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Abstract

Current electroencephalogram (EEG)-based methods in security have been
mainly used for person authentication and identification purposes only. The
non-linear and chaotic characteristics of EEG signal have not been taken into
account. In this paper, we propose a new method that explores the use of
these EEG characteristics in generating random numbers. EEG signal and its
wavebands are transformed into bit sequences that are used as random number
sequences or as seeds for pseudo-random number generators. EEG signal has
the following advantages: 1) it is noisy, complex, chaotic and non-linear in
nature, 2) it is very difficult to mimic because similar mental tasks are person
dependent, and 3) it is almost impossible to steal because the brain activity
is sensitive to the stress and the mood of the person and an aggressor cannot
force the person to reproduce his/her mental pass-phrase. Our experiments
were conducted on the four EEG datasets: AEEG, Alcoholism, DEAP and
GrazA 2008. The randomness of the generated bit sequences was tested at
a high level of significance by comprehensive battery of tests recommended
by the National Institute of Standard and Technology (NIST) to verify the
quality of random number generators, especially in cryptography application.
Our experimental results showed high average success rates for all wavebands
and the highest rate is 99.17% for the gamma band.
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1 Introduction

Random number generators (RNGs) are algorithms designed to produce
sequences of numbers that appear to be random. RNGs play a crucial role
in many applications such as cryptography, machine learning, Monte Carlo
computation and simulation, industrial testing and labeling, hazard games,
lotteries, and gambling.

In applications where provability is essential, randomness sources (if
involved) must also be provably random; otherwise, the whole chain of proofs
collapses. In cryptography, due to Kerckhoffs principle where all parts of
protocols are publicly known except a secret (the key or other information)
that only the sender and the recipient know, it is clear that the secret must not
be predictable or calculable by an eavesdropper, i.e., it must be random. For
example, the well-known BB84 quantum key distribution protocol [7] would
be completely insecure if only an eavesdropper could predict (or calculate)
either Alices random numbers or Bobs random numbers or both. From analysis
of the secret key rate presented therein, it is obvious that any predictability of
random numbers by the eavesdropper would leak relevant information to him,
thus diminishing the effective key rate. It is intriguing [34] that in the case
that the eavesdropper could calculate the numbers exactly, the cryptographic
potential of the BB84 protocol would be zero. Indeed one of the recent
successful attacks on quantum cryptography exploits the possibility to control
local quantum RNGs by exploiting a design flaw of two commercial quantum
cryptographic systems and one practical scientific system. This example shows
that the local RNGs assumed in BB84 are essential for its security and may
not be exempt from the security proof.

Lotteries are yet another serious business where random numbers are
essential. Due to the large sum of money involved (estimated six billion
USD annually only online and only in the USA [18]), some countries have
set explicit requirements for RNGs for use in online gambling and lottery
machines and have set certificate issuing authorities. For example, the Lotter-
ies and Gaming Authority (LGA) of Malta has prescribed a list of requirements
for RNGs, stipulated in the Remote Gaming Regulations Act. An RNG that
does not conform to this act may not be legally used for gambling business.
These rules have been put forward in order to ensure fair game by providers
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and to prevent possibility that gamers manipulate the system by foreseeing
outcomes.

RNGs have been an occupation of scientists and inventors for a long
time. Whole branches of mathematics have been invented out of a need to
understand random numbers and ways to obtain them. At the dawn of the
modern computing era, John von Neumann was one of the first to note
that deterministic Turing computers are not able to produce true random
numbers, as he put it in his well-known statement that Anyone who considers
arithmetical methods of producing random digits is, of course, in a state of sin.

RNGs are one of the hottest topics of research in recent years. There have
been about 83 patents per year in the last decade, 1418 in total since 1970,
and countless scientific articles published regarding true RNGs. Still, a sharp
discrepancy between the number of publications and the very modest number
of products (only four quantum RNGs and a handful of Zener noise-based
mostly phased-out RNGs) that ever made it to the market clearly indicate the
art of immaturity.

Historically, there have been two approaches to random number genera-
tion which are algorithmic (pseudo-random) approach and physical process
(nondeterministic) one.

Pseudo-random number genrators (RNGs) are also known as deterministic
methods that use a mathematical algorithm to produce a long sequence of
random numbers. PRNGs have requirements on seed to output a number. If
the seed is secret and the algorithm is well-designed, the output number will be
unpredictable. Advantages of PRNGs are their low cost, ease of implementa-
tion, and user-friendliness, especially in a CPU-available environment such as
a PC computer. Moreover, a good RNG should work efficiently, which means
that it should be able to produce a large amount of random numbers in a short
period of time. For applications like stochastic simulation, stream ciphers, the
masking of protocols, and online gambling, huge amounts of random numbers
are necessary and thus fast RNGs are required.

While most modern PRNGs pass all known statistical tests, there are
myths about some PRNGs being much better than the others. The truth is
that every PRNG shows its weakness in some particular application. Indeed
PRNGs are often found to be the cause of erroneous stochastic simulations
and calculations [11, 13]. As for cryptographic purposes, all major families of
PRNGs have been cryptanalyzed so far [32], and use of PRNG where an RNG
should be used will therefore present a big security risk for the protocol in
question.
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For example, the pseudo-random number generator (PRNG) used in
Windows operating system is the most commonly used PRNG. The pseudo-
randomness of the output of this generator is crucial for the security of almost
any application running in Windows. Nevertheless, its exact algorithm was
never published. In [12] an attacker can learn future outputs in O(1) time and
compute past outputs in O(223) time. These attacks can be run within seconds
or minutes on a modern PC and enable such an attacker to learn the values of
cryptographic keys generated by the generator. The attacks on both forward
and backward security reveal all outputs until the time the generator is rekeyed
with system entropy. Given the way in which the operating system operates
the generator, this means that a single attack reveals 128 KBytes of generator
output for every process.

On the other hand, true random numbers or physical non-deterministic ran-
dom number generators (TRNGs) seem to be of an ever-increasing importance.
Today, true random numbers are most critically required in cryptography and
its numerous applications to our everyday life such as mobile communications,
e-mail access, online payments, cashless payments, ATMs, e-banking, Internet
trade, point of sale, prepaid cards, wireless keys, general cyber security, and
distributed power grid security.

