suspected malware.

The number of current malwares is very large and new malwares appear
faster and faster, thus traditional detection technology have been unable to
cope with the current malware detection because of their speed and efficiency.
On the other hand, the traditional method has high maintenance costs, and
need a large number of manual experience to carry out sample analysis and
extract the rules [3]. In recent years, machine learning for analyzing malware
has been widely recognized, which can effectively make up the traditional
methods [4–7].

In particular, we first present the framework for analyzing malware by
machine learning in Section 2, which is an infrastructure for our review of
analyzing malware by machine learning. And then, in Section 3, we provide a
critical review of the innovative research developments targeting the malware
analysis problem by machine learning, including classification, clustering, and
association rules. Finally, we make a prospect on the focus of future research
of malware analysis by machine learning in Section 4.

2 The Framework for Analyzing Malware by ML

Machine learning for analyzing malware is still a newcomer, but it has
already obtained the huge success in fact. Commonly used machine learn-
ing algorithms are clustering, classification and association analysis and so
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on. The classification technology can not only be used to detect unknown
malware before starting its malicious behavior, but also to label malware
family according the exact or fuzzy features of malware [8]. Clustering and
association analysis are more useful in how to make family decisions and
homology analysis of unknown samples, thus to increase the speed of handling
or improve the efficiency of manual analysis.

The framework for analyzing malware by machine learning is shown in
the Figure 1.

In this framework there are two subsequent phases that the first phase
is to obtain the features of the malware including internal code features and
external behavior features on the system or in the network, and then the second
phase is to build a machine learning model for analyzing the malware based
on these features of the malware.

Figure 1 The framework for analyzing malware by machine learning.
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The quality of the feature has a greater impact on the performance of the
machine learning model, so the first phase in this framework is very critical
[9]. In this phase, feature acquisition is generally divided into two steps, one is
original feature extraction, and the other is feature selection. But according to
different practical task requirements, sometimes the original feature extraction
is only used, and sometimes the feature selection is also incorporated into this
phase.

The main task of the original feature extraction is to extract various types
of features. Many studies focused on internal code features of the malware
such as byte n-grams [5, 6], OpCode [10–12] and PE (Portable Executable)
features [13, 14]. In addition, a few researchers utilized external behavior
features on the system such as creating file, hiding service, opening port [15],
and some works also devoted to employ external behavior features in the
network such as DNS (Domain Name System) answer and TTL(Time To Live)
value [16].

However, many features from original feature extraction are generally
redundant, many of which not contributing to build machine learning model
(or even degrading its performance). So it is very necessary to select the most
important and indispensable features (i.e. feature selection). Feature selection
aims to select a subset of features which are the best for building machine
learning model [17]. There are various feature selection methods employed
in malware detection field, including Document Frequency [18], Information
Gain [19], and chi-square [20].

In Kaggle [21], feature engineering was a very key part, which directly
determined the game’s performance. In Kaggle 2015, we can see some
first-class participants used the frequency of the PE header file, the des-
ignated dll, opcode, call to select features, it’s also worth mentioning
that the third place used the L1 regularization of SVM (Support Vector
Machine) to remove roughly some irrelevant features, and then utilized
the feature importances parameter of Random Forest to make a better
choice.

Based on the features obtained, the original samples are represented, and
then the representative vectors are the input for a learning model. Next step is
the second phase in this framework which is to build a machine learning model,
such as classification, clustering and association analysis. In the following
section, we will introduce in detail the leading algorithms related to machine
learning for analyzing malware.
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3 Machine Learning Algorithms

Various machine learning algorithms, including classification, clustering and
association analysis have been commonly used for analyzing malware. The
most popular classification algorithms are Decision Tree, Random forest,
Naive Bayesian, Support Vector Machine, etc. In clustering, we often see
KMeans, HCA (hierarchical cluster analysis) and DBSCAN (Density-Based
Spatial Clustering ofApplications with Noise). In association analysis,Apriori
and FP-Growth (Frequent Pattern-Growth) are frequently used.

3.1 Classification

Classification is a supervised technique which is usually divided into two
phases: The first phase is to train a classifier using classification algorithm
based on the labeled samples, and then the subsequent phase applies this
classifier to assign a class to each new data item [22]. The training data and
the test data are represented on the basis of the same feature space. A number
of classification algorithms applied to analyze malware can be found in the
literature. In this section, we will introduce these classification algorithms in
detail.

