
Information Hiding Based on Histogram
and Pixel Pattern

Ari Moesriami Barmawi∗ and Deden Pradeka

Informatics Graduate Program, School of Computing,
Telkom University, Indonesia
E-mail: mbarmawi@melsa.net.id; deden.pradeka@gmail.com
∗Corresponding Author

Received 29 August 2017; Accepted 24 December 2017;
Publication 1 February 2018

Abstract

Recently, information exchange using internet is increasing, such that infor-
mation security is necessary for securing confidential information because it is
possible to eavesdrop the information. There are several methods for securing
the exchanged information such as was proposed by Rejani et al. Rejani’s
method can be noiseless in low capacity but noisy in high capacity. In the case
of high capacity, it will raise suspicion. This research proposed a method based
on histogram and pixel pattern for keeping the stego image noiseless while
still keeping the capacity high. Secret information can be embedded into the
cover by evaluating the histogram and map the characters used in the secret
message to the consecutive intensity in the cover image histogram. The map
of the characters is sent to the recipient securely. Using the proposed method
there is no pixel value changes during the embedding process. Based on the
result of the experiments, it is shown that in noiseless condition, the proposed
method has higher embedding capacity than Rejani’s especially when using
cover image with sizes larger than 128 × 128. Thus, in noiseless condition
the embedding capacity using the proposed method is higher than Rejani’s
method in noiseless condition.

Keywords: Steganography, Histogram, Mod bit algorithm, Pixel value.

Journal of Cyber Security, Vol. 6 4, 397–426.
doi: 10.13052/jcsm2245-1439.642
This is an Open Access publication. c© 2018 the Author(s). All rights reserved.

398 A. M. Barmawi and D. Pradeka

1 Introduction

Nowadays, internet is used for data communications between two or more
parties, such that securing and protecting data are necessary. There are two
methods for securing and protecting data: cryptography and steganography
[1]. Cryptography is a technique for protecting the secret messages by chang-
ing the messages into a code, such that unauthorized party cannot understand
it. Steganography is the art of protecting secret messages by embedding the
message into a cover. The cover can be innocent digital media file such as
images, videos, audios, texts, voices, smart phones, cloud storage services
and the Skype video traffic. The main difference between cryptography and
steganography is that using cryptography [1, 2], the message is sent after
it was modified into code, such that it will raise suspicion. Meanwhile,
using steganography [4, 5] it will not raise suspicion since the message is
embedded into a cover where the changes of the cover cannot be directly
perceived by human. Recently, steganography is combined with cryptography
for increasing the security of information [2]. In some applications, where the
content’s owner did not trust the embedded information, then the message was
encrypted by the owner before it was embedded into the cover.

This paper discussed about steganography which is used along with
cryptography which is applied to an image as the cover. There are sev-
eral steganography methods which has been proposed such as proposed by
Al-Husainy et al. [15], Nilizadeh et al. [16], Nilizadeh et al. [17], and Rejani
et al. [3]. These methods is conducted based on character mapping, where
Nilizadeh’s, and Al-Husainy’s method use pixel pattern matrix for embedding
the secret message into the cover image, while Rejani’s method uses pixel
pattern only for embedding. The main differences between Nilizadeh’s,
Al-Husainy’s, and Rejani’s method is that the first three methods hide secret
message by modifying pixel’s values, while using Rejani’s there is still
possible to achieve noiseless stego image. In Rejani’s method, each unique
character in the message is encoded into a code. The code of character existed
in the message is compared with the value of a function of a pixel value in
the cover image. If they are equal, then the position of the pixel is encrypted
and sent to the receiver. Otherwise the pixel value is modified such that its
function value is equal to the unique character code, before the position is
encrypted and sent to the receiver. This changes will generate noise, and the
greater the changes, the greater the noise such that the probability of raising
suspicion is increased.

Information Hiding Based on Histogram and Pixel Pattern 399

For overcoming the problem of Rejani’s method [3], a histogram and
pixel pattern based steganography is proposed. The basic idea of the proposed
method was embedding the code of the character without generating noise
in the cover. This idea was implemented by observing the range of pixel
value which matched with the character code. Furthermore, the character
code of each unique character in the message should be compared with
the function of pixel value. If they were equal, then the pixel position was
sent to the receiver after randomized. Otherwise, another pixel would be
observed and checked whether the function of the pixel value is equal. This
process was conducted for all pixels in the image until the function of the
designated pixel was found. Thus, using the proposed method no pixel value
would be modified or changed, such that there was no noise in the cover
anymore.

Based on the experiment result, it was shown that there was no noise in
the cover image if messages with less than or equal to 95 unique characters
were used, while using Rejani’s method the noise would be generated if the
embedded message consisted of more than 29 characters. This method can
be implemented in a grey scale cover which is compressed using lossless
compression.