However, the characteristics of TRNGs are opposite to those of PRNGs.
TRNGs are often biased, this means for example that on average their output
might contain more ones than zeros and therefore does not correspond to a
uniformly distributed random variable. This effect can be balanced by different
means, but this post-processing reduces the number of useful bits as well
as the efficiency of the generator. Another problem is that some TRNGs
are very expensive or need at least an extra hardware device. In addition,
these generators are often too slow for the intended applications. Despite the
arguments above, TRNGs have their place in the arsenal. They are used to
generate the seed or the continuous input for RNGs.

For implementation, RNGs can be implemented in either hardware or
software. Random number generation performed by software utilizes a
mathematical algorithm that produces a sequence of statistically indepen-
dent numbers following a uniform distribution. However, this sequence is
deterministic given the algorithm and the seed. While it is possible to imple-
ment a mathematical algorithm in hardware and call it a “hardware random
number generator”, these particular RNGs clearly belong to the category of
pseudo-random number generators because they require a seed and produce
a deterministic sequence of numbers. True random number generation in
hardware depends upon the random characteristics of some physical systems;
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for example lava lamps, radioactive decay of atomic nuclei, or noise from a
resistor or diode. One of the most important properties of such generators is
that they do not need any seed to start producing random sequences.

Biometrics is the science and technology of measuring and statistically
analyzing biological data. In information technology, biometrics usually refers
to techniques for measuring and analyzing human body characteristics such
as fingerprints, eye retinas and irises, voice patterns, facial patterns, and hand
measurements, especially for authentication and identification. This kind of
application needs to study stationary properties uniquely determined by the
attributes of each individual.

Moreover, we believe biometrics have another potential application.
Inherent to each biometric measurement is a variability, which is the result of
different measurement conditions and ways in which the user presents his or
her features to the scanner. This variability effectively represents randomness,
which, if extracted, could then be used as a seed for pseudo-random number
generators, or directly as a random number sequence: [15, 16, 35]. However,
they have some limitations because they are not very secret as expected that
can affect to the biometrics-based RNGs in random number regeneration.
For example, fingerprint can be changed through human’s life, face and iris
information can be photographed, and handwriting may be mimicked [22].
Voice can be recorded while a user is speaking. In addition, an adversary can
be easy to capture these biometrics by forcing the legitimate user such as
threatening with a gun.

In this paper we propose to improve and advance the current state of
biometric-based random number generators from EEG source which has
disadvantages of low sampling rate and low resolution, but has several
advantages: 1) it is noisy, complex and chaotic, and non-linear in nature
[1, 28, 31], 2) it is very difficult to mimic because similar mental tasks are
person dependent, and 3) it is almost impossible to steal because the brain
activity is sensitive to the stress and the mood of the person: an aggressor
cannot force the person to reproduce his/her mental pass-phrase [20].

The major contributions of this article are as follows. We explore the
randomness of EEG data in order to use them (after codification in integer or bit
format) as seeds for pseudo-random number generators or, directly, as random
number sequences. We choose the EEG data as a new and promising informa-
tion source, and develop an algorithm for extracting the inherent randomness.
We investigate the use of individual frequency wavebands as random number
generators because the wavebands may yield more accurate information about
constituent neuronal activities underlying the EEG and consequently, certain
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changes in the EEG that are not evident in the original full-spectrum EEG
may be amplified when each sub-band is analyzed separately [2]. We validate
the randomness of four EEG datasets which are Australian EEG, Alcoholism,
DEAP, GrazA 2008 datasets. The randomness of the generated bit sequences
was then verified at a high level of significance by the standard NIST Test
Suite (recommended by the National Institute of Standards and Technology).

These results therefore will open potential possibilities of generating true
random numbers for biometrics-based systems to be added to the traditional
ones based on physical systems. The main advantage of this alternative in
eventual implementations would be, apart from privacy, to provide random
bits in real time in a simple and very portable way.

2 Related Work

Since the variability effectively represents randomness, however, biometrics
present opportunities for use in random number generation mechanisms as a
source of randomness, if such variability can be extracted in a meaningful way.

This concept has been first explored by Sczepanski et al. in [35]. Their
method is based on the observation that measurements of physical phenomena
yield values that fluctuate randomly in their rightmost decimal digits. The
values are partitioned into numbered intervals and then used to generate bits
based on interval membership, one bit per value. The authors have tested
the method on neurophysical brain signals and galvanic skin response, and
statistical tests show that the resulting binary sequences have good randomness
properties. The generic construction of the method also makes it possible
for the method to be used with any biometrics where the results of the
measurements can be quantized to decimal values in a meaningful manner.
However, the method requires large datasets of values to generate longer
bitstrings, and its security is dependent on the security of the measurement
process of the biometrics used. They tested their binary sequences on FIPS
statistical tests including four tests: monobit test, poker test, run test, and long
run test, Mau-rer universal test and the Lempel-Ziv complexity test. Except
the Lempel-Ziv test was been withdrawn by the NIST, other tests belong to
the NIST STS that are more difficult to pass.

Moreover, a true random number generator based on the data of fingerprint
(FPTRNG) is designed in [39], from the fact that middle grayscale pixels
of fingerprint image have large random information. The FPTRNG extracts
random information from fingerprint image. It is a true random number
generator and is able to produce high quality random number. Its efficiency is
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high. As the fingerprint image always has large information and the random
number generated from it is dedicated to using in fingerprint authentication
system, it meets the system requirement for random number. In addition, [15]
presents and evaluates the idea of using variability in captured samples could
be potentially used to obtain truly random bit sequences, which could be used
as a seed for PRNG, or as a random number by itself. The proposed method
uses fingerprints as the measured biometric and aims to provide a readily
available means of generating random numbers on mobile devices equipped
with fingerprint readers.

In [16], strong random numbers are generated from using physical, bio-
metric data by investigates how to combine biometric feature extraction and
random number generation, how to generate the random numbers and how
to verify claimed randomness properties. Simulation results are presented.
Their idea presents that, independent from the biometric modality, the only
requirement of the proposed solution is feature vectors of fixed length and
structure. Each element of such a feature vector is analysed for its reliability,
only unreliable positions, which cannot be reproduced coherently from one
source, are extracted as bits to form the final random bit sequences. Optionally
a strong hash-based random extraction can be used. The practicability presents
testing vascular patterns against the NIST-recommended test suite for random
number generators.

Arecent study [10] indicates that the EEG signals can be treated as indirect
random number generator that uses a transformation to output a random
number. However, this method only works for input data as integers to generate
three-sequence output. Another proposal proposes the use of EEG directly as
random number generator in [26]. The limitation of this method may be that it
is only applied for the positive real numbers, and this method generates only
seven sequences of bits that are quite small.

