An Approach for Building Security
Resilience in AUTOSAR Based Safety
Critical Systems

Ahmad MK Nasser!, Di Ma'! and Priya Muralidharan?

YUniversity of Michigan, Dearborn, USA
2Renesas Electronics America
E-mail: {ahmadnas,dmadma} @umich.edu; priya.muralidharan @renesas.com

Received 5 December 2017; Accepted 6 December 2017;
Publication 19 December 2017

Abstract

AUTOSAR, a worldwide development partnership among automotive parties
to establish an open and standardized software architecture for electronic
control units (ECUs), has seen great success in recent years by being widely
adopted in deeply embedded automotive ECUs. Increasing the security
resilience of AUTOSAR based systems is a crucial step in securing safety
critical automotive systems. We study AUTOSAR safety mechanisms and
demonstrate how they can be used as attack vectors to degrade the vehicle
safety. We show the need to harmonize the fail-safe response with the secure
state of the system. And we evaluate the overlap in the properties of safety
mechanisms with security objectives to highlight methods for hardening
automotive systems security.

Keywords: Automotive cyber security, AUTOSAR, Safety, Security,
1S026262, Embedded security.

1 Introduction

Protecting the vehicle control side against cyber attacks is the ultimate
goal of any robust security architecture. With added connectivity, even
deeply embedded devices are under the threat of cyber attacks [23, 24, 28].

Journal of Cyber Security, Vol. 6.3, 271-304.
doi: 10.13052/jcsm2245-1439.633
This is an Open Access publication. (©) 2017 the Author(s). All rights reserved.

272 Ahmad MK Nasser et al.

The safety standard for automotive systems, [ISO26262 [26], defines a formal
approach for the creation of safety mechanisms to mitigate systematic and
random faults in the system. However, malicious attacks are not considered
by the failure response of the system. When a safety relevant failure condition
is detected, the system switches to a safe state, also known as a fail-safe state.
Depending on the risk level associated with the related hazard, a safe state
may range from disabling a control function (e.g. park assist in the case of a
sensor failure), to resetting the system (e.g. in the case of detected memory
corruption). Safety mechanisms which are adequate in the face of normal
failures, are inadequate and in some cases, even themselves exploitable, in the
presence of a malicious attacker [25]. Injecting a safety fault can thus launch
the equivalent of DoS attack against the vehicle safety functions. While there
is a real need for hardening the security of deeply embedded systems, it has to
be done within the cost and performance constraints of automotive systems.

The need for security-in-depth measures for securing automotive systems
is well-understood. At the ECU level, this means participating in secure
communication, supporting for code signing of flash downloads, securing the
diagnostic interface, securing the debug interfaces, and using secure boot.
Even as the automotive industry takes concrete steps to apply such best
practices, software bugs are still expected to present major challenges to com-
prehensive vehicle security. For security, AUTOSAR defines a cryptographic
security stack to provide fundamental security services. It also defines safety
mechanisms with overlapping security properties. The goal of this research is
to study AUTOS AR safety mechanisms as potential sources of attacks. Also to
answer the question of how shall a system differentiate a safety failure which
happens due to a deterministic fault vs. a failure injected through an attack in
order to harmonize the safe and secure response. Moreover, is it possible to
leverage existing AUTOSAR safety mechanisms with security properties to
increase the system security? By studying this area, we aim to improve the
security resilience of AUTOSAR based systems within the constraints of the
automotive environment.

Toward this goal, we make the following contributions: we take a sys-
tematic approach to evaluate safety mechanisms that could be potentially
exploited, we demonstrate two such attacks on a safety qualified target, and
then propose corresponding countermeasures that can be applied for similar
types of attacks. We also experiment with using the AUTOSAR OS stack
interference protection as a security mechanism to prevent a buffer overflow
attack. We show how AUTOSAR safety mechanisms can be used as security
mechanisms and we define the constraints to enable such use. We also

An Approach for Building Security Resilience in AUTOSAR 273

demonstrate scenarios in which the security response in the presence of an
attack can violate the security response and vice versa to highlight the need
for a harmonized process for fail safe and secure action.

The organization of this paper is as follows. In Section 2, we briefly discuss
related work. In Section 3, we present the attack model considered for our
analysis. In Section 4, we offer a survey of AUTOSAR safety features. In
Section 5, we present a method for assessing safety mechanisms as either
exploitable or dually useful for security protection. In Section 6, we analyze
safety mechanisms as exploitable candidates. In Section 7, we analyze safety
mechanisms that have overlapping security properties. In Section 8, we present
the results of our attacks on safety mechanisms, while in Section 9 we
demonstrate the efficacy of a safety mechanism as a security mechanism.
In Section 10 is the conclusion and future work.

2 Related Work

The use of an automotive error mitigation mechanism as a security attack
vector was studied in [13]. The authors demonstrated an attack that uses the
CAN busoff error response to stop an ECU from communicating. The Bus-Off
condition is designed to prevent an ECU from disturbing the rest of the bus
by forcing it to go off line after a certain number of transmission errors is
detected. By creating message collisions with a target CAN frame an attacker
could induce a Bus-Off error condition in the target ECU. This is similar to
an exploitable safety mechanism but we take a systematic approach to finding
such exploits and we do it by studying AUTOSAR safety mechanisms.

The conflicts and overlap between safety and security for automotive
systems was studied in [21]. The work highlighted the need for a holistic
approach to designing both safe and secure systems. One example conflict
area is the cyclic RAM test that requires stopping CPU cores except the one
performing the test in order to prevent a false detection of RAM corruption. In
systems where a hardware security module (HSM) is active, stopping the HSM
violates a security principle. Not stopping the HSM can result in corruption
of the shared memory accessible by the HSM and the other CPUs. This points
to an area of conflict that should be addressed at the system level. The paper
also discusses areas of overlap between safety and security such as using the
memory protection unit (MPU) to provide both freedom from interference as
well as security isolation. Our goal in this paper is to increase the resilience
of AUTOSAR systems by eliminating exploits and adding defenses strictly
from the perspective of safety.

274 Ahmad MK Nasser et al.

Attacks against embedded systems were studied in [18]. The authors
demonstrated control flow and stack overflow attacks on embedded systems
and then proposed a hardware based solution for the prevention of such
attacks. Their attacks were relevant to our work as we aim to provide defense
mechanisms for embedded systems against the types of attacks presented in
their work.The use of the CPU dual lock step safety mechanism as a security
countermeasures was studied in [30]. The authors investigated the resilience
of ASIL-D microcontrollers to power glitching attacks. They showed that the
dual lock step mechanism failed to detect glitch attacks allowing them to jump
over instructions and thus compromising the security of an ECU. The paper
shined a light on how safety mechanisms needed to evolve to protect against
security attacks. Our research takes this concept a step further by performing
a comprehensive survey of AUTOSAR safety mechanisms to find areas in
which safety mechanisms could be useful to increase the security of safety
critical systems.

3 Attack Model

Deeply embedded systems are assumed to be located behind several defense
lines: firewall, security gateway, and a secure communication bus. Assuming
the vehicle has implemented a properly layered secure architecture, launching
successful attacks on such systems requires compromising several security
layers upstream. Previous works by [24] and [28], have shown that at some
point these defenses can be broken and an attacker may be able to launch a
successful attack on the vehicle control system. Let us consider the three
classes of attacks that are relevant to both deeply embedded ECUs and
traditional computer systems [15]:

1. Malware or exploitable software vulnerabilities to take control of the
system

2. Physical access type attacks

3. Network based attacks

Note in the first class, there is a significant difference in the attack surface
between traditional computers and deeply embedded systems [12]. In the
former, exposure to software exploits is more common due to the rich space of
applications that can be loaded and executed on highly configurable operating
systems like Linux. In contrast, deeply embedded systems execute a limited
pre-defined set of applications from flash memory. Creating persistent mal-
ware in flash, requires the tampering of the flash bootloader or an exploit
that can bypass security checks to use the bootloader routines directly.

