
SURE-FIT – SecURE and Adaptive
Framework for Information Hiding

with Fault-Tolerance

Avinash Srinivasan and Hunter Dong

Computer and Information Sciences, Temple University,
Philadelphia PA 19122, USA
E-mail: avinash@temple.edu; hunter@temple.edu

Received 30 January 2018; Accepted 30 January 2018;
Publication 16 February 2018

Abstract

Historically, Information Hiding has primarily been associated with malicious
intentions. However, it also has beneficial applications such digital rights
management and passport control. A “DeadDrop” is one such method of
espionage trade craft used to physically exchange items or information using
a secret rendezvous point. Hiding information in digital file slack space is
one such technique that has been used extensively in the modern day, which
operates under significant constraints. More importantly, none of the existing
work offer robust hiding in slack space with fault tolerance that guarantee
recovery of the hidden secret. In this paper, we propose SURE-FIT – a novel
asynchronous “Digital Dead Drop” robust to detection and data loss. Our
proposed technique offers fault tolerance as a tunable parameter leveraging
the Shamir’s classic threshold secret sharing scheme 〈n, k〉 [21]. Through
a working prototype implemented on a 64-bit Ubuntu Linux system, we
confirm the performance and robustness of SURE-FIT We implement a
simple hash-based message integrity verification into SURE-FIT framework
to validate secret shares upon their retrieval, which results in significant
performance improvement. SURE-FIT is also verified through secret message

Journal of Cyber Security, Vol. 6 4, 427–456.
doi: 10.13052/jcsm2245-1439.643
This is an Open Access publication. c© 2018 the Author(s). All rights reserved.

428 A. Srinivasan and H. Dong

survivability under various operating conditions including block corruption
and defragmentation. Finally, we present results confirming the performance
improvement of SURE-FIT over two state-of-the-art IH techniques.

Keywords: Anti-forensics, Detection, Fault Tolerance, File Systems, Hash-
ing, Information Hiding, Robust, Security, Slack Space, Steganography,
Threshold Secret Sharing.

1 Introduction

A “Dead Drop” is a container, one that is not easily found, such as a
magnetized box attached to a metal rack in an out-of-sight alley [26]. It should
be possible for a user to approach the dead drop to either drop off or pick
up information/items. Neither the drop box itself nor the user approaching
it should be easily observed. The dead drop enables information exchange
between two individuals using a pre-agreed secret location. This property
eliminates the need for parties involved in the covert communication to meet
directly, thereby maintaining operational secrecy and security. A live drop
method, in sharp contrast to the dead drop method, necessitates the physical
meeting of parties involved in the covert communication. From a real-world
perspective, the last known Dead Drop case was in 2006 when the Russian FSB
accused Britain of using wireless dead drops concealed inside hollowed-out
rocks to collect information from agents in Russia.

From a computing perspective, it is the art of exchanging digital informa-
tion during a covert mission and the drop point in this case would constitute
a ‘Digital Dead Drop’. This technique involves one individual dropping the
digital information to be exchanged at a predetermined location and another
individual acquiring that information from that same location at a later time.
Unlike the physical dead drop, a digital dead drop can and will leave trace
evidence. Unless proper precautions are taken to sanitize the digital footprint
left behind during the covert information exchange. Hiding information in
slack space1 is one of the numerous information hiding (IH) techniques
proposed over the last two decades. Slack space based IH techniques, while
simple to implement, are vulnerable and operate with serious limitations. They
not only suffer due to the dynamic nature of the storage volume, especially
when the target is a bootable partition, but also from file system actions such

1“Slack Space” and “File Slack Space” are used interchangeably in the remainder of this
paper and they mean the same.

SURE-FIT 429

as file modification and file deletion. They are further impacted by some of the
not so common OS tasks such as defragmentation.

In this paper, we propose “SURE-FIT” – a digital dead drop for covert
asynchronous information exchange. The proposed digital dead drop is a
tunable fault-tolerant IH technique that is robust to detection and data loss
for various reasons including block corruption and file modification. SURE-
FIT employs a storage volume’s (bootable or non-bootable) allocated files’
slack space as the information exchange drop point. SURE-FIT operates
in asynchronous mode for covert message exchange essentially creating a
“digital dead-drop”.

Finally, SURE-FIT achieves all three core information security require-
ments – confidentiality, integrity, and availability. Our approach provides
fault tolerance as a tunable parameter making it very robust to data loss. We
provide the design details and validate the performance of SURE-FIT through
a prototype implementation on a Ubuntu Linux machine.