3.1.1 Decision tree
Decision tree algorithms construct a model of decisions made based on actual
values of attributes in the data. Each non-leaf node in the tree (including the
root node) corresponds to a test of a non-category attribute in the training
sample set, and a test result for each branch of the non-leaf node, and each
leaf node represents a class or class distribution. A path from the root node
to the leaf node forms a classification rule [23]. Decision tree algorithm has
many variants, such as ID3 (Iterative Dichotomiser 3) and C4.5, but the basis
is similar. C4.5 algorithm has been used more in the field of malware detection.

Zhu et al. [24] proposed a new method for detecting unknown malwares
under the Windows platform: the API (Application Program Interface) func-
tion dynamically invoked with PE file as the research object, using the sliding
window mechanism to extract the feature, and adopt the decision tree C4.5
Algorithm to detect unknown malwares. The results showed that the decision
tree C4.5 was higher than the minimum distance classifier and the Naive
Bayesian algorithm, and the stability of C4.5 was better than the other two
algorithms.
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Zhao et al. [16] developed a new system to detect APT (Advanced
Persistent Threat) malware which relied on DNS to locate command and
control servers. In this system, a classifier of Malicious DNS Detector was
trained by a series of feature related DNS, which employed J48 decision tree
algorithm and obtained the true positive rate of 96.3% and the false positive
rate of 1.7%.

Perdisci et al. [25] presented a novel system called FluxBuster for detecting
and tracking malicious flux network via large-scale passive DNS analysis.
The system, using hierarchical clustering algorithm to group the domains and
C4.5 classifier to classify these clusters, was capable of accurately detecting
previously unknown flux networks days or weeks in advanced before they
appear in blacklists.

3.1.2 Random forest
The Random Forest is an ensemble learning method that constructs a multitude
of decision trees and outputs a prediction that is the mode of the classes
of the individual trees. A subset of the training dataset (local set) is chosen
to grow individual trees, with the remaining samples used to estimate the
goodness of fit. Trees are grown by splitting the local set at each node according
to the value of a random variable sampled independently from a subset of
variables [26].

Tian et al. [27] presented a malware classification technique based on string
information using several well-known classification algorithms, including
Random Forest, IB1(Instance Based 1), AdaBoost. The experiments showed
that the IB1 and Random Forest classification methods were the most effective
for this domain.

Zhao et al. [28] defined the features according to both the statistical
information and the topology of the function call graph, and used the J48,
Bagging, Random Forest and other algorithms to detect viruses, Trojans and
worms. The comparative experiments showed that Random Forest was better
than other algorithms with 96% accuracy.

Shabtai et al. [29] used the DF method to select different quanti-
ties of OpCode N-grams as a feature set, and then used Random Forest,
ANN(Artificial Neural Network), SVM, Naive Bayesian and other methods,
finally reported that Random Forest was the best algorithm with more than
95% correct rate.
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3.1.3 Naive Bayesian
The Naive Bayesian classifier is based on Bayes’ theorem, which provides a
way of calculating the posterior probability, and works on assumption called
class conditional independence. A Naive Bayesian model is easy to build, but
often does surprisingly well and is widely used because it often outperforms
more sophisticated classification methods.

Zhu et al. [30] proposed a parameter valid window model for system
call which improved the ability of operation sequence to describe behavior
similarity. On this basis, they presented a malware classification approach
based on Naive Bayesian and parameter valid window. The experiment
results showed that this approach was effective, and the performance and
accuracy of training and classification were improved through parameter
valid window.

Sayfullina et al. [31] presented a scalable and highly accurate method
for malware classification based on features extracted from APK (Android
application package) files. They explored several techniques for tackling inde-
pendence assumptions in Naive Bayes and proposed Normalized Bernoulli
Naive Bayes classifier that resulted in an improved class separation and higher
accuracy.

Passerini et al. [32] developed a system named FluXOR which could
detect and monitor fast-flux service networks. FluXOR was divided into
three components: collector, monitor and detector. The detector fed the set of
collected features of the suspicious hostname to the naive Bayesian classifier
for the classification.

3.1.4 Support vector machine
Built on structural risk minimization and VC dimension theory of Statistical
Learning, the basic classification idea of SVM is to determine the optimal
separating hyperplane, and to find this hyperplane can be converted to solve
an equivalent quadratic optimization problem. The result of the optimization
process is a set of coefficients to determine the optimal separating hyperplane.