2 Information Hiding Based on Pixel Pattern

Rejani proposed an information hiding method which is not only hiding
message behind the image, but also strengthen the security. A message is
embedded into an image by finding the value of the pixel mod bit that
is equal to character code, and further use the pixel as the character rep-
resentation. The pixel position that represents each character is encrypted
and recorded in the image metadata. The cover image including its meta-
data is sent to the receiver, while the key used to encrypt data should be
agreed upon in advance. The overview of the embedding process is shown
in Figure 1.

In hiding (embedding) process mod bit function is used. The basic idea
of this method is finding a value by calculating the pixel value mod N, where
N is the number of unique character used in the message. Suppose the pixel
value is p and p consists of m numbers p1, p2, . . . , pm, then calculate di as
follows:

di =

{
pi, for i is odd
pi ∗ 2, for i is even

(1)

400 A. M. Barmawi and D. Pradeka

Figure 1 Rejani’s embedding process.

Furthermore, calculating the sum of di mod N :

mp =
m∑

i=1

di mod N (2)

Where mp is the result of mod bit function which further will be evaluated
whether it is equal to the character’s code.

For embedding the information, three input is needed which are image
cover, message and key for the encryption process. The detail of the process
is shown in Figure 1 and it can be described as follow:

1. Encrypt the message using RSA [13] or DES [14].
2. Change the unique characters in the encrypted message into specific code.
3. Get a pixel value and calculate the mod bit function.
4. If the mod bit result equal to the character code, then encrypt the pixel

position and record it in the image meta data.
5. Otherwise, observe another pixel in the image and repeat step 4.
6. If there is no mod bit of the pixel value which is equal to the character

code, then find a pixel throughout the image whose mod bit value is the
nearest one to the character code and modify the pixel value such that it
is equal to the character code.

7. Repeat step 2–5 until the last character of the message.

Information Hiding Based on Histogram and Pixel Pattern 401

Figure 2 Rejani’s extracting process.

For extracting the message, the receiver should get the key and decrypt the
encrypted position of the pixel. Furthermore, find the pixel value from the
intended position, and calculate the mod bit of the pixel value.

Finally, decrypt the mod bit value using the key that has been agreed upon
in advance. The overview of the extraction process is shown in Figure 2.

3 The Proposed Method

For overcoming the problem of Rejani’s method where there are still possibil-
ities that the pixel value is modified, information hiding based on histogram
and pixel pattern was proposed. For embedding the message, the sender chose
a cover from the cloud, and embedded a message into the image based on
histogram [8] and pixel position. In this case a seed was agreed upon in advance
by both the sender and the receiver. Instead of using encryption for encrypting
the message and the pixel position, this proposed method used number theory
concept for strengthening the method.

3.1 Embedding Process

The embedding process consisted of three processes i.e. randomizing unique
character order, selecting intensity, and message camouflaging. The goal of
unique character order randomizing process was to obtain random order
of unique characters instead of only ordered based on alphabet order. The
output of this process was random ordered unique character which was
the input of selecting intensity process. The goal of selecting intensity

402 A. M. Barmawi and D. Pradeka

Figure 3 Embedding process.

process was obtaining intensity range that can be used for representing
the unique characters. Further, the intensity range would be used as an
input for camouflaging message process. In this process the message cam-
ouflaging would be based on the intensity range that can be used for
representing the message. The overview of embedding process was shown
in Figure 3.

3.1.1 Randomizing unique character order
Randomizing unique character order process is a process that randomized the
order of unique characters used in the message. The function of randomizing
unique character order process was to secure the characters used in the secret
message, instead of using encryption since encryption needs more resources.
There were two sub-processes for randomizing character order i.e. finding
unique character of the message, and randomizing unique character. Finding
unique character used in a message was done by segmenting the message
into characters and classified unique character used in the message. For
randomizing the unique character order, a method as shown in Figure 4
was used.

Information Hiding Based on Histogram and Pixel Pattern 403

Figure 4 Method for randomizing unique character order.

3.1.2 Selecting intensity
Selecting and randomizing intensity to represent the unique character were
conducted for camouflaging the message. There were three steps in choosing
intensity process, i.e. intensity filtering based on intensity frequency, intensity
filtering based on pixel position and selecting random intensity [9] for
representing of unique character.

Selecting intensity process was intensity filtering based on the frequency of
intensity. The implementation of this process was by comparing the frequency
of unique character and the frequency of specific intensity. If the frequency
of specific intensity (fi) was larger than or equal to the frequency of unique
character (gj), then the related intensity can be used to represent the unique
character, or in other words the intensity was chosen as the valid intensity to
represent a specific unique character, and the status st was set to 1. Otherwise,
the specific intensity could not represent the specific character, and st was set
to 0 (see Equation (3)).

stj =

{
0, fi < gj

1, fi ≥ gj
(3)

Suppose the number of unique character is n such that 0 < j ≤ n, and
the number of intensity code is 256 such that 0 ≤ i ≤ 255. If all stj (for
j = 1, 2, . . . , n) was 1, such that gj (for j = 1, 2, . . . , n) was represented by
fi (for i = s, s + 1, . . . , s + n − 1; where s was the starting index of pixel
whose intensity could be used to represent character g1), then the fulfillment
indicator tfi = 1 [10] (see Equation (4)).