3 EEG Characteristics

EEG is measurement of the electrical field over the scalp. This electrical field
is generated by the synaptic currents within the dendrites of many neurons
in the cerebral cortex. The membrane transport proteins pump ions across
their neuron membranes and make the neurons electrically charged. This
exchanging of ions helps the neuron maintain resting potential and to propagate
action potentials. Ions of similar charge repel each other. These ions, after
being pushed out, can push their neighbouring ions who in turn push their
neighbours. This process creates a wave of ions and is known as volume
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conduction. When this wave reaches the electrodes on the scalp it creates the
difference in voltages between any two electrodes, and can be measured by a
voltmeter which gives us the EEG [31].

Because the human head is composed of a number of layers including the
scalp, skull, brain and others in between, only the synchronous activity of a
large number of active neurons can generate enough potential to be picked up
by EEG. EEG activity, therefore, represents a sum of the activity of millions of
neurons having similar spatial orientation. Pyramidal neurons of the cortex are
well-aligned together. Therefore they are thought to be the main-source EEG
signal. By comparison, deep brain activity is more difficult to detect because
the voltage fields drop by a factor of the square of distance [31].

3.1 Rhythms of EEG

The amplitudes and frequencies of EEG signals change according to the state
of a human such as consciousness or unconsciousness [31]. There are five
major brainwave patterns differentiated by their frequency ranges including
delta (d), theta (), alpha (), beta (/3), and gamma () (see Figure 1).
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Figure 1 Wavebands example. It can be seen that the gamma and beta wavebands change
less widely than others.
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e Delta waves: Delta wave frequency lies between 0.5 and 3 Hz, with
variable amplitude [24]. Delta waves are associated with deep sleep, and
are thought to indicate physical deficiencies in the brain when in the
waking state.

e Theta waves: Theta waves are within the range of 4 to 7 Hz, with
an amplitude usually greater than 20 wV. Theta waves are caused by
emotional stress, such as frustration or disappointment. Theta waves are
associated with creativity and deep contemplation [24].

e Alpha waves: The frequency of alpha waves ranges from 8 to 13 Hz and
has a voltage ranging from 30 to 50 wV . Alpha waves are associated
with relaxed awareness and inattention; however, they seem to indicate
an empty mind rather than a relaxed one.

e Beta waves: For beta waves the rate of change lies between 14 and 30 Hz,
and has 5-30 pwV amplitude [24]. Beta waves are the brainwaves of
alertness, and a wakeful state. They are usually associated with logic,
analytical and intellectual thinking, active attention and concrete problem
solving.

e Gamma waves: Gamma waves lie within the range > 30 Hz and above.
Gamma waves usually have low amplitudes, rare occurrence, and relate
to left index finger, right toes, and tongue movement [31].

The first human EEG recording was made by Hans Berger in 1924. An EEG
recording is obtained by placing on the scalp electrodes which are attached
to a cap, net or headset. Conventional EEG sensors use a conductive gel or
paste for the electrodes, but many new systems use dry electrodes. These
greatly reduce the preparation time, making EEG more accessible to new
users [4]. Most applications and studies use a small number of electrodes
around the movement-related regions, with locations and names used from
the International 10-20 system. Additional electrodes can be added to the
standard set-up when a demanding clinical or research application is required.
Some high-density arrays can have 256 electrodes. Figure 2 illustrates a typical
set of EEG signals in a normal adult brain activity.

Despite several disadvantages, such as low spatial resolution, poor signal-
to-noise ratio and an inability to determine neural activities deeply below
the cortex, the EEG has a number of advantages. First, hardware costs
are significantly lower than other techniques such as Functional magnetic
resonance imaging (fMRI), Positron emission tomography (PET) or Magne-
toencephalogram (MEG) [37]. Second, EEG sensors are more portable than
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Figure 2 A typical set of EEG signal in a normal adult brain activity [31].

those used in other techniques (fMRI, PET, MEG). Third, the EEG has very-
high temporal resolution, usually between 250 and 2000 Hz in clinical and
research settings. Finally, the EEG is relatively tolerant of subject movement
and methods exist for eliminating movement artifacts in EEG data [25].

3.2 EEG Analysis of Non-linear and Chaotic Characteristics

Linear analysis of EEG signals includes frequency analysis (e.g. Fourier and
Wavelet Tranforms) and parametric modeling (e.g. autoregressive models).
In general, linear methods can be successfully applied in the study of several
problems [3, 5, 14]. However, despite good results have been obtained with
linear techniques, they only provide a limited amount of information about the
electrical activity of the brain because they ignore the underlying non-linear
EEG dynamics. As it is widely accepted, the underlying subsystems of the
nervous system that generates the EEG signals are considered non-linear or
with non-linear counterparts [38]. Even in healthy subjects, the EEG signals
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show the chaotic behavior of the nervous system. A brain is also considered a
chaotic dynamical system and hence their generated EEG signals are generally
chaotic [31, 36].

Besides that, an EEG signal is chaotic in another sense, because its
amplitude changes randomly with respect to time. Therefore, due to this
non-linear nature of EEG, additional information provided by techniques non-
linear dynamics and chaos theory have been progressively incorporated in
neurophysiology with the aim to understand the complex brain activity from
EEG signals that cannot be measured from linear methods [33]. In particular,
non-linear dynamics methods have been used to analyse epilepsy, depth of
anesthesia, autism, depression and Alzheimers disease, mental fatigue, brain
computer interfaces and emotion recognition [29].

4 NIST Statistical Test Suite

The NIST STS battery consists of 15 empirical tests specially designed to
analyse binary sequences (bitstreams). The tests examine randomness of data
according to various statistics of bits or statistics of blocks of bits. All NIST
STS tests examine randomness for the whole bitstream. Several tests are
also able to detect local non-randomness and these tests divide the bitstream
into several typically large parts and compute a characteristic of bits for
each part. All these partial characteristics are then used for the computation
of the test statistic. Each NIST STS test is defined by the test statistic of
one of the following three types and examines randomness of the sequence
according to:

e bits — these tests analyse various characteristics of bits like proportion of
bits, frequency of bit change (runs) and cumulative sums,

e m-bit blocks — these tests analyze distribution of m-bit blocks (m is
typically smaller than 30 bits) within the sequence or its parts,

e M -bit parts — these tests analyse complex property of M -bit (M is
typically larger than 1000 bits) parts of the sequence like rank of
the sequence viewed as a matrix, spectrum of the sequence or linear
complexity of the bitstream.