An Approach for Building Security Resilience in AUTOSAR 275

On one hand, loading temporary malware requires injecting code in data
memory (such as the stack) through a buffer overflow exploit due to a software
bug as demonstrated in [17]. When network access is considered together with
software based exploits, deeply embedded systems become targets of similar
types of attacks as traditional computer systems. While security experts may
argue that many protections are already being designed to harden automotive
systems, lack of maturity of cyber security principles within Automotive ECUs
gives us the intuition that software vulnerabilities and back doors will persist
for several years. On the other hand, in case of ADAS systems which are
expected to provide a certain level of autonomy, such systems may no longer
exist in a deeply embedded layer, but rather in a mixed criticality system on
rich execution environments which are closer to the attackers access than say
a brake controller. For such systems, the safety functions are expected to run
in a partitioned execution area that is supposedly isolated from the rest of the
system. That is the focus of AUTOSAR Adaptive Platform [19] and is out of
scope for our current analysis.

For the rest of this paper we assume our attackers have direct network
access to the ECU, the network supports CAN authentication, and there exists
an exploit in the ECU which allows loading software on the target. We also
assume that the ECU has a secure element (HSM) which serves as the root
of trust for the system. As for the attacker’s objective, it is to disrupt safety
critical systems for the aim of inflicting harm on drivers, damaging an OEM
reputation, or creating ransom-ware that locks up safety functions.

4 Survey of AUTOSAR Safety Features

4.1 End to End Library

The first AUTOSAR module that we introduce here is the End to End (E2E)
library which defines several protection profiles for data transmitted over a
communication channel both internally and externally [20]. The goal of this
module is to prevent safety critical functions from operating on faulty or
missing data as shown below:

1. CRC check to detect corruption of data

2. Sequence counter to detect out of sequence messages

3. Alive counter to prevent operating on old data

4. A unique ID for Interaction Layer Protocol Data Unit (I-PDU) group to
detect a fault of sending I-PDU on unintended message

5. Timeout monitoring to detect communication loss with the sender

276 Ahmad MK Nasser et al.

Mechanisms 1 through 4 listed above allow the detection of non-malicious
errors in the content of a message. The timeout detection mechanism protects
an ECU from operating on old data due to loss of communication with the data
source. To achieve this, a message is monitored by the receiving node based
on its expected periodicity. If the message is not received by the expected
deadline, AUTOSAR provides a mechanism to log a timeout failure and take
fail safe action such as disabling the consuming function.

4.2 AUTOSAR OS

AUTOSAR OS [7] is a real time operating system specification. The standard
defines protection mechanisms that are essential for building safety critical
applications. Those protections fall under the following categories:

1. Memory Protection: to provide freedom of interference between OS
applications and tasks of mixed criticality.

2. Timing Protection: to prevent timing errors in tasks, Interrupt Service
Routines (ISRs), or system resource locks from interfering with higher
ASIL functions.

3. Service Protection: to capture invalid use of the OS services by the
application.

4. OS Related Hardware Protection: to protect privileged hardware ele-
ments from being modified by lower ASIL functions.

Note the OS supports four scalability classes with the following features:

1. SC1: Deterministic Real time operating system (OSEK OS based)

2. SC2: Stack monitoring and precise time control for periodic tasks

3. SC3: Support for MPU/MMU to provide spatial freedom of interference
4. SC4: Timing protections

4.2.1 Memory protections

AUTOSAR OS SC3 and SC4 support freedom of interference between
software partitions of mixed safety criticality through hardware based spatial
separation of memory [7]. The aim of these protections is to prevent a lower
ASIL software from corrupting the data of a higher ASIL software within
the same system. To understand the hardware based memory protection
capabilities of automotive embedded systems, we studied the ARM Cortex M
architecture which is among the most popular micro-controller architectures
used in automotive ECUs [11]. Rather than an MMU, such MCUs rely on an
MPU to achieve the desired goal of freedom from interference. Also the CPU

An Approach for Building Security Resilience in AUTOSAR 277

supports two modes: privileged and user mode. Only privileged mode allows
access to special registers like the MPU configuration. Using the MPU it
is possible to define memory regions with specific attributes such as read,
write, and execute as well as specify access rights by privileged or user
modes. AUTOSAR OS supports protecting memory both at the Task/ISR
Cat2 level and at the OS application level. When switching to a “non-
trusted” OS application, the OS reconfigures the MPU to restrict access to
the Safety Application code, data and private stack. This prevents a lower
ASIL OS application from being able to corrupt the data of a higher ASIL OS
application.

Note in addition to MPU based stack protection, AUTOSAR OS defines
software based stack monitoring which can only identify where a task or
ISR has exceeded a specified stack usage at context switch time. This is
done by checking a unique stack pattern which is inserted at the end of
the reserved stack space. This can result in considerable time between the
system being in error and the fault being detected. Besides data protection,
the MPU can be used to restrict access to memory mapped registers to prevent
certain tasks from modifying hardware registers which are safety relevant.
Note, AUTOSAR uses the term trust in the context of safety which can be
misleading because Cyber Security threats are not considered. Consequently,
itis possible to define a “Trusted OS Application” that has access to all memory
resources even though from a security point of view, that OS Application may
be vulnerable to attacks.

4.2.2 Timing protections

AUTOSAR OS timing protections aim to mitigate timing faults that can exist
in lower ASIL software from propagating to higher ASIL software. The timing
protections are:

1. Execution Time Protection: detects faults in Tasks or Category 2 ISRs
that exceed their execution budget.

2. Locking Time Protection: detects faults in blocking resources, and
locking interrupts for a period longer than the configured maximum.

3. Inter-arrival time protection: detects faults in the time between successive
activations of tasks or Cat2 interrupts to ensure a minimum time is not
violated.

By monitoring the execution time of tasks and Category 2 ISRs, AUTOSAR
OS aims to detect timing errors before they can lead to tasks missing their
deadlines. This prevents the propagation of timing errors to higher priority

278 Ahmad MK Nasser et al.

tasks and allows the OS to isolate the offending task. Note the OsTaskExecu-
tionBudget is a configurable parameter that specifies the maximum allowed
execution time of a task [7]. One use case for the locking time protection
mechanism is to prevent global interrupts from being disabled for a period
of time that would create instability in the real time system. Disabling global
interrupts is needed in scenarios where a routine needs atomic access to a
resource and cannot allow being interrupted. But doing so beyond a specific
time threshold can prevent the real time system from being able to process
critical tasks within the required time. The third timing protection mechanism
isneeded to ensure the system is not being excessively interrupted or activating
tasks.

4.3 Hardware Protection

AUTOSAR OS is expected to run in privileged mode which gives it access
to special hardware registers and protects those registers from corruption by
Tasks or Cat2 ISRs running in user mode. Example registers that are only
accessible in supervisor mode can be the MPU configuration, the OS Timer
unit, and the interrupt control configuration. Protecting those registers from
faults in lower ASIL software is mandatory to ensure the integrity of the OS
operation.