404 A. M. Barmawi and D. Pradeka

tfi =

{
0, stj = 1 for j = 1, 2, . . . , n

1, ∃stj �= 1 for j = 1, 2, . . . , n
(4)

Suppose Figure 5(A) illustrates the cover histogram, and Figure 5(B) is
the message histogram of the unique character. Furthermore, the frequency
between cover histogram and message histogram were compared, starting
from the smallest intensity of the cover histogram.

Figure 5 Intensity filtering based on frequency. (A) Cover histogram, (B) Unique char-
acter histogram, (C)–(F) Unique character movement, and (G) The result of filtering or
variable tfi.

Information Hiding Based on Histogram and Pixel Pattern 405

The capacity fulfillment of cover histogram is shown in Figure 5(C). This
can be illustrated in Figure 5(C) that the frequency of the intensity 0, 1, and 2
of the cover is greater than the intensity frequency of A, B, and C in the
message. In this condition the value of capacity fulfil-ness will be 1. The
result of filtering process is shown in Figure 5(G) while Figure 5(D), (E),
and (F) shows the step by step process.

The second step of selecting intensity process was intensity filtering based
on pixel position. For minimizing the number of bit represented the pixel
position, then minimizing the position distance between two pixels represented
the unique characters was proposed. This process filtered the intensity based
on the distance of position between two pixels whose intensity difference is
one. The maximum distance should be less than 16 such that the representation
of the distance will not exceed 4 bits. If the distance is greater than 16, then
the process was repeated until a set of pixels representing unique characters
was found. The position distance between 2 pixels in the set that represented
two unique characters should be less than 16. Suppose the cover capacity
fulfil-ness is as shown in Figure 6(A), the message histogram as shown in
Figure 6(B) and the cover pixel positions as shown in Figure 6(C).The intensity
difference between two intensities represented the unique characters should
be 1. There are two processes that should be conducted for obtaining the
distance between two pixels used to represent the unique characters. They are
finding and storing the positions of pixels in the range of filtered intensity
and calculating the distance between two pixels whose intensity difference is
one. Suppose the intensity representing 0, 1, and 2 respectively as shown in
Figure 6(D). Then, the position of pixels with intensity 0 should be searched
and its position should br stored in the storage. This process is executed for
intensities 1 and 2 as well. The position distance is calculated by calculating
the distance between row and column of the intended pixels. If RAi, and
RAi−1 is the row number of character B and A respectively, while RBi, and
RBi−1 is the row number of character C and B respectively, then the distance
between the row number of A and B is Row A = RAi – RAi−1 , and the distance
between the column number is Column A = CAi – CAi−1. This process was
also executed for calculating the position between character B and C. Finally,
after the distances were collected, the sender would select pairs of pixels whose
intensity difference between pixels in one pair is one and with the distance of
position less than 16.

Assume that for representing a message consisted of n characters (c1, c2,
c3,. . . , cn), n consecutive intensities (x1, x2, x3,. . . , xn, where xi+1 – xi = 1)
were necessary. Each intensity represent one character such that map (ci) = xi.

406 A. M. Barmawi and D. Pradeka

Figure 6 Intensity filtering based on the pixel position. (A) Capacity fulfillment, (B) Unique
character histogram, (C) Pixel position, (D) Unique character movement, and (E) Find the
pixel position.

In this case, the distance of position between xi and xi+1 should be less than
16. Suppose the number of unique character used in a message is n = 5, then
the cover fulfil-ness is as shown in Figure 7(A) and the result of filtering based
on pixel position is as shown in Figure 7(B). Then, it is shown that pixel with
intensity of x1, x2, x3, x4, x5 could be used for representing unique character
c1, c2, c3, c4, c5 which is M,A, K, N, and E respectively. Furthermore, map(ci)
for i = 1, 2, 3, 4, 5 were x1, x2, x3, x4, x5 respectively. Thus, the distance of
position between pixel(xi+1) and pixel(xi) (where pixel(xi) is a pixel whose
intensity is xi) should be less than 16. If this requirement can not be fulfilled
in the range of xi to xn then xi should be shifted to xi+1 and find the distances
between pixel(xi+1) and pixel(xi). In the case of Figure 8, the requirement
can be fulfilled in the intensity range of 16–31. While it can not be fulfilled
in the intensity range of 200 to 203 since there were some pairs of pixels
whose intensity difference was less than one and the difference of positions