1.1 Information Hiding on Secondary Storage Drives

There are several protected and hidden, yet readily available, areas on a
secondary storage drive that can be exploited to hide information. More
importantly, these areas are inaccessible by the OS and the typical users.
Therefore, they serve as excellent information drop points for asynchronous
covert information exchange. Some very popular IH techniques include –
obfuscated file names [23], file encryption, disk and volume encryption
(e.g., TrueCrypt, BitLocker), Encrypting File Systems (EFS), and file slack
space [22]. Of these, slack space is perhaps the most popular for hiding
information.

Hiding in slack space is also markedly different from hiding in unallocated
space. Slack space is part of the allocated space where as unallocated space
is the set of all blocks available to the OS. Unallocated space is constituted
of either unused blocks or freed blocks that contain remnants of deleted files.
There are numerous tools that can wipe the unallocated space, and the modern
day PC comes pre-loaded with system utilities to this aim. Since deletion of the
file only marks the corresponding block(s) as free, which can and will be used
by the OS to store data at some point in the future, there is no certainty that the
block(s) released will be used by the OS. Data in slack space has significantly
higher odds of surviving situations that other popular IH tools and techniques
fail to. Therefore, the only way to permanently get rid of contents in the slack
space of a file is to erase/wipe the corresponding blocks.

430 A. Srinivasan and H. Dong

The slack space of a file is the first to get overwritten when the cover file
grows in size. Consequently, a critical requirement of various slack space IH
tools and technique is reliability and fault tolerance. Finally, the IH capacity
of existing IH tools and techniques is dictated by available slack space on the
target volume. Furthermore, all these techniques are impacted by the state of
the target storage volume including – block (or cluster2) size, total number of
allocated files, and available cumulative slack space. Hiding information in
file slack space has several limitations, which are summarized in Table 1. Our
proposed SURE-FIT is an adaptive IH framework that is sensitive to the state
of the target volume. It does have the capability to create cover files on the fly
if and when needed.

Table 1 Impact of file system actions on slack space of allocated disk space
File Action Impact on Original Slack Space
Grows in
size by ≤ bslack

m

slack space contents are overwritten either partially or completely

Grows in
size by > bslack

m

slack space contents are overwritten completely

Additional blocks are allocated.
Shrinks in
size by < bfile

m

slack space bslack
m increases in size; original contents are intact

Shrinks in
size by ≥ bfile

m

Block bm is added to “free-block list”.

Original contents accessible through their physical address
shares cannot be accessed once the blocks corresponding to
the shares are overwritten or erased/wiped

File Deletion Original slack space contents accessible unless overwritten
Disk Defrag Original slack space contents accessible unless overwritten
Bad Sectors & slack space contents are inaccessible if any of the cover files
R/W Errors span across these sectors
Drive Failure If full physical backup made after secret shares were hidden to

restore/replace the failed drive, then secret shares will survive
drive replacement
Otherwise, shares cannot be recovered since they do not exist
on physical drive backup used to restore new drive

2Cluster and block are used interchangeably and in the remainder of this paper we will use
the term block.

SURE-FIT 431

1.2 Summary of Contributions

Our contributions in this paper can be summarized as follows. To the best
of our knowledge, SURE-FIT is the first of its kind digital dead drop
designed extending the idea of the physical world covert communication
utilizing the asynchronous “Dead Drop” of espionage trade-craft. It is unique
compared to contemporary steganography techniques since it does not alter
the payload of the cover file. It is designed with built-in tunable fault tolerance
capabilities leveraging strong and provably secure cryptographic primitives.
The framework is implemented and analyzed through a Ubuntu Linux proto-
type implementation. Our proposed framework is robust to information loss
resulting from dynamic nature of system events that generate temporary files,
cause storage volume corruption, disk de-fragmentation, etc. Recovery of
secret shares is based on physical address to the byte-offset of secret shares.
This property enables recovery of secret even if the cover file is deleted or
the storage volume is de-fragmented. Furthermore, as long as the drive is
not sanitized, secret can be extracted using the physical address of shares
from the map-file. The framework hides secret files in system areas whose
presence is normal and does not trigger suspicion. Therefore it easily evades
detection by tools and techniques that rely on payload analysis. SURE-FIT has
an open architecture to enable integration of other tools and techniques. One
such tool includes a slack space generator plug-in module. Such a module will
enable SURE-FIT to generate required amount of slack space on-the-fly if and
when the target volume does not have sufficient slack space. Finally, SURE-
FIT provides all three core security properties – confidentiality, integrity, and
availability.