4.4 Watchdog Manager
AUTOSAR defines three modules for supporting watchdog functions [9]:

1. Watchdog Driver: services the hardware watchdog whether internal or
external

2. Watchdog Interface: provides a high level of abstraction of watchdog
driver functions

3. Watchdog Manager: supports the supervision of multiple software enti-
ties and the triggering of an MCU reset in case of a supervision
failure

Supervised entities can be software components, runnables, or Basic Soft-
ware (BSW) modules and they are marked by checkpoints. The user configures
checkpoints based on code sections which are deemed to be critical for the
safety of the system. Using such checkpoints it is possible to monitor aliveness,
timeout, and control flow within a supervised entity.

The user inserts calls to WdgM_CheckpointReached() in locations where
the WdgM shall be notified of an execution event of a supervised entity.

An Approach for Building Security Resilience in AUTOSAR 279

A software error that prevents the checkpoint from being reached by the
deadline or with the right order results in the detection of a fault by the WdgM
during the execution of the WdgM_Mainfunction. The response to any such
fault can range from a simple notification to an MCU reset.

4.5 Core Test

Safety critical applications require the monitoring of an MCU core functions
to detect hardware faults during startup or normal runtime of an ECU. The
core test module [2], can perform tests of MCU components such as:

1. Arithmetic Logic Unit (ALU)

2. Memory Protection Unit (MPU)
3. Cache controller

4. Interrupt Controller

The core test is executed in partial tests as a background task that can be inter-
rupted by higher priority tasks. However, the core test requires uninterrupted
execution of atomic sequences. In case a core test fails, the module reports the
event to the Diagnostic Event Manager (DEM) [4] to take action based on the
severity of the detected failure. Note that microcontrollers with dual lock step
cores do not need the Core Test module since the dual core lock step feature
can detect errors covered by this module.

4.6 RAM Test

The RAM test module [8] provides a physical health test of RAM cells and
RAM registers to meet the fault coverage requirements of a safety critical
application. The tests can either be executed in a background task or through
a direct call from the application. In case a failure is detected, the module
reports the results to the DEM to take the appropriate action. AUTOSAR
defines interfaces to start and stop the tests but there is no direct interface
to set the test status to a failure. The module splits tests into atomic units
that are not interruptible. A higher priority task can interrupt the module test
in between atomic test units execution. The background task performs the
tests of all configured blocks sequentially and repeats the sequence after each
complete test is finished. One of the limitations of this module is that during
the execution of the RAM test algorithm, another software shall not attempt
to modify the area under test. This is to ensure data consistency in multi-
core systems or with DMA controllers. The AUTOSAR specification lists the
following algorithm types that are supported:

280 Ahmad MK Nasser et al.

. Checkerboard test algorithm

. March test algorithm

. Walk path test algorithm

. Galpat test algorithm

. Transparent Galpat test algorithm
. Abraham test algorithm

NN B WN

4.7 Flash Test

The Flash Test module [5], provides test algorithms for non-volatile memory
to meet the diagnostic coverage requirements in a safety critical system. Tests
are divided into partial tests based on the number of cells tested in one task
cycle. Unlike RAM test and Core Test, the Flash test can be pre-empted at
any point because it does not require atomic access. It is possible to abort or
suspend the flash test but that introduces a latency based on when the request
is received related to the background task cycle time. A failure during the
test algorithm is reported to DEM to take the proper action. The different test
algorithms supported are:

1. 16 Bit CRC

. 32 Bit CRC

. 8 Bit CRC

. Checksum

. Duplicated Memory
ECC

oA W

5 Safety Mechanism Classification Method

We propose a method for classifying AUTOSAR safety mechanisms as either
candidates for: security exploits, security protections, or neither. In Figure 1,
we present the process of finding an exploit candidate. Note, here the attacker’s
intent is to inject a failure that mimics a safety failure in order to shutdown
the safety function. First we check if the mechanism can be triggered through
a network based attack. Intuitively, an attacker that has already established a
foothold in the ECU has very little incentive to trigger the error response of
a safety mechanism. Arguably, once an attacker is inside the ECU, his goal
is to evade any protection mechanisms which is the opposite of triggering a
safety mechanism. Next we check if the configured error response of the safety
mechanism results in disabling a safety function or more (such as a system
reset). If so, we classify this mechanism as an exploitation candidate. Here

An Approach for Building Security Resilience in AUTOSAR 281

/,/ ’ \

Triggered by Network?

Error Response Severity >=

Disable Safety Fty

Exploitable Not a candidate
Candidate for Exploit

e N

Define Flag as Security
Countermeasure Attack

v

Figure 1 Method to classify a safety mechanism as a candidate for a security exploit.

we define two possible routes: define a security countermeasure to prevent
the attack, and for cases where prevention is not possible, extend the fail-safe
response to capture additional indicators that can help in flagging this event
as a security attack.

In Figure 2, we present the process for classifying a safety mechanism as
a dual purpose security mechanism. First we check if the mechanism is able
to detect an attack. This can be an internal attack through malware, a physical
attack like power glitching, or a network attack. Safety mechanisms that
exhibit properties to allow memory isolation, hardware resource protection,
control flow protection and hardware tampering detection are all example
candidates for use as security mechanisms. But having a security property is
not sufficient if the mechanism can be easily disabled by an attacker. Therefore
we define a set of security constraints to establish trust in the usage of the safety
mechanism as an attack prevention or detection mechanism. The third step is
to ensure that the fail-safe response is harmonized with the required security
response and vice versa. For example, in case of a mechanism that detects the
presence of a malware in RAM, the security response would be to immediately

282 Ahmad MK Nasser et al.

Can be used to detect
an attack?

Yes

l o

Define Security
Constraints for
the dual usage

Yes

| |

Harmonize
security
response with
safety response

Not a candidate
for Security
Mechanism

Figure 2 Method to classify a safety mechanism as a dual purpose security mechanism.

issue a reset and force a secure boot check to restore the system to a known
trusted state. But issuing an immediate reset may violate a safety goal that does
not allow the sudden loss of a critical safety function, for e.g. power steering.
Therefore, an activity of harmonizing the safe and secure response is needed
between the safety and security experts during the design of the system.

In the following sections, we apply these two methods to classify our
surveyed safety features.

6 Exploitable Safety Mechanisms

This section was based on our work in [25]. There we evaluated safety
mechanisms in the AUTOSAR E2E library, and AUTOSAR OS timing
protections as security exploit candidates. With the E2E library, our aim was
to induce a failure that would trigger a protection mechanism which would
result in disabling safety critical functionality in an ECU. With AUTOSAR

An Approach for Building Security Resilience in AUTOSAR 283

OS timing protections, our aim was to trigger a system shutdown by causing
a software task to exceed its runtime budget.

6.1 Attacks on E2E Protection

We start by applying the classification flow in Figure 1 to the safety mecha-
nisms in Table 1. We assume that the network supports message authentication
which can protect against spoofing attacks. This prevents an attacker from
tampering with the alive counter, CRC, sequence counter or I-PDU Id protec-
tion mechanism without detection because they are covered by the message
authentication code(MAC). Messages that contain invalid MAC are ignored
by the receiver and therefore do not result in a trigger of a safety mechanism.
What remains then is the timeout protection mechanism which can be triggered
externally even when message authentication is enabled. In order to create a
message timeout event, the attacker can flood the bus with high priority CAN
messages, e.g. zero-ID CAN messages, at the highest periodicity possible for
the target baud rate.