Information Hiding Based on Histogram and Pixel Pattern 407

Figure 7 The result of intensity filtering based on pixel position. (A) Unique character.
(B) Embedding capacity fulfillment based on frequency. (C) Cover capacity fulfillment based on
position. The pixel with intensity of 207, 208, 209, 210, and 211 could be used for representing
the unique character, and (D) Selected intensity for representing unique character.

was greater than 16. Finally, the result of intensity filtering based on pixel
position is shown in Figure 7(C), where pixel intensities of 204 to 217
could be used for representing unique characters. Since intensities 204–217
can be used to represent the unique characters, then for mapping characters

408 A. M. Barmawi and D. Pradeka

Table 1 Randomized selected intensity for representing M, A, K, N, E
Unique Character: M A K N E
Intensity: 207 208 209 210 211

Table 2 Rows and columns of pixel used
Intensity: 207 208 209 210 211
Rows: 3 4 6 6 7
Columns: 407 407 409 410 411

M, A, K, N and E any five consecutive pixels intensity in this range could
be used. For example pixels with intensities 207, 208, 209, 210 and 211
were selected at random for representing unique character M, A, K, N, and E
respectively.

Suppose the unique character for secret message ‘KEAMANAN’ is M, A,
K, N and E and the selected intensities represented the unique characters are
as shown in Table 1.

Then, the positions of pixels (rows and columns) representing the pixels
with intensities of 26, 27, 28, 29, and 30 (in the cover image) is shown in
Table 2.

3.1.3 Message camouflaging
The objective of message camouflaging process was to camouflage a message
using an image. There were three steps in message camouflaging process i.e.
camouflaging unique character, camouflaging pixel position, and camouflag-
ing character position in the message. The message encoding process was
described in Figure 8.

3.1.4 Camouflaging the unique character
The objective of camouflaging unique character was to change a unique
character into a number. Suppose the secret message was ‘KEAMANAN’,
and the unique characters based on the order in the message were K, E, A, M,
and N.After randomizing the order, the randomized order of unique characters
were M, A, K, N, and E. The selected intensities for representing unique
characters were 207, 208, 209, 210 and 211. Furthermore, the camouflaging
unique character process consisted of the following steps:

a. The first step was to change the unique character into a number based on
ASCII code, and the result was M=77, A=65, K=75, N=78, and E=69.
These numbers were stored as variable a.

Information Hiding Based on Histogram and Pixel Pattern 409

Figure 8 Message camouflaging process.

b. The second step was to find the modulus number sp, that was the
prime number used in Diffie-Hellman method [12]. Suppose variable
sp was 241. There were two parties Alice and Bob that would like to
communicate with each other. Alice and Bob published a number p = 449
as the modulo number of Diffie-Hellman equation, and number q which
were relatively prime with p (in this case q = 113). Then, the sender,
Alice chose her secret number 1a = 3 and the receiver Bob also chose his
secret number 1b = 5. Furthermore, Bob computed B (B ≡ qlb mod p),
and the result was B = 34. Alice sent A (A ≡ qla mod p) to Bob, and
Bob also sent B to Alice. Finally, Alice calculated their common secret
modulo number sp ≡ Bla mod p, where the result was sp = 241. Bob
also calculated their common secret using sp ≡ Alb mod p which was
equal to 241. This common secret would be used as both parties’common
modulo number.

410 A. M. Barmawi and D. Pradeka

Table 3 Modular inverse of d mod sp
d mod sp: 207 mod 241 208 mod 241 209 mod 241 210 mod 241 211 mod 241
d−1: 163 73 128 171 8

Table 4 The result of multiplicative inverse
a.d−1mod sp: 77.163 mod

241
65.73 mod
241

75.128 mod
241

78.171 mod
241

69.8 mod
241

z: 19 166 201 83 70

c. Suppose the intensity of a pixel representing the unique character was d,
then the modular inverse of intensity d which was d−1 modulo sp should
be calculated. If intensity d used for representing the unique characters
were 207, 208, 209, 210, and 211, then the result of d−1 mod sp [11] is
as shown in Table 3.

d. d−1mod sp ≡ 1 mod sp (5)

d. Furthermore, the sender calculated z using Equation (6) [11]. The result
of Equation (6) for d as shown in Table 3 is shown in Table 4.

z ≡ a.d−1mod sp (6)

3.1.5 Camouflaging the pixel position
The purpose of camouflaging pixel position was normalizing the pixel position
to 16. Suppose the intensity used to represent the unique character (‘MAKNE’)
was 207, 208, 209, 210, 211, and the position of pixels representing the unique
character were (3,407), (4,407), (6,409), (6,410), and (7,411) respectively. The
process for normalizing the pixel position was conducted as follows:

The first step was to find the position of the pixel representing intensity of
207 which had the smallest index (address) of row and column. Suppose
the smallest index of row kr was 3, and the smallest index of columns
kc was 407. The sender and receiver should agree in advance on variables
kr and kc.