All tests are parametrized by n which denotes the bitlength of a binary sequence
to be tested. Several tests are also parametrized by the second parameter
denoted by m or M. Since the reference distributions of NIST STS test
statistics are approximated by asymptotic distributions (x? or normal), the
tests give accurate results (p-values) only for certain values of their parameters.
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Table 1 The recommended size n of the bitstream for each particular test. Some tests are
parameterized by a second parameter m, M , respectively. The table shows meaningful settings
for the second parameter and the number of sub-tests executed by each particular test

Test#  Test Name n mor M # sub-tests
1 Frequency n > 100 1

2 Frequency within a Block n > 100 M=128 1

3 Runs n > 100 1

4 Longest run of ones n> 128 1

5 Rank n > 38912 1

6 Spectral n > 1000 1

7 Non-overlapping TM n>8m-8 m=9 148
8 Overlapping TM n>10° m=9 1

9 Maurer’s Universal n > 387840 1
10 Linear Complexity n>108 M=500 1

11 Serial m=16 2
12 Approximate Entropy m=10° 1
13 Cumulative n > 100 2
14 Random Excursions n>10°8 8
15 Random Excursions Variant n > 10° 18

Table 11 summarizes appropriate values of the parameters for each particular
test recommended by NIST [30].

Several of the NIST STS tests are performed in more variants, i.e., they
execute several sub-tests and examine more properties of the sequence of the
same type. For instance, the Cumulative sum test examines a sequence accord-
ing to forward and backward cumulative sum. Table 1 also summarizes the
number of sub-tests performed by each particular test. The Non-overlapping
template matching test is marked by an asterisk since the number of its sub-
tests is not fixed and depends on the value chosen for the parameter m (the
number 148 mentioned in the Table 1 corresponds to the default value of the
parameter m = 9).

There are several ways to interpret a set of p-values computed by an
empirical test of randomness. NIST adopted the following two ways:

e The examination of the proportion of sequences that pass a certain
statistical test relative number of sequences passing the test should lie
within a certain interval.

e The uniformity testing of p-values: p-values computed for random
sequences should be uniformly distributed on the interval [0; 1). Uni-
formity of p-values can be tested again using statistical tests (uniformity
of p-values forms a hypothesis).
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4.1 Proportion of Sequences Passing Tests

The probability that a random sequence passes a given testis 1 —« that is equal
to the complement of the significance level «.. For multiple random sequences,
the ratio of passed sequences to all sequences in a given test is usually
different but close to 1 — a and hence should fall into a certain interval around
1 — o with a high probability. The interval is computed using the significance
level a as
a(lk a) 0
where k is the number of tested sequences. The acceptable ratio of passed
sequences to all tested sequences should fall within the interval 0.99 4 0.02985
for the significance level o = 0.01 and the total number of sequences k = 100.
It means that if a data set of 100 sequences is tested in a NIST test such as
Frequency test that results in more than 4 failed sequences, this data set is
marked by an asterisk (*). This data set is considered as non-random for the
examination of the proportion of passing tests if it has more than 7 asterisks
(4%) [21].

We define the success rate in a test as the ratio of passed sequences to all
tested sequences, and the failure rate as the ratio of failed sequences to all
tested sequences in the NIST tests.

l—ax

4.2 Uniformity of p-values

The p-values computed by a singe test should be uniformly distributed on
the interval [0,1), and can be interpreted simply as: “the probability that
a perfect random number generator would have produced a sequence less
random than the sequence that was tested” [30]. For each statistical test, a set
of p-values (corresponding to the set of sequences) is produced. The NIST
uses one sample x? test to assess the uniformity of p-values. x? test measures
whether the observed discrete distribution (histogram) of some feature follows
the expected distribution. The x? test works well only for k/10 greater than
5.5. Therefore, the number of tested sequences should be at least 55 (k > 55) to
get a meaningful result for the uniformity test. For a fixed significance level, a
certain percentage of p-values are expected to indicate failure. The NIST STS
documentation recommends a very small value for the significance level o =
0.0001 for the uniformity test, i.e., p-values are considered as non-uniform if
a p-value is smaller than 0.0001, and being marked by an asterisk (*). An «
of 0.0001 indicates that one would expect one sequence in 10000 sequences
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to be rejected by the test if the sequence was random. For a p-value > 0.0001,
a sequence would be considered to be random with a confidence of 99.99%.
For a p-value < 0.0001, a sequence would be considered to be non-random
with the same confidence. The dataset of 100 sequences is considered as non-
random for the uniformity testing if it has more than 3 asterisks (1.60%) for
a=0.0001 [21].

We define a non-uniformity rate as the ratio of non-uniform sequences to
all tested sequences in the NIST STS. We aim to have a trade-off between
the average of success rate, the failure rate and the non-uniformity rate on all
tests.

5 Proposed Method of Binary Sequence Generation

According to the study conducted in [10], the EEG signal cannot be used
directly as a source of random number generator and a transformation is
required to transform the EEG signal into random sequences of bits. We
verified the changing pattern frequency of four EEG datasets (described in
Section 6) in the same way in [10]. As shown in Figure 3, the results are similar

b
g 20 ; . .
| - I AEEG |
4.5 [ Alcoholism
[peap
4r C_JGraza
35
3 - -
1 2 3 4

Figure 3 The frequency of down—down, down—up, up—down, and up—up in the EEG signals
of all four datasets. The labels 1, 2, 3, 4 on the x-axis correspond to four datasets: AEEG,
Alcholism, DEAP, GrazA 2008 respectively. Apparently, these four patterns are not uniformly
distributed, so EEG signals cannot be good RNGs.
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to [10] in which the frequency of four changing patterns, including up-up up-
down, down-up, and down-down, are not uniformly distributed. Therefore,
the EEG signal cannot be used directly as random number generators. This
is clear proof that the EEG signal requires the transformation before used as
random number generators.

We have conducted a similar approach to [10] on the Alcoholism dataset
[6]. However, we found more failed tests than those presented in [10]. This
could be the fact that our EEG dataset is quite different from the datasets in
[10] that contain both negative and positive real numbers. Our EEG signals
are measured in floating point values and also have small magnitude values.
To handle the EEG signals in our case, we propose a new method in order to
improve the success rate in randomness testing as follows. Let vector x be an
original EEG signal sequence of n real number sample values:

x=(r1...,xq) wWithz; e Ri=1,...,n (2)

In order to access the fluctuations in the EEG data, we multiply the original
EEG data by 10¢ to keep significant precision up to d precision floating-point
value to obtain integer value of EEG data. The value of d is based on the
number of digits in fractional part from EEG raw data. Finally, we perform
bit shift operation of b to the right. All these operations can be expressed as
follows:

yi = (s x 109 > b e Z, with i=1,...,n (3)

Finally, we compute binary sequences z as:
zi= |y, mod2| with i=1,...,n 4)

It is noted that y; is a real number after performing the bit shift operation in
Equation (3), thus the modular operation y; mod 2 results in a real number.