Table 1 Survey of AUTOSAR safety features

Module Mechanism Max Error Response

E2E CRC:data integrity Disable consuming function

E2E Sequence counter: message order Disable consuming function

E2E Alive counter: data freshness Disable consuming function

E2E Data Id: detect I-PDU sent on wrong Disable consuming function
message

E2E Timeout monitoring: detect message Disable consuming function
loss

WdgM Monitor aliveness of supervised entities =~ MCU reset

WdgM Detect timeout of supervised entity MCU resets

WdgM Monitor control flow of supervised MCU resets
entity

OSTiming Monitor task/ISR execution budget OS Shutdown

OSTiming Monitor task/ISR inter-arrival time OS Shutdown

OSTiming Locking time protection OS Shutdown

OSMemory Stackoverflow detection Reset

OSMemory Detect execution from data section Reset

OSMemory Detect access to restricted memory Reset

OSHardware Prevent untrusted apps from accessing Reset
privileged HW

CoreTest Test health of core MCU components Reset

RAMTest Test health of RAM cells Reset

FlashTest Test health of Non-volatile memory Reset

284 Ahmad MK Nasser et al.

Transmitting zero-ID frames in a back to back fashion will reduce
the likelihood that a valid frame wins arbitration to be transmitted on
the bus. As a result of transmitting nodes continuously losing arbitra-
tion to the zero-ID message, receiving nodes will start logging timeout
faults. Subsequently, control functions that rely on those messages will be
degraded, which is the safe state of missing safety critical messages. An
attacker determined to prevent the safety critical ECU from performing
its intended function can successfully launch this attack by exploiting this
mechanism.

6.1.1 Countermeasures
In [25] we showed several countermeasures:

1. Add a smart gateway that runs intrusion detection software to monitor the
received CAN message identifiers along with their expected frequency
to detect attacks such as the zero-ID flood attack.

2. Add local secure monitor software within transmitting ECU’s to detect
the malicious manipulation of the CAN configuration. The monitor can
either reside in the HSM or be monitored periodically by the HSM to
ensure it is not disabled. If the CAN settings are flagged as tampered
with, the HSM can reset the micro to prevent the disturbance of the local
network.

Since this attack is not fully preventable, it is necessary to collect indicators
when timeout events occur in order to distinguish normal failures from security
attacks. This can be achieved by logging the frequency of these failures, as well
as capturing additional network traffic to aid in the anomaly detection either
through a local or off-board intrusion detection system. Although the zero-
ID attack has already been mentioned in other publications, such as [24], the
attack is still worth mentioning here because we arrive at it by considering the
safety protection mechanisms, rather than by pure brainstorming techniques.
We also stress the need to enhance the logging of such an event to identify
potential malicious root causes.

6.2 Task Execution Time Attack

By applying the classification flow in Figure 1 to the safety mechanisms in
Table 1 we arrive at our second exploit candidate: Task Execution Budget

An Approach for Building Security Resilience in AUTOSAR 285

Monitoring. In response to this type of timing error, the OS defines the
following possible actions that the application can request [7]:

1. PRO_IGNORE: the OS can ignore the event

2. PRO_TERMINATE _TASKISR: the OS shall forcibly terminate the task

3. PRO_TERMINATE_APPL: the OS shall terminate the faulty OS
Application

4. PRO_TERMINATE _APPL_RESTART: the OS shall terminate and then
restart the faulty OS Application

5. PRO_SHUTDOWN: the OS shall shutdown itself

The last action from the above list implies that the system can be completely
shutdown as a result of such an error condition. In a stable system absent from
amalicious attacker, such a fault is normally caught during development when
the system is tested under maximum load conditions. AUTOSAR OS gives
the system configurator the flexibility to specify the appropriate value for the
execution budget as well as the proper behavior in case it is exceeded. In the
presence of an attacker who is able to repeatedly cause this error condition,
the system can experience constant resets that prevent it from ever being able
to execute normally.

Upon detecting the error condition the OS triggers a ProtectionHook to
notify the application to take fail safe measures. As long as the application
does not ignore this condition, the second condition of Figure 1 is satisfied. For
the rest of this section we will see how this fault can be triggered externally.

As mentioned in Section 4.2.2, AUTOSAR OS monitors the task execution
time, to prevent a single task from starving the CPU from runtime resources.
To exploit this safety mechanism, the attackers goal is to cause an OS task
to exceed its execution budget. One way to find candidates for this type of
exploit is scanning the application for processes that have variable execution
time due to their dependence on a hardware resource like flash programming
time, or a network resource like processing CAN data.

We chose the latter and we investigated CAN networks that support
authenticated messages as proposed in AUTOSAR 4.2 via the Secure On
Board Communication (SecOC) module [6]. SecOC is a software module that
provides secure on board communication support. When a secure Protocol
Data Unit (PDU) is received, SecOC receives an indication from the Protocol
Data Unit Router (PDUR) module to copy the PDU to its own memory buffers.
It then triggers the verification of the authenticator portion of the PDU by
calling the AUTOSAR Cryptographic Service Manager (CSM) module as
illustrated in Figure 3. Only if the verification passes, SecOC then notifies the

286 Ahmad MK Nasser et al.

DUR_CanlfRxIndication|

e cOC_RxIndication(}

buffer PDU

Sec 0C_Main Func tion{) l :

far each PDU in the buffer

Csm_Macy erify _Start:

request MAC verification from CSM
synchronously

Csm_Macyerify _Update

Cst_Macy erify_Finish:

Figure 3 Sequence diagram showing data flow from CANIF to the CSM layer for frame
authentication.

PDUR module to route the PDU up to the consuming layers [6]. Since SecOC
relies on the SecOC_MainFunction() to perform the verification processing,
the attack goal is to cause that function to exceed the AUTOSAR configured
runtime budget: OsTaskExecutionBudget.

Based on the CAN FD specification [27], we can estimate the nominal
time for transmitting a CAN frame if the arbitration rate, data rate and pay-
load size are all known. As shown in Figure 8, the number of bits in a CAN
FD frame can be calculated based on the different segments of the frame.
Note, the length of the CRC field is either 17 bits or 21 bits depending on
the payload size. For simplification, we set the CRC field to be 21 bits which
corresponds to a payload length of 20 and 64 bytes. This choice is guided
by the fact that in a vehicle CAN FD frames are more likely to utilize the
larger payload size. Thus the only unknown variable parameter remaining is
the number of stuff bits which depends on the content of the CAN frame. The
rule is that no more than 5 bits can be transmitted consecutively with the same
polarity. Therefore, stuff bits are inserted to ensure bit polarity is toggled if
more than 5 consecutive bits have the same logic level.

Accounting for all the variables, results in a formula that gives us the
estimated transmission time of a CAN FD frame (in seconds):

Tcanfd = (1+ f) * (30/a+ (28 + dl * 8)/d). (1)

An Approach for Building Security Resilience in AUTOSAR 287

where a is the arbitration baud rate in bits per seconds, f is the stuff bit factor,
d is the data baud rate in bits per seconds, and d! is the frame data length
in bytes. Note that in a worst case scenario 1 stuff bit is inserted for every 5
consecutive bits which is equivalent to a factor of 20%.

In the case that CAN message authentication is enabled the attacker
takes advantage of the fact that an ECU needs to spend a fixed amount of
CPU runtime to perform a MAC authentication before the frame is accepted
or discarded. Note, an attacker does not have to worry about generating
valid MAC values, because the goal is to exploit the time taken to verify
the MAC, not to spoof a message with a valid MAC. The processing time
varies depending on the target micro-controller and the CPU operating clock
frequency. SecOC defines a parameter for the number of authenticating
attempts when the freshness counter is not transmitted in its entirety within
the frame. The parameter:SecOCFreshnessCounterSyncAttempts, causes the
re-authentication of a secured [-PDU with different freshness values within
the acceptance window until one authentication succeeds or all attempts
fail. This results in more processing time for each message authentication
failure. Therefore, this parameter shall be accounted for in the attack potential
evaluation. As shown in Figure 3, SecOC_MainFunction() loops through all
the buffered PDUs that require verification and triggers the verification request
tothe AUTOSAR CSM [3] module. We intentionally choose to configure CSM
to run in synchronous mode so as to maximize the processing time spent in
SecOC_MainFunction as it tries to authenticate all frames in the buffer before
the task is finished.