The second step was camouflaging each pixel position using Equation (7)
for rows, and Equation (8) for columns.

xri =

{
ri − kr, if i = 1
ri − ri−1, if i > 1

(7)

Information Hiding Based on Histogram and Pixel Pattern 411

Table 5 The result of camouflaged position
xr: 0 1 2 0 1
xc: 0 0 2 1 1

Table 6 Result of camouflaging intensity process
Unique Character: M A K N E
d mod n: 207 mod 5 208 mod 5 209 mod 5 210 mod 5 211 mod 5
w: 2 3 4 0 1

xci =

{
ci − kc, if i = 1
ci − ci−1, if i > 1

(8)

where ri was a rows value and ci was a columns value from pixel position,
xri is a variable with index i to save normalized rows ri, and xci is a variable
with index i to save normalized columns ci. The result of camouflaging pixel
position is shown in Table 5.

Finally, all xri and xci should be concatenated together to form an array
of numbers. In the case of Table 5, the array was 0, 1, 2, 0, 1, 2, 0, 0, 2, 1, 1.

3.1.6 Camouflaging intensity representing the character
in the message

The objective of camouflaging intensity that represented the character in
the message was to change intensities that represented a character in the
message into a code. Suppose the unique characters of the secret message
‘KEAMANAN’ were M, A, K, N, E which were represented by pixels with
intensities 207, 208, 209, 210, 211 respectively. Camouflaging intensity that
represented the character in the message had the following steps:

The first step was to change the intensity represented each unique character
into a code w using Equation (9).

w ≡ d mod n (9)

Where variable d was the intensity and n was number of unique character in
the message and the result is shown in Table 6.

The second step was to change each character of the message into a code.
Furthermore, the variable m should be generated from the code of unique
character w (see Table 6). Suppose the first character in the secret message
‘KEAMANAN’ was ‘K’, and it was represented by intensity of 4. Thus, the
value of array m for message ‘KEAMANAN’ was 4, 1, 3, 2, 3, 0, 3, and 0, as
shown in Figure 9.

412 A. M. Barmawi and D. Pradeka

Figure 9 The result of camouflaging character position in the message.

After conducting all process for embedding message, then the sender store
the sender randomized x, z and m in the metadata of the image. In this case,
sp, kr, kc and the method for randomizing x, z and m will be agreed upon by
both parties.

3.2 Message Extraction Process

After receiving the cover image, x, z and m, the receiver can extract the
message. The decoding process is shown in Figure 10. There were three
processes for extracting the message, (a) extracting the position of the pixel
represented the unique character for obtaining its intensity, (b) extracting the
ASCII code of the unique character that would be used for obtaining the unique
character and finally (c) extracting the message.

3.2.1 Extracting unique character intensity
The objective of extracting unique character intensity process was to obtain
intensity used in the cover. The input of this process was variable x (code
number of pixel position), cover image, variables kr and kc (see camouflaging
pixel position). Suppose the cover was Lena (with image size of 512 × 512)
as shown in Figure 12, x = 0, 1, 2, 0, 1, 0, 0, 2, 1, 1, kr is 3 and, kc is 407,
then xr = 0, 1, 2, 0, 1 and xc = 0, 0, 2, 1, 1. The procedure for extracting the
intensity of unique character is described as follows:

The first step was obtaining the row index and the column index of the
pixel whose intensity represented the unique character using Equations (7)
and (8). The result is shown in Table 7 where rows is the index of row and
columns is the index of column.

rows =

{
xri + kr, if i = 1
xri + xri−1, if i > 1

(10)

Information Hiding Based on Histogram and Pixel Pattern 413

Figure 10 Decoding process.

Table 7 The result of extracting pixel position process
rows: 3 4 6 6 7
columns: 407 407 409 410 411

columns =

{
xci + kc, if i = 1
xci + xci−1, if i > 1

(11)

The second step was to find the intensity using the pixel position on the cover
image, as shown in Figure 11, where it was obtained that the intensity used
for representing the unique characters were 207, 208, 209, 210 and 211.

3.2.2 Extracting the unique character
The process of extracting the unique character needed z as the input, y (intensity
obtained from the process for extracting the intensity), and sp (secret modulo

414 A. M. Barmawi and D. Pradeka

Figure 11 Finding Intensity process.

Table 8 Extracted ASCII Code of the unique character
z.y mod sp: 19.207 mod

241
166.208 mod
241

201.209 mod
241

83.210 mod
241

70.211 mod
241

a: 77 65 75 78 69

Table 9 The extracted unique character
a: 77 65 75 78 69
cal: M A K N E

number). Suppose variable z were 19, 166, 201, 83, 70, y were 207, 208, 209,
210, 211, and sp = 241. Then, for extracting the unique character, the following
procedure should be conducted.

At first, extract the ASCII code of unique characters using z and
Equation (12). The result is shown in Table 8, where a is the unique character
ASCII code.

a ≡ z.y mod sp (12)

Furthermore, the ASCII code should be converted into the unique character,
and the result is shown in Table 9, where cal was the unique character.