6 EEG Datasets
6.1 Australian EEG Dataset (AEEG)

The Australian EEG Database is a collaboration project between the University
of Newcastle and the John Hunter Hospital to convert 18,500 hospital EEG
records into a web-based searchable database that takes 2 years to complete.
The database consists of EEG data of patients, ranging from premature infants
to people aged over 90 years.
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The EEG data set was recorded using 3 common montages (neonate,
infant and adult), bipolar connections and standard International System 10-20
electrode placements. Recordings were undertaken in the resting state with
eyes open and eyes closed [17].

A subset of this Australian EEG dataset was used in this paper. It consists
of EEG recordings of 80 patients. The recordings were downloaded with the
search criteria that the recordings come from both men and women of various
ages. The recordings were made by 23 electrodes placed on the scalp, sampled
at 167 Hz for about 20 minutes.

6.2 Alcoholism

The Alcoholism datasets come from a study of EEG correlates of genetic
predisposition to alcoholism Begleiter [6]. The datasets contain EEG record-
ings of control and alcoholic subjects. Each subject was exposed to either
a single stimulus (S1) or to two stimuli (S1 and S2); which were pictures of
objects chosen from the 1980 Snodgrass and Vanderwart picture set. When two
stimuli were shown, they were presented in either a matched condition (where
S1 was identical to S2) or in a non-matched condition (where S1 differed
from S2). The 64 electrodes placed on the scalp were sampled at 256 Hz for
1 second.

There are three versions of the EEG datasets at different sizes: small, large
and full datasets. This study uses the full dataset that contains 122 subjects
with 120 trials for each.

6.3 BCI-Competition Graz Datasets

The Graz dataset A (GrazA 2008) in the BCI Competition 2008 comes from
the Department of Medical Informatics, Institute of Biomedical Engineering,
Graz University of Technology for motor imagery classification problem in
BCI Competition 2008 [9].

The GrazA 2008 dataset consists of EEG recordings from 9 subjects. The
subjects were right-handed, had normal or corrected-to-normal vision, and
were paid to participate in the experiments. All volunteers sat in an armchair,
and watched a screen monitor placed approximately 1 metre away at eye level.
The recording was made with a 64-channel EEG amplifier from Neu-roscan at
250 Hz with time length 7 seconds for each trial. The GrazA dataset consists
of two sessions on different days with, 288 trials per session. Each subject
was required to do 4 motor-imagery tasks (left hand, right hand, foot, tongue).
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Twenty-two Ag/AgCl electrodes were used and the signals were bandpass-
filtered between 0.5 Hz and 100 Hz. Each subject carried out left or right
hand-motor imagery on two different days within two weeks. Each session
consisted of six runs with ten trials each and two classes of imagery.

6.4 DEAP Dataset

DEAPis adataset for emotion analysis using EEG (Dataset for Emotion Analy-
sis using Electroencephalogram, Physiological and Video Signals) which is an
open database proposed by Koelstra et al. [19]. EEG signals of 32 participants
were recorded while they watched 40 one-minute long excerpts of music
videos. Participants rated each video in terms of the levels of arousal, valence,
like/dislike, dominance, and familiarity. The dataset includes two parts:

e The ratings from an online self-assessment, where 120 one-minute
extracts of music videos were each rated by 14-16 volunteers based
on arousal, valence and dominance.

e The participant ratings, physiological recordings and face video of an
experiment in which 32 volunteers watched a subset of 40 of the above
music videos. EEG and physiological signals were recorded and each
participant also rated the videos as above.

The data set was recorded at a sampling rate of 512 Hz in two separate
locations with 40 channels. The first 22 participants were recorded in Twente
and the remaining in Geneva. Then the data was downsampled to 128 Hz, and
segmented into 60 second trials and a 3 second pre-trial baseline removed.

6.5 Summary

The summary of those datasets is listed in Table 2, and Figure 4 shows the
sample EEG signals of these datasets. In this figure, the four rows of signals
from top to bottom are samples EEG signals from the AEEG, Alcoholism,
DEAP and GrazA 2008 datasets, respectively.

Table 2 A brief description of EEG datasets

Datasets #Subjects #Trials #Sessions Length (s) Sampling (Hz) #Channel
Australian EEG 80 1 1 1200 167 23
Alcoholism 122 120 1 1 256 64
DEAP 32 40 1 60 128 40
GrazA 2008 9 288 2 7.5 250 22
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Figure 4 The sample EEG signals of four datasets. From top to bottom are examples from
the AEEG, Alcoholism, DEAP and GrazA 2008 datasets, respectively. It can be seen that the
EEG signal in GrazA 2008 dataset changes more wildly than other EEG signals.

7 Experimental Results

We carefully set up our experiments to be the two-factor experiments for a
number of samples and a number of digits. Some parameters of the proposal
can greatly affect the performance, setting different values on them jeopardizes
the credibility of experiments. Therefore, we ensure the parameters of the
method for all EEG datasets to be the same. For a number of digits, the
Alcoholism and Australian EEG datasets adopted a constant number of d = 3,
and the DEAP and GrazA 2008 adopted a constant of d =4 due to the natural
originality of their EEG raw data. For another factor, we first removed all
subjects of each dataset that did not have enough samples to produce a single
binary sequence of a million bits. For the remaining subjects, we combined its
number of channels in a one-second EEG sample into a single set, and joined
these single sets into an EEG sequence. Then, we used a suitable number of
samples to generate a single binary sequence that contained a million bits.
For an example of the Alcoholism dataset, we combined 64 channels in an
one-second EEG sample into a single set for each subject. There were 112
subjects who had 62 one-second EEG samples, and we joined those 62 single
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Table 3 Parameter settings for our experiments

Datasets Input Output
#Subjects  #Samples #Channels d  #Bits #Sequences
Alcoholism 122 62 64 3 1015808 112
AEEG 80 261 23 3 1002501 78
DEAP 32 196 40 4 1003520 32
GrazA 2008 9 182 22 4 1001000 9

sets into an EEG sequence for each of them. The 10 subjects left did not have
enough 62 samples, so finally we produced 112 EEG sequences. Each EEG
sequence was long enough to generate a single binary sequence that contained
62 x 64 x 256 =1015808 bits. Setting parameters for NIST STS was the same
as described in Section 4. Table 3 summarizes the experimental set up:

In order to verify the randomness of EEG data, we conducted a number of
experiments for all of EEG datasets in accuracy comparison of EEG and its five
wavebands including alpha, beta, delta, gamma and theta. We also examined
the proportion of passing sequences and tested the uniformity of p-values
using three metrics: the success rate, the failure rate and the non-uniformity
rate in which the non-uniformity rate was computed for 2 datasets due to a
small number of sequences in the GrazA and DEAP datasets. We aimed to
balance these metrics to maximize the success rate (as high as possible), and
to minimize both the failure rate (<4.00) and non-uniformity rate (<1.60).
We conducted the experiments in Matlab R2015b on a DELL PC with
15-5200U 2.20 GHz processors, 8.00 GB memory, and Windows 7.0 operating
system.

7.1 Can EEG be Random Number Generators?

We firstly tested our method for the EEG signal to investigate whether EEG
can be used directly as random number generator. Since the method is based on
the number of right-shift bits, we varied the value of b from 1 to the maximum
bit of 11. We used the EEG datasets which has the resolution of 11 bits to
experiment the effect of b on randomness through by the success rate, the
failure rate and the non-uniformity rate. We expected to find out a number of
right-shift bits that balances the three rates. Figure 5 demonstrates a variation of
these rates on the four datasets, and it shows that these values differ from EEG
datasets: 9 for GrazA, 1 for DEAP, 7 for AEEG and 4 for Alcoholism. While
two curves of the success and failure rates are nearly constant of high values
for the GrazA (Figure 5(a)), the success rate decreases slowly, but the failure
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Figure 5 A change of success and failure rates on different right-shift bits: (a) GrazA, (b)
DEAP, (c) AEEG and (d) Alcoholism. GrazA and DEAP datasets do not have p-values, but
AEEG and Alcoholism have as they contain more than 55 tested sequences.

rate goes down quickly when b increases for the DEAP (Figure 5(b)). On the
other hand, these curves fluctuate for the AEEG, and especially, “randomly”
for Alcoholism datasets. The reason can be from the chaotic and complex

characteristics of EEG signals [31].
Table 4 summarizes the results of statistical tests for the EEG signal that

indicates the randomness of GrazA and DEAP datasets. However, the DEAP
dataset failed on two important tests including block frequency and FFT, and

Table 4 Statistical results of EEG at the trade-off of three rates. The Alcoholism and AEEG
have high non-uniformity rate, and the DEAP failed on two important tests of Block frequency

and FFT

Datasets b Success Rate  Failure Rate Non-uniformity Rate
GrazA 9 99.52 0.00 -

DEAP 1 98.69 1.06 (Block frequency, FFT) -

AEEG 7 75.18 85.57 85.11

Alcoholism 4  98.21 3.19 1.60
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hence it was not good random. Therefore, only GrazA 2008 can be used as a
RNG. This result is similar to others in [10, 27]. It means that EEG signal will
be a RNG if a small number of sequences generated but not on other cases.

In the next experiment, we performed our method for the five wavebands
to investigate which waveband can be used directly as RNG. Figure 6 shows
their performances. The row at bottom reporting for the theta band contains
only three figures because the implementation of this band is dumped due to
bad sequences generated when b =9, so we do not present its results here for
the Alcoholism dataset.

From Figure 6, it can be seen that except for the AEEG dataset at a number
of digits b > 9 and DEAP with the delta band, the success rates for the
proposed method are higher than 95%, and the failure and non-uniformity
rates are lower 5%. The score gaps among different EEG datasets are also
very small. This indicates that the proposed method is relatively effective in
dealing with the datasets with separated tasks: GrazA 2008 of motor imaginary,
DEAP of emotion, AEEG of epilepsy, and Alcoholism of alcohol. Figure 6
also shows that these sub-bands perform a little difference in which the gamma
and beta bands seem to be the two best of performance (the second and
fourth rows of curves from the top). The reason could be that these two
sub-bands are less chaotic and complex than others [31], and our proposed
method is deterministic and stable. As a result, the less chaotic and complex
characteristics of the gamma and beta bands make lower variation that leads
to higher performance.

7.2 Optimization of b

In this subsection, we investigate the number of digits » to maximize the
success rate and minimize the failure and non-uniformity rates for each of sub-
band. Table 5 lists scores of these three rates on different EEG datasets with
different wavebands. Based on this table, it is hard to optimize b. For example
of the alpha band, there are three different options for b being 8 of GrazA
2008, 3 of DEAP and 1 of AEEG and Alcoholism. Therefore, we performed
a computational approach to optimize b as follows. We first considered a case
for the success rate and the other two rates are computed the same. For each
sub-band, we first grouped all scores of the success rate for 4 datasets into a
table. Then, we computed an average of those as seen in Table 6 for an example
of the alpha band. We finally sorted them by the order of success rate, failure
rate and non-uniformity rate.
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Figure 6 A summary of right-shift bits effects on the three rates. Left to Right: (a) GrazA
2008, (b) DEAP, (c) AEEG and (d) Alcoholism, respectively. Two left figures have only two
curves because GrazA 2008 and DEAP datasets does not have p-values as they contains less
than 55 tested sequences. Top to Bottom: Alpha, Delta, Beta, Gamma and Theta, respectively.
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Table 5 Statistical results of the five EEG datasets