Li et al. [33] studied a malware detection scheme for Android platform
using an SVM-based approach, which integrated both risky permission com-
binations and vulnerable API calls and used them as features in the SVM
algorithm. The experiments showed that the proposed malware detection
scheme was able to identify malicious Android applications effectively and
efficiently.
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Mcgrath et al. [34] presented a method of examining fast flux, DNS flux
and double flux in the phishing context through classification algorithm that
Support Vector Machines, using the features such as the number of IP address
and associated ASN that collected various information from each URLs.

By analyzing the patterns of the DNS queries from the fast-flux botnets, Yu
et al. [35] extracted six features for constructing the weighted SVM in order
to distinguish the normal network domain access from the fast-flux botnet
domain access. The evaluation suggested that the approach was effective in
detecting the fast-flux botnets.

3.2 Clustering

Clustering is an unsupervised technique which can group data using some
measure of inherent similarity between instances, in such a way that samples
in one cluster are very similar (compactness property) and samples in different
clusters are different (separateness property). After the clusters are created, a
labeling phase takes care of annotating each cluster with the most descriptive
label [36]. Numerous clustering algorithms applied to analyze malware are
available in the literature. In this section, we will introduce these clustering
algorithms in detail.

3.2.1 KMeans
KMeans is very popular for cluster analysis. KMeans aims to partition n
samples into k clusters in which each sample belongs to the cluster with the
nearest mean, serving as a prototype of the cluster. KMeans is very simple and
can be easily implemented in solving many practical problems. There exist a
lot of extended versions of K-Means such as XMeans [37].

Sharma [38] grouped the executables on the basis of malware sizes by
using Optimal KMeans Clustering algorithm and used these obtained groups
to select promising features for training (Random Forest, J48, etc) classifiers
to detect variants of malwares or unknown malwares.

Dietrich et al. [39] proposed a mechanism to detect DNS C&C (Command
and Control) in network traffic and described a real-world botnet using DNS
C&C. The mechanism used k-Means clustering and Euclidean Distance based
classifier with the feature related DNS, which could obtain higher true positive
rates.

Antonakakis et al. [40] proposed a novel detection system called Pleiades
to identify DGA(Domain Generation Algorithm) bots through monitoring
traffic below the local recursive DNS server and analyzing NXDomain
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(Non-Existent Domain) responses. In Pleiades, Xmeans clustering algorithm
was used to group domain subsets into larger clusters.

3.2.2 HCA
HCA is a method of cluster analysis which seeks to build a hierarchy of
clusters. Strategies for HCA generally fall into two types: Agglomerative and
Divisive. The agglomerative HCA is a “bottom up” approach which each
sample starts in its own cluster, and pairs of clusters are merged as one moves
up the hierarchy. And the divisive HCA is a “top down” approach which all
samples start in one cluster, and splits are performed recursively as one moves
down the hierarchy [41].

Perdisci et al. [42] presented a network-level behavioral malware cluster-
ing system using single-linkage agglomerative hierarchical clustering, which
focused on HTTP-based malware and clustered malware samples based on
a notion of structural similarity between the malicious HTTP traffic they
generated.

Chatzis et al. [43] proposed a method that using divisive hierarchical
clustering to divide machines into worm-infected machines and non-infected
machines according to the similarities in their DNS communication patterns.
And the FP rates and FN rates remained under 1% and 6% in overall email
worm detection.

Based on DGA domains and NXDomain traffic, Thomas et al. [44]
constructed a system that computed pairwise DNS similarity measures and
subsequently performed single-linkage agglomerative hierarchical cluster-
ing. The resulting clusters grouped the DGA domains to distinctive clusters
based on their DNS traffic and contained only domains relevant to that
particular variant.

3.2.3 DBSCAN
DBSCAN is a density-based clustering algorithm: given a set of points in
some space, it groups together points that are closely packed together (points
with many nearby neighbors), marking as outliers points that lie alone in
low-density regions (whose nearest neighbors are too far away) [45].

To distinguish the variations of malicious code, Qian et al. [46] studied
the malicious behavior of malwares, then computed the similarity of charac-
teristics and the call graphs which were extracted by disassembly tools. They
employed DBSCAN to discover the family of malicious code.

Schiavoni et al. [47] presented a mechanism called Phoenix based on
the DBSCAN clustering algorithm, which could not only tell DGA- and
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non-DGA-generated domains apart using a combination of string and IP-
based features, characterize the DGAs behind them, but also find group
of DGA-generated domains that are representatives of the respective
botnets.