As aresult, SecOc_MainFunction() has to wait for the three CSM steps to
be completed before it starts processing the next secure PDU. To achieve a
successful attack, the attacker needs to send a burst of authenticated PDU s that
would result in the SecOC_MainFunction() exceeding its runtime execution
budget. The key here is finding the minimum size of the frame burst needed
to cause the timing error condition and then checking whether it is feasible
given the constraints of the CAN FD protocol. The attack is possible if there
exists a value B < maxB such that T ocessing > Thudget Where:

TS ecoc (2)

maxB = .
canfd

Therefore, assuming SecOC_MainFunction has a task cycle time of Ts¢c0. and
a CAN FD frame transmission time of 7¢.4, r4 our goal is to find the minimum
burst size B such that the processing time of SecOC_MainFunction Tjocessing
is greater than the configured execution budget Tp,qg¢ While B < maxB.

288 Ahmad MK Nasser et al.

OS Triggers
Protection
To T1 Mechanism T2

Tprocesslng Tprocesslng

" A

Send Frame Burst

Figure4 Triggering the OS protection mechanism by causing the SecOC main function task
to exceed the execution budget.

In order to evaluate if a system is affected by this attack, we present
Equation (3) for calculating burst size B. Let T4 be the MAC verification
time for verifying a single 64 byte message, note this time depends on the
MAC algorithm and whether it is accelerated in hardware or implemented in
software. Let T},4in be the runtime to execute the SecOC_MainFunction() to
process a single frame without the MAC calculation overhead. Let Tpyqget
be the maximum execution budget of the SecOC_MainFunction task. Let
Nattempts be the value of SecOCFreshnessCounterSyncAttempts, which is
the number of attempts performed if MAC verification fails. Let B be the
number of CAN FD messages that can be verified within the T,q4¢; time:

Tbudget
(Nattempts * (Tmain + Tmac))
The above analysis gives us the conditions needed to determine if the

mechanism can be triggered externally based on the target system parameters.
An evaluation on a real target is shown in Section 8.2.

B = 3)

6.2.1 Countermeasures
The countermeasures to this attack as shown in [25] consist of the following:

1. When defining Task Execution Budgets, system designers shall take into
account potential security threats to the task execution time to find the
optimal budget that can address both safety and security related faults.

2. Wherever possible, choose the asynchronous mode for performing spe-
cific functions. AUTOSAR provides both synchronous and asynchronous
mode in several modules like NVM and CSM. This would limit the time
spent in a task as it allows the job to be performed over several call cycles.

3. With CAN authentication, SecOC defines a maximumretryCounter to
repeat the MAC verification with a different freshness counter upon

An Approach for Building Security Resilience in AUTOSAR 289

failure. This can further exacerbate the duration of performing the CAN
authentication when an attacker sends a burst of invalid messages (wrong
MAC). Therefore, using the minimum value possible for this parameter
is recommended.

4. Use anetwork anomaly detection system that can flag and stop anomalous
message bursts like the one used in this paper to trigger the attack.

5. A fatal error such as a system shutdown due to exceeding the execution
budget may seem highly improbable under normal conditions, but under
the influence of an attacker can become much more likely. Therefore, it
is necessary to review all fatal errors in the application to re-evaluate if
the conditions of such errors are impacted by a malicious attacker.

In the cases where the attack cannot be prevented, it is necessary that the fail-
safe response collects additional indicators to aid in future forensic analysis.
Some of those indicators can be the network traffic at the time the fault
occurred, as well as the frequency at which the error condition occurred.
This information can be analyzed by a vehicle IDS or an offline system that
can observe inputs from many vehicles to identify fleet wide attacks.

7 Dual Purpose Safety Mechanisms

Being able to use AUTOSAR safety mechanisms for attack detection can
increase the security resilience of AUTOSAR based systems without a major
impact to the cost of the system. In the below sections we show the results of
our analysis of AUTOSAR safety mechanisms as means for attack detection.

7.1 Analysis

7.1.1 Stack usage monitoring

Code injection attacks through buffer overflow [16] continue to be among
the most effective in computer systems, where an attacker can overflow a
buffer boundary in the task stack in order to overwrite the return address of a
function. This results in rerouting the flow of the program to the new address
overwritten by the overflow.

Naturally, a protection mechanism that can detect stack overflow would
be relevant for security. As mentioned in Section 4.2.1, AUTOSAR OS
supports memory stack overflow monitoring either through software checks
(by checking special patterns on the stack) or with the help of the MPU. Since a
malicious attacker can easily forge the stack pattern value after overwriting the
stack space, software based stack protection cannot be considered a security

290 Ahmad MK Nasser et al.

mechanism. With the MPU based stack protection, the OS sets up a dedicated
MPU stack entry prior to activating the corresponding task. The user defines
the stack size for each context based on prior measurements to determine
the maximum required stack size. An attacker who manages to inject code
in a stack space cannot exceed the stack boundary and cannot inject code
in a stack dedicated for another context. Doing so results in an immediate
exception which results in the OS taking corrective action such as issuing a
reset. This matches well as a mechanism for attack detection.

7.1.2 RAM execution prevention

Modern operating systems support data execution prevention (DEP) to ensure
that a memory address can either be configured as writable or executable but
not both. Automotive embedded operating systems do not explicitly support
such protections, but using AUTOSAR OS, it is possible to emulate this
protection. As mentioned in Section 4.2.1 using an MPU it is possible to
setup access rights to memory regions as: read, write, and execute. While
AUTOSAR OS does not explicitly define how to separate access rights, it is
expected that specific vendor implementations of AUTOSAR OS offer the
user the ability to assign different access rights to different OS applications.

Stack 4

Stack 3

SMOID) YIRIS

MPU Lower Address, MPU High Address, MPU

— | Attributes(Read, Write, Execute)

>
=

Stack 2

Stack 1

Figure 5 MPU based stack protection, by switching MPU setting based on the active stack.

An Approach for Building Security Resilience in AUTOSAR 291

We propose extending this to restrict all execution out of RAM regardless of the
safety level of the corresponding application. While this does not prevent all
stack based attacks as is the case with a return-to-libc attack [14], it does raise
the difficulty level for mounting attacks on embedded systems. An attacker
who attempts to violate this rule will immediately cause a CPU exception
which can reset the system to restore it to a known secure state.

7.1.3 Control flow integrity protection

The topic of control flow integrity(CFI) was thoroughly studied in [10]. More-
over, [17] showed several techniques to alter the execution flow specifically in
an embedded system. Having a mechanism that can enforce program flow can
be useful in mitigating attacks such as return oriented programming and stack
based code injection. AUTOSAR offers a mechanism that can be re-purposed
for CFI, namely in the Watchdog Manager (WdgM). Using the WdgM it is
possible to define supervised entities (SE) which are code elements that can
be monitored for the order of execution. This results in creating an internal
graph of code segments that shall be executed in a specific sequence with time
constraints between checkpoints. In Figure 6, we show an example where
checkpoints are inserted to allow the WdgM to enforce the program flow of
a password checker. If an attacker manages to jump to CP1-2 to unlock the
security state, the WdgM will detect a program flow violation because CP1-0
and CP1-1 were bypassed. During the execution of WdgM_MainFunction(),
the WdgM detects the violation and can trigger a watchdog reset by not
refreshing the watchdog timer. If the attacker chooses to reroute control to
his own routine and disables the calling of the WdgM_MainFunction(), the
watchdog timer will also trigger a reset because it has not been serviced. Note
that one can argue that an attacker can reload the watchdog timer to prevent
a reset. This can be made more difficult by only using a windowed watchdog
timer. This means the attacker would have to reload the timer in the right time
window which is synchronized with the WdgM_MainFunction() call cycle.