327

b 1 2 3 4 5 6 7 8 9 10 11
GrazA Alpha SR 97.64 97.28 96.57 97.34 97.20 97.16 96.93 97.70 96.93 97.10 97.00
FR 213 213 426 213 213 213 213 213 266 266 4.26
Delta SR 98.64 97.93 97.80 97.93 98.05 98.00 97.70 97.34 96.69 96.72 95.33
FR 1.60 3.19 319 266 213 213 213 213 319 266 532
Beta SR 99.17 99.05 98.88 98.52 98.70 98.62 97.93 98.48 9835 97.86 98.23
FR 1.06 1.06 160 160 106 106 213 160 160 2.13 1.60
Gamma SR 99.14 98.98 98.86 99.17 99.53 98.68 98.88 98.70 99.26 98.90 98.51
FR 0.00 1.06 0.00 0.00 0.00 319 0.00 0.00 0.00 0.00 0.00
Theta SR 97.34 97.28 96.92 96.40 97.34 96.87 9698 96.99 96.69 96.51 96.30
FR 213 266 213 213 213 213 319 213 213 426 372
DEAP Alpha SR 98.94 98.88 98.99 98.78 98.75 98.76 98.91 98.80 98.64 97.98 98.59
FR 053 053 053 053 1.06 1.06 053 053 053 1.06 1.06
Delta SR 98.86 98.68 98.75 98.50 97.88 97.86 9690 95.17 92.68 89.30 85.45
FR 053 106 053 053 266 319 426 11.70 1596 27.13 3351
Beta SR 99.12 98.66 99.00 98.92 99.00 99.18 98.60 98.66 99.09 99.00 98.72
FR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 053
Gamma SR 99.22 98.96 98.86 99.02 98.72 98.70 99.08 99.15 99.12 99.07 99.25
FR 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theta SR 98.58 98.50 98.55 98.04 98.55 98.80 98.43 98.16 9836 98.37 98.32
FR 053 053 106 106 160 053 053 053 1.06 1.60 1.60
AEEG Alpha SR 97.86 97.53 97.62 97.38 97.22 97.17 97.17 97.09 96.55 95.62 9145
FR 213 319 213 213 319 266 372 319 638 691 19.68
NUR 266 213 213 213 266 266 3.19 426 532 532 17.02
Delta SR 98.72 98.27 98.44 98.19 98.06 97.92 97.60 96.68 95.60 93.51 82.56
FR 1.59 159 159 319 213 213 426 638 745 1543 77.13
NUR 159 159 159 213 266 213 266 532 691 1489 78.72
Beta SR 99.01 98.84 98.98 98.70 98.88 98.96 98.73 98.08 97.22 9495 80.27
FR 000 000 106 053 053 159 1.06 426 585 851 5638
NUR 000 000 053 159 159 213 159 213 638 745 5638
Gamma SR 98.90 99.04 99.03 98.98 98.93 98.96 98.99 97.92 96.10 9450 91.89
FR 0.00 0.00 053 0.00 0.00 1.06 0.00 531 851 1223 14.89
NUR 0.00 0.00 000 000 000 000 000 372 798 11.70 14.36
Theta SR 97.67 97.29 97.36 97.19 96.77 96.99 97.00 96.64 96.48 89.17 54.30
FR 213 213 213 266 372 319 319 426 585 3085 87.23
NUR 213 213 213 3.19 3.19 319 266 3.19 532 3245 8298
Alcoholism Alpha SR 96.89 96.66 96.29 96.15 95.86 9532 95.04 94.63 93.96 92.26 90.65
FR 745 798 851 11.17 10.11 1436 12.77 1436 19.68 27.13 4574
NUR 585 638 585 691 585 638 745 691 9.04 13.83 18.09
Delta SR 98.11 97.85 97.58 97.45 9735 97.12 96.76 96.10 95.99 95.08 92.53
FR 372 479 638 745 638 745 851 1011 9.57 17.55 37.23
NUR 319 426 319 585 585 691 638 745 745 957 10.64
Beta SR 98.52 9826 98.62 98.41 97.32 9847 9840 98.26 98.11 97.92 96.25
FR 319 213 213 319 3119 213 372 319 479 532 1596
NUR 160 160 2.13 213 213 213 213 213 426 426 532
Gamma SR 98.80 98.70 98.94 99.02 98.94 98.80 98.87 99.01 98.89 98.85 98.78
FR 0.00 0.00 0.00 0.00 0.00 0.00 053 0.00 0.00 053 0.00
NUR 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Theta -

SR = success rate, FR = failure rate and NUR = non-uniformity rate.
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Table 6 The success rate of alpha band for optimizing the number of digits . The highest of
success rate isat b = 1

b 1 2 3 4 5 6 7 8 9 10 11
GrazA 97.64 97.28 96.57 97.34 97.20 97.16 96.93 97.70 96.93 97.10 97.00
DEAP 98.94 98.88 98.99 98.78 98.75 98.76 98.91 98.80 98.64 97.98 98.59
AEEG 97.86 97.53 97.62 97.38 97.22 97.17 97.17 97.09 96.55 95.62 91.45
Alcoholism 96.89 96.66 96.29 96.15 95.86 95.32 95.04 94.63 93.96 92.26 90.65
Average 97.83 97.59 97.37 97.41 97.26 97.10 97.01 97.06 96.52 95.74 94.42

Table 7 Optimizing results of the five wavebands in terms of the average of success rate,
failure rate and non-uniformity rate (%). The optimization of b is at 1 for alpha, delta, theta,
and beta, and at 4 for gamma
b 1 2 3 4 5 6 7 8 9 10 11
Alpha SR 97.83 97.59 97.37 97.41 97.26 97.10 97.01 97.06 96.52 95.74 94.42
FR 3.06 346 386 399 412 505 479 505 731 944 17.69
NUR 426 426 399 452 426 452 532 559 7.18 9.57 17.55
Delta SR 98.58 98.18 98.14 98.02 97.84 97.72 97.24 96.32 95.24 93.65 88.97
FR 1.86 2.66 292 346 333 372 479 758 9.04 15.69 38.30
NUR 239 292 239 399 426 452 452 638 7.18 12.23 44.68
Beta SR 98.96 98.70 98.87 98.64 98.48 98.81 98.42 98.37 98.19 97.43 93.37
FR 1.06 0.80 120 133 120 1.19 173 226 3.06 3.99 18.62
NUR 080 080 133 186 186 2.13 186 2.13 532 5385 30.85
Gamma SR 99.02 98.92 98.92 99.05 99.03 98.79 98.96 98.70 98.34 97.83 97.11
FR 0.00 027 0.13 0.00 0.00 1.06 0.13 133 213 319 372
NUR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 186 399 585 7.18
Theta SR 97.86 97.69 97.61 97.21 97.55 97.55 97.47 97.26 97.18 94.68 82.97
FR 1.60 177 177 195 248 195 230 231 3.01 12.23 30.85
NUR 213 213 213 3.19 3.19 319 266 3.19 532 3245 82.98

Table 7 summarizes the results for all the five sub-bands. The table
indicates that the optimization value of b is at 1 for the delta, theta, and at
4 for the gamma. For the two remaining cases, we select the optimization at
1 instead of 2 based on the following two reasons. The first reason is from an
observation that two out of three rates are the best at 1, and the difference is
very small (less than 0.3%). Another reason is from a study on Table 5 that
the scores of the alpha and beta at b = 1 is better than at » = 2: higher on
the success rate, and lower on others. The reasons of optimization can be as
follows: (1) the frequencies of four wavebands (alpha, beta, delta and theta)
are small and the amplitudes are short, (2) the frequency of gamma band is
high at more than >30 Hz, and its amplitude is also long in comparison to
other wavebands that results in larger values of gamma data. Therefore, the
optimizing value of b is higher for gamma band than for others.
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7.3 Randomness Testing

Table 8 shows a summary of scores of five wavebands at the optimised values
of b. The table indicates that most of these wavebands have high proportion of
passing tests, and low proportion of failing uniformity tests, except the alpha
for Alcoholism dataset. While the results for gamma and beta bands can be
considered random because all of the failure rates are smaller than 4%, and
most of non-uniformity rates are less than 1.60%, the alpha, delta and theta
bands cannot be considered as good random.