3.2.3 Extracting the message
For obtaining the message, m and cal were necessary. In this case, m were 4,
1, 3, 2, 3, 0, 3, 0, unique character cal were M, A, K, N, E, intensity y were
207, 208, 209, 210 and 211, and the number of unique character n was 5.

For changing the numbers in m into the code represented the unique
character w, the second step was to change the intensity y into a code using
Equation (13), and the result is shown in Table 10.

Information Hiding Based on Histogram and Pixel Pattern 415

Table 10 The extracted unique character code
d mod n: 207 mod 5 208 mod 5 209 mod 5 210 mod 5 211 mod 5
w: 2 3 4 0 1

Figure 12 Message extraction.

w ≡ d mod n (13)

The final step, variable m should be changed into a character based on the
extracted unique character code. Suppose the unique characters were M, A,
K, N, E, and their codes for representing of unique character were 2, 3, 4, 0,
and 1 respectively, then the message can be extracted as “KEAMANAN” as
shown in Figure 12.

4 Experiment and Discussion

This section discussed about capacity evaluation in term of embedding
capacity without pixel changes. This experiment used 128 × 128, 256 × 256
and 512 × 512 cover image, with 30 type of cover image. Besides, analysis
based on steganalysis also observed in this section.

4.1 Capacity Evaluation

For evaluating the effectiveness of the proposed method, comparison of
embedding capacity between the proposed and Rejani’s method should be
conducted. For evaluating the embedding capacity, two experiment’s scenarios
had been conducted. The first one was embedding the unique characters
represented byASCII symbol into image covers using Rejani’s method and the
second one was using the proposed method. This process was conducted using
30 types of cover image with three sizes 512 × 512, 256 × 256, and 128 × 128
for each types of cover image. In this case, the definition of embedding capacity
was the capacity of a cover image to be embedded by text (array of characters)
without changing the pixel intensity. In this case, 131 characters of message

416 A. M. Barmawi and D. Pradeka

length with 95 unique characters was used. The embedding capacity as the
result of the experiments was shown in Figure 13.

Based on Figure 13, it is shown that the highest embedding capacity of
the proposed method was obtained when image covers of 512 × 512 and
256 × 256 were used (see Figure 13(a), since there were only four cases where
the embedding capacity of the proposed method was less than the embedding
capacity of Rejani’s. However, if a 128 × 128 cover image was used, then
there were more than four cases (19 cases) where the embedding capacity of
the proposed method was less than Rejani’s were occurred. This condition
was occurred because the proposed method required high frequency for each
intensity as well as wide range of intensity to represent unique character code,
while in Rejani’s method neither high frequency of each intensity (which was
used as the code of unique character) nor wide range of intensity was necessary
since it was possible for changing the pixel value based on the value such that
it would be equal to the code of unique character. The larger the size of cover
image, the larger the frequency of each intensity, then this would increase
the embedding capacity of the proposed method. Furthermore, observation on
cases where the embedding capacity of the proposed method was less than
Rejani’s one was conducted.

Information Hiding Based on Histogram and Pixel Pattern 417

Figure 13 Embedding capacity using Rejani’s and proposed method. (a) Cover image size
of 512 × 512. (b) Cover image size of 256 × 256. (c) Cover image size of 128 × 128.

Since the high embedding capacity using the proposed method was
occurred when hijab.png, sea.png, b.png and a.png were used, then the
observation would focus on those cover image. Table 11 shows the char-
acteristic of hijab.png, sea.png, b.png, and a.png. Based on Table 11,

418 A. M. Barmawi and D. Pradeka

Ta
bl

e
11

E
m

be
dd

in
g

ca
pa

ci
ty

51
2

×
51

2
co

ve
r

im
ag

es
w

ho
se

th
e

em
be

dd
in

g
ca

pa
ci

ty
us

in
g

th
e

pr
op

os
ed

m
et

ho
d

w
as

gr
ea

te
r

th
an

th
e

em
be

dd
in

g
ca

pa
ci

ty
us

in
g

R
ej

an
i’s

N
o

Im
ag

e
H

is
to

gr
am

U
C

T
C

E
R

E
P

C
R

C
P

1
hi

ja
b

92
13

1
29

93
0

0

2
se

a
92

13
1

29
95

0
0

(C
on

ti
nu

ed
)

Information Hiding Based on Histogram and Pixel Pattern 419

Ta
bl

e
11

C
on

tin
ue

d
N

o
Im

ag
e

H
is

to
gr

am
U

C
T

C
E

R
E

P
C

R
C

P
3

b
92

13
1

28
95

0
0

4
a

92
13

1
29

95
0

0

N
ot

e:
U

C
:n

um
be

r
of

un
iq

ue
ch

ar
ac

te
r

in
th

e
m

es
sa

ge
;

T
C

:n
um

be
r

of
to

ta
lc

ha
ra

ct
er

in
th

e
m

es
sa

ge
;

E
R

:e
m

be
dd

ed
un

iq
ue

ch
ar

ac
te

r
in

R
ej

an
i’s

m
et

ho
d;

E
P:

em
be

dd
ed

un
iq

ue
ch

ar
ac

te
r

in
th

e
pr

op
os

ed
m

et
ho

d;
C

R
:n

um
be

r
of

ch
an

ge
d

pi
xe

ls
w

he
n

us
in

g
R

ej
an

i’s
m

et
ho

d;
C

P:
nu

m
be

r
of

ch
an

ge
d

pi
xe

ls
w

he
n

us
in

g
pr

op
os

ed
m

et
ho

d.