7.1.4 OsTiming protections

The locking time protection can be useful in detecting attacks in which a
malicious application attempts to disable interrupts for an extended period of
time to complete an attack. The inter-arrival time protection can be useful to
detect DoS attacks in which an attacker attempts to overwhelm the system by
triggering an interrupt too many times to starve the CPU from runtime or to
exhaust stack memory resources. An example would be malicious network
traffic that results in over triggering the CAN interrupt.

292 Ahmad MK Nasser et al.

Getuser
password
CP1-0

A4

|5 password
correct?
CP1-1

Unlock
security
state
CP1-2

Lock
security
state
CP1-3

A

@=

Figure 6 WdgM monitors if password verification checkpoint is skipped to detect an attack.

7.1.5 Hardware resource protection

AUTOSAR OS relies on the MPU to prevent lower ASIL applications from
corrupting the data of a higher ASIL application including register settings.
One potential use case for security is prohibiting access to the CAN registers
by mapping them to a protected MPU entry. This prevents malicious code
from directly interacting with the CAN controller to spoof the CAN bus in an
infected ECU.

7.2 Security Constraints

As shown in Figure 2, in order to use the safety mechanisms listed above for
security, certain constraints are needed to ensure the availability and integrity
of those protections.

1. Internal variables of the monitoring software shall be protected against
tampering via the MPU partitioning to prevent an attacker from spoofing

7.3

An Approach for Building Security Resilience in AUTOSAR 293

their values, for e.g. WdgM global state variable which contains the status
of the program flow checks.

. Software modules executing the security monitoring and enforcement

like AUTOSAR OS, WdgM and MCU Driver shall be protected against
tampering via secure boot. This is to ensure that those protections are
present when the system boots up.

. Systems that allow runtime integrity checking of software can be lever-

aged to periodically verify the integrity and authenticity of the software
modules executing the protection mechanisms.

. Configuring OS applications as “Trusted OS Applications” shall be

prohibited. The latter has full access to all memory resources which makes
it a valuable target for an attacker. Moreover, “Trusted OS Application”
is a pure safety characterization which does not imply any security
assurance. Thus we recommend that CPU privilege mode is reserved
strictly for the OS, while all other tasks and applications shall run in user
mode.

. The software shall be partitioned not only based on safety criticality but

also based on security relevance. Having separation between security
relevant software and non-security relevant software further enforces the
principles of security isolation.

. In order to raise the difficulty of code injection attacks that can disable

protection mechanisms, RAM based execution shall be disabled via the
MPU for all RAM partitions (data and stack) in both user and privileged
modes. This means that even if an attacker manages to load code on the
stack, attempting to execute that code shall result in an MPU exception.

. Any API call in AUTOSAR that allows disabling a security monitoring

shall be disabled, to prevent an attacker from bypassing security checks.

. The timer interrupt upon which the OS is relying shall be a high priority

non-maskable interrupt. This ensures that the OS can execute the security
monitoring functions defined in this paper.

. When using the WdgM for control flow protection, the underlying

watchdog timer shall be only configurable once after reset. Attempts
to disable the watchdog shall either be ignored or result in a system reset.

Harmonizing Safety and Security Response

As shown in [29], safe degradation of a safety function can depend on the
criticality of the function. Safety critical systems aim to keep alive critical
functions for as long as possible when an error is detected. This leads to

294 Ahmad MK Nasser et al.

the definition of different degradation levels that aim to keep alive those
functions that are deemed most critical to a vehicle. A function is allowed
per the FTTI(fault tolerant time interval) before it has to be degraded due to a
fault [27]. Furthermore, AUTOSAR provides flexibility in defining the error
response which can be as harmless as a simple notification to the application.
From a security point of view, detecting an attack, especially one that has
compromised internal memory of the target shall result in a quick response
to restore the target to a trusted state. One possible response is to clear the
contents of volatile memory and issue a system reset. This can then trigger the
secure boot mechanism which checks if the contents of non-volatile memory
have been modified. Any such manipulation can result in locking security
assets to prevent an attacker from using the affected target to launch attacks
on other devices in its direct network. But a sudden reset is not acceptable for
safety applications which have explicit requirements against the sudden loss
of a safety critical functions like electric power steering. Therefore, there is a
need to harmonize the error response to satisfy the safety and security needs
of the system. This may result in creating more redundancies in the system to
be able to keep alive the safety function even under an attack.

8 Attacks Evaluation

In order to evaluate the attacks described in Section 6, we build a test
environment using an automotive grade 32-bit micro-controller, running at
a 120 Mhz CPU clock as the test target, and Vector CANalyzer as a simulated
attacker. The two are connected together through a CAN FD link with an
arbitration baudrate of 500 Kbps and a data rate of 2 Mbps. The identity of
the micro-controller is not disclosed in this paper.

8.1 Zero-ID Flood Attack

To simulate the attack, CANalyzer is used to send messages on two CAN
FD channels connected together into a single CAN FD channel on the target
board. The micro-controller target board controls an RC car by translating
the CAN messages into PWM signals that control the steering and driving as
shown in Figure 7. This is representative of a malicious attacker that has direct
access to the CAN bus where the target ECU resides. The aim is to observe
the impact of the zero-ID flood attack on the ability of the target board to steer
or drive the car.

An Approach for Building Security Resilience in AUTOSAR 295

[
| —

Canalzyer/Simulated Attacker

Simulated Normal CANFD Traffic

32bit Microcontroller Flood Path
Development Board CANFD

PWM
commands

Figure 7 Data Architecture for zero-ID attack.

‘SOF‘II bit CAN Identifier |rl ‘IDE ‘EDL 0 ‘BRS‘ESIk4bit DLC ‘0764 bytes: Data Field |21 bit CRC‘ 1‘ 1‘ 1‘7 bit EOF‘S INT‘IDLE ‘

Figure 8 CAN FD Frame layout, for 64 byte frames CRC is 21 bits long [22].

On the flood path channel, a Communication Application Programming
Language (CAPL) script is used to send the zero-ID message in a back to back
fashion. On the Normal channel, a CAPL script simulates the drive and steer
messages which cycle through a sequence of steering and throttle messages.
By enabling the flood attack, control of the RC car becomes very difficult as
only a small fraction of control messages is transmitted on the bus. In a real
vehicle with timeout monitoring protection, the receiver would simply disable
the steering and driving control functions in response to losing messages which
would correspond to a successful DoS attack.

8.2 Resource Exhaustion Attack

We first introduce CAN FD which is a relatively new communication protocol
that extends the CAN 2.0 standard with a larger payload (up to 64 bytes) and a
higher data rate (up to 8 Mbps) [27]. The protocol defines an arbitration baud
rate, and a flexible data rate that can be higher than the arbitration rate. This
allows CAN 2.0 frames to coexist with CAN FD frames.

296 Ahmad MK Nasser et al.

In order to evaluate this attack we implemented areduced AUTOSAR stack
that performs the entire chain of CAN message reception and authentication
and applied it to a CAN FD network. We assumed that the AUTOSAR CSM
[3], is configured in synchronous mode, as a result, SecOC_MainFunction()
waits until a buffered secure PDU is authenticated before triggering the next
one as shown in Figure 3. The process is repeated until all the buffered secure
PDUs have been verified. The attacker was simulated by a software task that
runs every 10 ms and produces a variable number of CAN FD messages within
a single burst on CAN channel 2 of the micro-controller. A CAPL script in
CANalyzer relays the messages from CAN channel 2 to CAN channel 1 to
trigger the authentication in the SecOC_MainFunction().