Xiao et al. [48] proposed a behavior-based malware cluster method
inspired by the characteristic that Android malwares in a same family behaved
similarly. With collected feature data, DBSCAN was employed to cluster
malwares into various families. The evaluation results showed that the accu-
racy rate of malware clustering can reach 91.3% at best, and the correct
prediction rate is 82.3% for evaluated samples.

3.3 Association Analysis

Finding implicit relationships between items from large-scale data set is
called association analysis or association rule learning. Transactions may
have a certain degree of law and relevance, malware is the same, between
the behavior and family, there have a certain relationship, so you can tap the
useful association rules for the malware analysis. There are many algorithms
for mining association rules cited in the literature. In this section, we will
introduce these algorithms in detail.

3.3.1 Apriori
Apriori is a classical algorithm which can mine frequent itemsets for
Boolean association rules. Apriori employs an iterative approach known as
a level-wise search, where k-itemsets are used to explore (k+1)-itemsets.
To improve the efficiency of the level-wise generation of frequent itemsets,
an important property called the Apriori property, i.e. all nonempty subsets
of a frequent itemset must also be frequent, is used to reduce the search
space [49].

Studying the rules of API calling sequence of some viruses and their
variants in the implementation process, Zhang et al. [50] used Apriori
algorithm to extract valuable association rules from the known virus API
call sequence. And according to balancing the false positive rate and false
negative rate, the best confidence threshold to guide the virus detection was
acquired.

In [51], malware code was disassembled and preprocessed into sequential
data, an Apriori-like algorithm was used to discover sequential pattern and
remove normal pattern, and the result pattern set can be used to detect unknown
malware. Experimental result showed that the method had high accuracy rate
and low false positive rate.
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Adebayo et al. [52] presented a classification system of Android malware
using candidate detectors generated from Apriori algorithm improved with
particle swarm optimization to train three different supervised classifiers. In
this method, features were extracted from Android applications byte-code
through static code analysis, selected and used to train supervised classifiers.

3.3.2 FP-Growth
TheApriori algorithm needs to scan the database once every iteration, generate
a large number of candidate sets, spend a lot of time on the I/O, and
the algorithm is inefficient. FP-growth algorithm [53] only needs to scan
the database twice, which greatly speeds up the algorithm. Therefore, the
application of FP-Growth algorithm in malware analysis is more extensive
and in-depth.

In order to identify malicious web campaigns, Kruczkowski et al. [54]
constructed a FP-SVM system which employed the FP-growth algorithm and
the SVM method. This system could be successfully used to analyze a huge
amount of dynamic, heterogenous, unstructured and imbalanced network data.
In this system, the FP-growth algorithm was applied to produce the training
dataset.

In [55], the frequent itemsets were obtained by the FP-Growth algorithm
which extracted the URLs of the malware events, then mined the association
rules from them, linked all the associated rules to the graphs, finally used the
modular approach to divide the graph into different groups and analyzed a
malware web site map.

In [56], a weighted FP-Growth frequent pattern mining algorithm was pro-
posed for malicious code forensics. DifferentAPI call sequences were assigned
different weights according to their threaten degree to obtain frequent patterns
of serious malicious codes and more accurate analysis results. Compared with
the original FP-Growth algorithm, the weighted algorithm can obtain higher
accuracy when used for evidence analysis.

From the above analysis, we can see that all kinds of methods in different
scenarios have their own advantages, and there are no absolute merits of the
points. The performance of the algorithm often depends on the application
of the scene, as well as the selected features, or the characteristics of the
samples.And no algorithm can have any advantage in any application scenario,
so the combination of the actual scene is the most critical. Moreover, it is
worth mentioning that the original feature extraction and feature selection are
very critical, which determine the final performance of the machine learning
model.
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4 Conclusion

Malware analysis has become a hot topic in recent years in network security.
The emergence of plenty of new malwares makes the traditional analysis
method no longer completely effective. How to extract the most representative
features of malware, and further to maximize the speed and accuracy of
malware analysis still need to intensive study. Therefore, it is necessary to
use a more efficient and intelligent approach – machine learning, to detect and
analyze unknown malwares.

The future development of malware analysis by machine learning will
focus on three major research areas. Firstly, the existing machine learning
algorithm should be improved and combination with specific application.
Secondly, the improvement of the feature extraction and feature selection
method should be considered to be expanded based on the semantic level,
so that we can get more accurate features. The third more valuable research
direction can be considered is to make a combination of feature and instance
selection methods to study the scalability of malware database.
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