420 A. M. Barmawi and D. Pradeka

Ta
bl

e
12

C
ha

ra
ct

er
is

tic
of

51
2

×
51

2
co

ve
ri

m
ag

es
w

ho
se

th
e

em
be

dd
in

g
ca

pa
ci

ty
us

in
g

th
e

pr
op

os
ed

m
et

ho
d

w
as

le
ss

th
an

th
e

em
be

dd
in

g
ca

pa
ci

ty
us

in
g

R
ej

an
i’s

N
o

Im
ag

e
Si

ze
H

is
to

gr
am

U
C

T
C

E
R

E
P

C
R

C
P

1
ch

es
s

51
2

×
51

2
92

13
1

20
3

0
0

2
ra

in
bo

w
51

2
×

51
2

92
13

1
10

4
0

0

(C
on

ti
nu

ed
)

Information Hiding Based on Histogram and Pixel Pattern 421

Ta
bl

e
12

C
on

tin
ue

d
N

o
Im

ag
e

Si
ze

H
is

to
gr

am
U

C
T

C
E

R
E

P
C

R
C

P
3

ba
nd

un
g

51
2

×
51

2
92

13
1

28
18

0
0

4
ca

t
51

2
×

51
2

92
13

1
29

27
0

0

N
ot

e:
U

C
:n

um
be

r
of

un
iq

ue
ch

ar
ac

te
r

in
th

e
m

es
sa

ge
;

T
C

:n
um

be
r

of
to

ta
lc

ha
ra

ct
er

in
th

e
m

es
sa

ge
;

E
R

:e
m

be
dd

ed
un

iq
ue

ch
ar

ac
te

r
in

R
ej

an
i’s

m
et

ho
d;

E
P:

em
be

dd
ed

un
iq

ue
ch

ar
ac

te
r

in
th

e
pr

op
os

ed
m

et
ho

d;
C

R
:n

um
be

r
of

ch
an

ge
d

pi
xe

ls
w

he
n

us
in

g
R

ej
an

i’s
m

et
ho

d;
C

P:
nu

m
be

r
of

ch
an

ge
d

pi
xe

ls
w

he
n

us
in

g
pr

op
os

ed
m

et
ho

d.

422 A. M. Barmawi and D. Pradeka

it can be concluded that the frequency of those four image intensity were
high and/or the range of intensity was wide. As the impact of this condition,
the embedding capacity of the proposed method was completely higher than
Rejani’s without any pixel changes. On the contrary, the embedding capacity
of chess.png, rainbow, bandung.png, and cat.png was low and/or the range of
intensity was narrow as shown in Table 12. As the impact of this condition,
the embedding capacity of the proposed method was less than Rejani’s, since
the frequency of intensity was low. In the proposed method, Low frequency
of intensity causes the insufficient number of pixel represented the unique
character, while in Rejani’s method frequency of intensity was not influenced
the representation of unit character.

4.2 Steganalysis

Since there is no pixel intensity changes in the cover image, the steganalysis
is not conducted based on histogram, but based on the data embedded into
the metadata. The data embedded in the metadata is the randomized xr, xc, z
and m, while sp, kr, kc including the method for randomizing xr, xc, z and m
will be agreed upon by both parties. kr and kc should be encrypted and sent
to the receiver. Furthermore, sp is public. For obtaining the secret message, m
and w should be obtained, while for obtaining w, d should be found as well.
D can be obtained if xr, xc, kr and kc has been obtained. Thus, the probability
for obtaining the message depended on the probability of obtaining kr and kc.
Since kr and kc is encrypted, then the probability for obtaining these variables
depended on the probability of success attack on the encryption algorithm.
Meanwhile, even if w was already obtained the attacker could not obtain the
message because they do not know the order of unique characters in the related
message. The order was represented as m. Since m was stored in the metadata,
then the probability for obtaining m depended on the probability to recover
the randomized data. Suppose the probability for obtaining w was pw and
the probability for obtaining m is pm, then the probability for obtaining the
message was pw × pm. Thus, it can be concluded that probability for obtaining
the secret message depended on the encryption and the randomization method
used in the proposed method.