In addition, the results of statistical Test Suite are shown in Tables 9 and 10
for these wavebands. These results show that EEG signal achieves the worse
performance, and three wavebands including alpha, delta and theta do not pass
frequency, block frequency, approximate entropy, universal and serial tests that
are some of the important tests, and it also supports the conclusion that they
cannot be considered as random. For the beta band, the average success rate
is very high at 98.96%, and the average failure rate is less than 4%. However,
there is a case of Alcoholism dataset that the beta is not good random because it
failed on three important tests (1.60%) for uniformity testing: block frequency,
approximate entropy and serial. Therefore, it needs further investigation on
the beta band.

Table 8 Comparison of EEG signal and its five wavebands in terms of the average of three
rates (%). The gamma band achieves the highest success rate, and the lowest failure rate and
non-uniformity rate

GrazA DEAP AEEG Alcoholism Average

SR EEG 98.82  98.10 72.24 98.21 91.84
Alpha 97.64  98.94 97.86 96.89 97.83
Delta 98.64  98.86 98.72 98.11 98.58
Beta 99.17  99.12 99.01 98.52 98.96
Gamma  99.17  99.02 98.98 99.02 99.05
Theta 97.34  98.58 97.67 - 97.86
FR EEG 1.06 1.60 85.11 3.19 22.74
Alpha 2.13 0.53 2.13 7.45 3.06
Delta 1.60 0.53 1.60 3.72 1.86
Beta 1.06 0.00 0.00 3.19 1.06
Gamma 0.00 0.00 0.00 0.00 0.00
Theta 2.13 0.53 2.13 - 1.60
NUR EEG - - 86.17 1.60 43.88
Alpha - - 2.66 5.85 4.26
Delta - - 1.60 3.19 2.40
Beta - - 0.00 1.60 0.80
Gamma - - 0.00 0.00 0.00

Theta - - 2.13 - 2.13
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Table 9 Summary of statistical tests for passing test in terms of failure rates. The proportion
of failing tests of gamma band is at 0%

Sub-bands

Datasets Statistical Test Alpha Beta Delta Gamma Theta

GrazA 2008  Block Frequency X X X X
Non overlapping Templates
Approximate Entropy X X
Serial X X X X

DEAP Block Frequency X X
FFT

AEEG Block Frequency
Approximate Entropy
Random Excursions
Serial X X X
Frequency

Alcoholism  Block Frequency XX X X -
Cumulative sums -
(Forward)
Cumulative sums -
(Reverse)
Runs
FFT -
Non overlapping Templates
Universal
Approximate Entropy
Serial

> X
>

>
I

X

X
X
X
X X

XK XX
[

Table 10 Summary of statistical tests for uniformity in terms of non-uniformity rates. The
uniformity tests of gamma band is at 100% of passing

Sub-bands
Datasets Statistical Test Alpha Beta Delta Gamma Theta
AEEG Block Frequency X X X
Approximate Entropy X X
Random Excursions
Serial X X X
Block Frequency X X X -
Alcoholism  Cumulative sums X -
(Forward)
Cumulative sums -
(Reverse)
Runs X -
Non overlapping Templates X X -
Universal X -
Approximate Entropy X X X -
Serial X X X -
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Table 11 Comparison on different methods for 112 sequences tested. p-values are all zero
for three methods

Proportion of Passing Sequences

Statistical Test Proposed Method ~ Bum Bum Shub  Micali Schnorr
Frequency 108/112 112/112 111/112
Block Frequency 112/112 111/112 112/112
Cumulative Sums (Forward) 109/112 112/112 111/112
Cumulative Sums (Reverse) 108/112 112/112 112/112
Runs 107/112 111/112 111/112
Longest Runs of Ones 112/112 110/112 111/112
Rank 111/112 110/112 109/112
FFT 111/112 109/112 112/112
Non Overlapping Template 16425/16576 16404/16576 16419/16576
(Total tests = 148)

Overlapping Template 111/112 110/112 112/112
Universal 111/112 111/112 111/112
Approximate Entropy 110/112 112/112 112/112
Random Excursions (Total 603/608 572/576 561/568
tests = 8)

Random Excursions Variant 1352/1368 1291/1296 1276/1278
(Total tests = 18)

Serial (Total tests = 2) 222/224 222/224 221/224
Linear Complexity 112/112 112/112 112/112
Average Success Rate 99.02 % 99.05 % 99.13%

In contrast, for the gamma band, the average success rate is the highest at
99.05%, and it passes all of the NIST tests because all of the failure and no-
uniformity rates are the lowest at 0%. Therefore, the gamma band is clearly
random. These results approach the best results from other existing RNGs
such as Blum-Blum-Shub [8], and Micali Schnorr [23] as shown in Table 11.

8 Conclusion

In this paper, we have proposed the new method to transform EEG signal and
its wavebands into sequences of bits that can be used as a random number
generators. Since our method does not require the use of seed to generate
random numbers, it can be considered as TRNGs. It could also be used as
a seed provider to improve randomness in PRNGs. Experimental results on
the five datasets show that the proposed method achieves significantly high
performance in success rate, and perform competitively in efficiency. The
method will open potential possibilities of generating true random sequences
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of bits for biometrics-based systems to be added to the traditional ones based
on physical systems.

For future work, this approach will be investigated further to validate the
efficiency of our proposed method on large publicly available EEG datasets.
Other biometric signals such as EMG (electromyogram) and ECG (electro-
cardiography) will also be considered for randomness. Further candidates to
biometric random number generators include blood volume pulse and similar
easy-to-get measurements that, even when regular on the surface, may contain
randomness in their internal structure. Any of these possibilities might be very
important from the point of view of the implementation of our algorithms for
generating random bit sequences via biometric-based methods.
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