We configured the receiver to process the CAN messages on CAN channel
1 in a 10 ms cycle, i.e. Tsecoc = 10 ms, and configured the CAN controller to
receive a maximum of 40 unique messages on CAN channel 1. We also set
the SecOCFreshnessCounterSync Attempts value to 1, because the freshness
counter is sent in its entirety within the CAN FD frame. This is also meant to
increase the attack difficulty, because a larger SecOCFreshnessCounterSync
Attempts increases the Tpocessing time needed to verify all the failed MAC
values received making the attack easier to succeed. Due to its prevalence
in embedded systems, we choose the AES-128 CMAC as the authentication
algorithm. Thus the CAN FD frame was constructed to contain 48 bytes of
payload data, 8 bytes freshness counter and 8 bytes truncated CMAC. As for
the stuff bit factor f, we chose a factor of 15% which is below the maximum
value and more biased towards the worst case condition. We then toggle a port
pin around the function SecOC_MainFunction() to measure Ty ocessing With
an oscilloscope.

Using Equations (1) and (2), we can determine that for the parameters of
our experiment outlined in Table 2, the maximum burst of messages possible to
attack the system is 27 messages with a payload of 64 bytes each. By choosing

Table 2 CAN FD frame time in ps based on 64 byte DLC
Arbitration Rate 500 kbps

Data Rate 2000 kbps
Data Length 64 bytes
Arbitration Time 39.1 ps
Data Rate 314.4 ps

Total Frame time 359.5 ps
SecOC Cycle Time 10 ms
Burst Size 27.81 frames

An Approach for Building Security Resilience in AUTOSAR 297

a 64 byte CAN FD frame length we aim to increase the attack difficulty by
minimizing the maximum burst size possible within our time constraint of
10 ms. The next step then is to find the burst size for which 7). ocessing €xceeds
Tbudget-

Arriving at the execution budget is highly dependent on the application
and how the operating system is configured. Typically, the system designer
chooses the execution budget of individual tasks based on a static analysis
aided by tools that can estimate worst case execution time. For our evaluation
since we do not have a real application we assume that SecOC_MainFunction
will be among several cyclic functions that are part of the 10 ms Task. Thus
we choose the Ty q4¢¢ to be 10% of the task cycle time which corresponds to
1 ms. In a real system, execution times can be better estimated based on the
demands of the target application. The results of our experiment in Figure 9,
show that for Tocessing t0 €xceed our chosen execution budget of 1 ms, it is

Moise Filter Off

0 2] eii ;
Figure 9 Total runtime is 1.04 ms for processing 22 CAN FD messages of 64 bytes each.

void ApplDiagWriteDataByldentifier (uint8_t canLen)

{

uint8_t diagBuffer[8];

/+* this routine copies data from CAN to the
diagnostic buffer the length in the CAN
diagnostic request is not being checked this
allows the buffer to be overrun and the return
address to be overwritten =/

memcpy (diagBuffer ,canBuffer ,canLen);

Figure 10 Buffer overflow routine.

298 Ahmad MK Nasser et al.

sufficient to send a burst of 22 secure PDUs within a 10 ms cycle. Therefore
the number of frames needed to trigger the AUTOSAR OS failure is below
the maxB = 27 calculated in Table 2 which satisfies Theorem 1. Furthermore,
22 CAN messages is well within the normal number of CAN frames that a
typical ECU consumes.

9 Defense Evaluation

For our evaluation of protection mechanisms, we chose the stack usage
monitoring protection and performed the evaluation on a RH850 P1x based
microcontroller [1] which is ASIL-D qualified.

9.1 Stack Overflow Protection

To demonstrate the security mechanism we create a CAN diagnostic vulnera-
bility that allows a diagnostic tool to inject code into the stack memory reserved
for a “trusted” OS application. The diagnostic routine that is loading the data
over CAN contains a bug that allows the diagnostic tool to send a well crafted
diagnostic request to overflow the stack. The received payload overwrites
the return address of the calling routine with a RAM based address which
corresponds to the entry point of the malicious routine. Since we do not have
access to a full AUTOSAR software stack, we implemented a minimal RTOS
that is responsible for setting up the MPU to protect the stack memory against
writes by unauthorized software partitions. We also disabled execution rights
for stack based addresses to prevent an attacker from fetching instructions
from the stack in the case of a successful code injection attack.

Figure 11 shows the stack state before the attack with the target address to
overwrite being 0x4e80. The code listing shown in 10 is a simple routine that
contains the buffer overflow exploit we used. Figure 12 shows the contents
of the stack after executing the routine which causes the overwrite of the
return address with Oxfebff000. Once the routine attempts to return, the CPU
pulls the link pointer register value (Ip) from the stack causing it to jump to
the malicious code shown in Figure 14. The latter attempts to jump to the
bootloader after setting the programming flag. The attacker’s goal is to bypass

OxfebelOfic 00000000 febelf54
Oxfebelf34 febe0004 febeO0000
Oxfebelfic febelf54 febel0OO
OxfebeOfd4d [NEENEISN felbel7do

Figure 11 Stack values before executing the attack, the return address is 0x4e80.

An Approach for Building Security Resilience in AUTOSAR 299

JxfehelOf34 00000000 EEEEEEEE
Ixfebhelfic
Ixfebelf44
Jxfehelfdc febelfde 000400db

Figure 12 Stack content after executing the attack, the return address is Oxfebff000.

.offset 0Ox0020

#if (MIP_MDP_ENABLE »> 0x00000000)
.extern _MIP_MDP
jr _MIP_MDP

MDXED .intwvect..C.3A.5CCES+0x90: 07805h84 jr MIP_MDP {(Ox5clé4)
0Ox94 .intvect..C.3L.5CCE3+0x94: .hyte 00,00,00,00
0x98 .intvect..C.3L.5CCE3+0x95: .byte 00,00,00,00
0Ox9c¢ .intwvect..C.3A.5CCES+0x59c: .byte 00,00,00,00

Figure 13 MPU exception is triggered due to violation of execution rights in RAM.

void maliciousRoutine (void)
{

reprogrammingFlagy = C_TRUE;
@I&Dxfebffﬂﬂn maliciousRoutine: Oa01 mov 1, ril
* Oxfebff002 maliciousRoutine+0x2: 0£4480d£ st.b ril, -32545[gp]
asm("jr 0x1000"); // jump to the bootloader
. Oxfebff006 mwaliciousRoutine+0x6: 073801000 jr Oxfec00006
i
. Oxfebff00a maliciousRoutine+0xa: 007t Jmp [1lp]

Figure 14 Malicious routine is successfully entered after the stack overflow.

the normal security checks that are required to enter flash programming mode.
Due to the security mechanism being active, the vulnerable diagnostic routine
is only able to overflow its own stack, but not the stack of other OS applications.
Although the stack overwrite is possible, the attempt to fetch the code to jump
to the bootloader, immediately triggers an exception as shown in Figure 13.

Note the MPU exception is non-maskable which is important to prevent
an attacker from having the ability to delay or block the exception. Once the
exception is triggered, the system can log the address where the violation
occurred and store that in non-volatile memory for intrusion analysis. The
next action is to reset the system which restores the CPU back to its original
state. In order to clear the malicious code, it is highly recommended that the
CPU always resets the contents of the RAM and stack during startup. Note the
above action has to take into consideration the vehicle state to avoid creating
a sudden loss of a safety function which would violate a safety goal.