5 Conclusion

Information hiding based on pixel pattern proposed by Rejani has problem with
its embedding capacity, where the embedding capacity without pixel changing
is less than 29 characters and it will be decreased along with the decreasing of

Information Hiding Based on Histogram and Pixel Pattern 423

frequency of pixel intensity. For overcoming this problem, information hiding
based on histogram and pixel pattern is proposed. The embedding capacity
using the proposed method without pixel changing was higher than Rejani’s
method (which is 29 characters) in the case of wide intensity range and high
frequency of pixel for intensity used to represent the character in the message.
In this case, the embedding capacity using the proposed method was more than
29 characters or near 95 without any pixel changes. However, the proposed
method has less embedding capacity than Rejani’s method when using 128 x
128 cover image. Then, it can be concluded that the proposed method is worth
to be used for a size larger than 128 × 128.

Since there is no change in pixel intensity in the cover image but in the
metadata, then the probability for obtaining the secret message depends on
the probability to attack the encryption system and randomization algorithm
used in the proposed method.

References

[1] Joseph,A., and Sundaram, V. (2011). Cryptography and steganography–a
survey. Int. J. Comput. Sci. (Rabat). 2, 626–630.

[2] Babita and Ayushi (2013). Secure image steganography algorithm
using RGB image format and encryption technique. Int. J. Sci. Environ.
Technol. 4, 758–762.

[3] Rejani, R., Murugan, D., and Krishnan, D. V. (2015). Pixel Pattern Based
Steganography on Images. J. Image Video Process 5, 991–997.

[4] James, C. (2001). Steganography Past, Present, Future. SANS Institute.
[5] CH, M. V. R. (2015). Medical Image Watermarking Schemes against Salt

and Pepper Noise Attack. Int. J. Bio-Sci. Bio-Technol. 7, 55–64.
[6] Hussein, K. W., Sani, N. F. M., Mahmod, R., and Abdullah, M. T. (2013).

Enhance Luhn algorithm for validation of credit cards numbers. Int. J.
Comput. Sci. Mobile Computing 2, 262–272.

[7] Johansson, R. (2015). Developing a Knock-out Code for Production
Purposes. M. eng. thesis, University of Lund, Sweden.

[8] Solomon, C., and Breckon, T. (2011). Fundamentals of Digital Image
Processing: A Practical Approach with Examples in Matlab. Wiley-
Blackwell. doi: 10.1002/9780470689776

[9] Arndt, J. (2010). Generating Random Permutations. PhD thesis, Univer-
sity of Australian National, Canberra.

[10] Ušáková, A., Kotuliaková, J., and Zajac, M. (2002). Using of Discrete
Orthogonal Transforms for Convolution. J. Electrical Eng., 53, 285–288.

424 A. M. Barmawi and D. Pradeka

[11] Solomon, C., and Breckon, T. (2008). Elementary Number Theory. Peter
and Productions, HHH.

[12] Kaur, N., and Nagpal, R. (2014). Authenticated Diffie-Hellman Key
Exchange Algorithm. Int. J. Comput. Sci. Inf. Technol. 5, 5404–5407.

[13] Hoffstein, J., Pipher, J. C., and Silverman, J. H. (2008). An Introduction
of Mathematical cryptography, 1st ed., New York: Springer.

[14] Delfs, H., and Knebl, H. (2015). Introduction to Cryptography: Princi-
ples and Applications, New York: Springer.

[15] Al-Husainy, M. A. (2009). Image Steganography by mapping Pixels to
letters. J. Comput. Sci. 5, 33–38.

[16] Nilizadeh, A. F., and Nilchi, A. R. N. (2013). Steganography on
RGB Images Based on a “Matrix Pattern” using Random Blocks,
I.J.Modern Education and Computer Science, 4, 8–18. Avalilable at:
http://www.mecspress.org/

[17] Nilizadeh, A. F., Mazurczyk, W., Zou, C. and Leavens, G. T. (2017).
Information hiding in RGB images using an improved matrix pattern
approach. In Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), IEEE, 1407–1415.

Biographies

Ari Moesriami Barmawi received B.Sc from the Department of Electrical
Engineering, Bandung Institute of Technology, Indonesia in 1985, M.Sc and
Ph.D from the Department of Computer Science, Keio University, Japan
in 1997 and 2001 respectively. Her research interests are Cryptography,
Steganography, and Artificial Intelligence. She is a member of IEEE and
IACR (InternationalAssociation of Cryptography Researcher). Now she is the
head of Intelligence, Multimedia and Computation research group in Telkom
University Bandung. She is the TPC of IEEE and ACM Conferences.

Information Hiding Based on Histogram and Pixel Pattern 425

Deden Pradeka received B.Sc from Information System, Widyatama Univer-
sity, Indonesia in 2012. He achieved his master degree in computer science
from Telkom University Indonesia in 2017. His research area is in security,
steganography and cryptography. Currently, he is a lecturer in Indonesia
Informatics and Business University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