10 Conclusion

In this paper, we presented methods for increasing the security resilience
of AUTOSAR based systems. First by considering safety mechanisms as
potential attack vectors, we offered several countermeasures that can prevent

300 Ahmad MK Nasser et al.

the abuse of safety mechanisms by attackers. In cases where full prevention
was not possible, we proposed an enhanced fail-safe response that factors in
malicious attacks as the potential source of the safety failure. Then we analyzed
AUTOSAR safety mechanisms that exhibit security properties. We showed
that AUTOSAR offered several strong security features if they are used with
the proper constraints. We also showed the need to harmonize the response to
fault detection to satisfy both the safety and security objectives of the system.
In future work we plan on performing our evaluation on a commercially
available AUTOSAR stack to produce a set of security requirements that can
be integrated with AUTOSAR. We also plan to study the impact of physical
attacks on the hardware protections such as RAM and Flash Test features.

References

[1] RH850 P1X Microcontroller Information microcontroller description.
Available at: https://tinyurl.com/ybgbbanb [Accessed: 2017-11-28].

[2] Specification of Core Test. AUTOSAR Release 4.2.2

[3] Specification of Crypto Service Manager. AUTOSAR Release 4.2.2

[4] Specification of Diagnostic Event Manager. AUTOSAR Release 4.2.2

[5] Specification of Flash Test. AUTOSAR Release 4.2.2

[6] Specification of Module Secure Onboard Communication. AUTOSAR

Release 4.2.2

Specification of Operating System. AUTOSAR Release 4.2.2

Specification of RAM Test. AUTOSAR Release 4.2.2

Specification of Watchdog Manager. AUTOSAR Release 4.2.2

Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. (2009). Control-flow

integrity principles, implementations, and applications. ACM Transac-

tions on Information and System Security (TISSEC), 13, 4.

[11] Bai, Y. (2015). Practical Microcontroller Engineering with ARM Tech-
nology. John Wiley & Sons.

[12] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H.,
Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T, et al. (2011).
Comprehensive experimental analyses of automotive attack surfaces. In:
USENIX Security Symposium, San Francisco.

[13] Cho, K.T., and Shin, K.G. (2016). “Error handling of in-vehicle net-
works makes them vulnerable,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ACM,
1044-1055.

[7
8
[9
[10

—_— e e

An Approach for Building Security Resilience in AUTOSAR 301

[14] Day, D.J., and Zhao, Z.X. (2011). Protecting against address space
layout randomisation (ASLR) compromises and return-to-libc attacks
using network intrusion detection systems. International Journal of
Automation and Computing 8, 472-483.

[15] Dwoskin, J.S., Gomathisankaran, M., Chen, Y.Y., and Lee, R.B. (2010).
“A framework for testing hardware-software security architectures,”
in Proceedings of the 26th Annual Computer Security Applications
Conference, ACM, 387-397.

[16] Foster, J.C., Osipov, V., Bhalla, N., and Heinen, N. (2005). Buffer
Overflow Attacks: Detect, Exploit, Prevent. Syngress Publishing (2005).

[17] Francillon, A., and Castelluccia, C. (2008). “Code injection attacks
on harvard-architecture devices,” in Proceedings of The 15th ACM
Conference on Computer and Communications Security, ACM,
15-26.

[18] Francillon, A., Perito, D., and Castelluccia, C. (2009). “Defending
embedded systems against control flow attacks,” in Proceedings of The
First ACM Workshop on Secure Execution of Untrusted Code, ACM,
19-26.

[19] Furst, S., and Spokesperson, A. (2015). AUTOSAR the next generation
— the adaptive platform. CARS@EDCC2015.

[20] GbR, A.: Specification of sw-c end-to-end communication protection
library.

[21] Glas, B., Gebauer, C., Hinger, J., Heyl, A., Klarmann, J., Kriso, S., Vem-
bar, P., and Worz, P. (2014). Automotive safety and security integration
challenges. In: Automotive-Safety & Security, 13-28.

[22] Hartwich, F. (2012). Can with flexible data-rate. Proc. iCC. Citeseer
(2012).

[23] Lima, A., Rocha, F., Volp, M., and Esteves-Verissimo, P. (2016).
“Towards safe and secure autonomous and cooperative vehicle ecosys-
tems,” in Proceedings of the 2nd ACM Workshop on Cyber-Physical
Systems Security and Privacy, ACM, 59-70.

[24] Miller, C., and Valasek, C. (2013). Adventures in automotive networks
and control units. DEF. CON. 21, 260-264.

[25] Nasser, A.M., Ma, D., and Lauzon, S. (2017). “Exploiting AUTOSAR
safety mechanisms to launch security attacks,” in International Confer-
ence on Network and System Security, Springer, 73-86.

[26] Standard, I.: Iso 26262, 2011. Road vehicles Functional Safety (2011).

[27] Standard, I.: Iso 11898, 2015. Road vehicles — Controller area network
(CAN) — Part 1: Data link layer and physical signaling (2015).

302 Ahmad MK Nasser et al.

[28] Tencent: New car hacking research: 2017, remote attack tesla motors
again. Keen Security Lab Blog. Available at: https://tinyurl.com/yalxvnoz

[29] Trapp, M., Adler, R., Forster, M., and Junger, J. (2007). Runtime adap-
tation in safety-critical automotive systems. Software Engineering, 1-8.

[30] Wiersma, N., and Pareja, R. (2017). A security assessment of the
resilience against fault injection attacks in ASIL-D certified microcon-
trollers, esCar 2017.

Biographies

g

Ahmad MK Nasser is a Ph.D. candidate at the University of Michigan
Dearborn. He attended Wayne State University where he received his B.Sc. in
Electrical Engineering and M.Sc. in Computer Engineering. Ahmad has held
various Software Engineering roles throughout his career since 2002 with a
focus on basic embedded software and embedded vehicle security. He is a
domain expert in embedded systems, flash programming, vehicle diagnostics,
communication protocols, AUTOSAR basic software, and hardware based
security. He currently works as a senior software manager at Renesas Electron-
ics America, where he leads the secure software center of competence. Ahmad
is currently completing a doctorate in Computer Science at the University of
Michigan Dearborn. His Ph.D. work centers on the interplay of safety and
security in Automotive Systems.

i

Di Ma is an Associate Professor in the Computer and Information Science
Department at the University of Michigan-Dearborn. She also serves as the
director of the Security and Forensics Research Lab (SAFE). She is broadly

An Approach for Building Security Resilience in AUTOSAR 303

interested in the general area of security, privacy, and applied cryptography.
Her research spans a wide range of topics, including smartphone and mobile
device security, RFID and sensor security, vehicular network and vehicle
security, computation over authenticated/encrypted data, fine-grained access
control, secure storage systems, and so on. Her research is supported by NSF,
NHTSA, AFOSR, Intel, Ford, and Research in Motion. She received the Ph.D.
degree from the University of California, Irvine, in 2009. She was with IBM
Almaden Research Center in 2008 and the Institute for Infocomm Research,
Singapore in 2000-2005. She won the Distinguished Research Award of the
College of Engineering and Computer Science in 2017 and the Tan Kah Kee
Young Inventor Award in 2004.

Priya Muralidharan has a Bachelors in Physics and Masters in Information
Technology from the University of Delhi, India. She also has a Masters in
Computer Science from the University at Buffalo, New York. She is currently
working as a Senior Application Engineer at Renesas Electronics America, in
the area of Functional Safety. She has over 10 years of experience in embedded
software and controls development for various automotive applications such
as Electric Power Steering Systems, Hybrid and Electric Vehicles. She has
also worked extensively on electronic components such as electric and oil
pumps as well as vehicle gateways.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