1.3 Road Map

The remainder of this paper is organized as follows. In Section 2, we present
the necessary background information and preliminaries of our work. We
then provide a detailed discussion of our proposed fault-tolerant IH technique
in Section 3. We present the implementation details of a working prototype
of our proposed IH mechanism in Section 4. This section also presents the
results from evaluation of our prototype on real-world systems. In Section 5,
we provide detailed analysis of our proposed work’s security robustness and
performance followed by a review of related literature in Section 6. Finally,
we conclude our work by highlighting the significance of the proposed fault-
tolerant IH technique along with directions for future research in Section 7.

432 A. Srinivasan and H. Dong

2 Background and Preliminaries

It is a common practice for vendors of secondary storage devices to create
protected reserved areas when they format new secondary storage disks before
shipping them to the consumers. These reserved areas are referred to as Host
Protected Area (HPA) and Device Configuration Overlay (DCO). An HPA is
created for the purpose of storing recovery tools, proprietary software and
data. The DCO is created for the purpose of storing meta-data relating to the
storage disk itself. Most users are unaware of even the existence of these
protected areas and further more not even the OS is allowed to access an HPA
or a DCO. Another area that can be readily used for IH is the volume slack,
which is the unused and inaccessible space from end of file system volume3

to end of the partition.
While HPAs and DCOs and even encrypted volumes are vendor/user

controlled since they can be created to be of any arbitrary size and destroyed,
slack space is the byproduct of normal, benign and approved system tasks.
Consequently, slack space inevitably exists on all secondary storage volumes.
However, the mere presence of slack space on a volume is not an indicator of
any foul play or information hiding.

The amount of slack space that gets created every time a file is stored on
the target drive is dependent of several factors. More importantly, the amount
of slack space on the target volume increases as more files are stored on the
target volume. On the contrary, HPAs and DCOs once created remain fixed
in size until they are either destroyed or re-sized. Similarly, once the drive is
partitioned and formatted, the volume slack remain fixed unless user re-sizes
the partition(s).

Volume slack is significantly easier to access when compared to access-
ing file slack space. More importantly, if volume slack exist on a storage
drive, then typically it’s minimum size far exceeds the maximum file slack
possible. Nonetheless, there may be isolated instances where in this may not
be the case.

Tools and techniques for detecting IH have also evolved significantly.
Today, there is a wide range of digital forensics suites that can detect HPAs,
DCOs, and encrypted volumes readily. Even if the contents of these regions
may not be accessible, it is easy to get rid of such contents by simply destroying
them by overwriting. In particular, detection of HPAs and DCOs are extremely
simple since they are not part of a file system volume.

3Throughout this paper “file system volume”, “storage volume” and “volume” are used
interchangeably and mean the same thing.

SURE-FIT 433

Consequently, hiding information in slack space offers better odds of both
evading detection and surviving events such as de-fragmentation. Finally,
information hiding in slack space is undetectable by file integrity checkers
that primarily rely on file checksum or file meta-data. This is also true with
regards to HPA, DCO, and volume slack.

File systems can be categorized based on numerous features, and detailed
discussions on this topic is beyond the scope and key objectives of this
paper. However, a classification of file systems based on block suballoca-tion
(Definition 2.1) feature is important and relevant to our research presented in
this paper. This classification results in two broad categories based on whether
or not file systems support the implementation of block suballocation.

File systems that support block sub-allocation include the two very
popular and widely used file systems – FreeBSD UFS2 and Brtfs. However,
contemporary file systems predominantly used on consumer and business class
computers and servers include NTSF, ext3, ext4, and HFS+ that do not support
block sub-allocation.

Definition 2.1. Block suballocation is a feature on some file systems that
allows large blocks to be used while making efficient use of slack space at the
end of large files.

2.1 File Systems Internal Fragmentation

When a file is created or copied on to a secondary drive, the file sys-
tem generates and stores meta-data for that file on the disk along with
the file. However, meta-data is stored in protected system area that can
be accessed only by the OS or through physical access to the drive with
appropriate tools. On the other hand, the contents (aka payload) of the file
is stored by the file system in fixed-size logical units referred to as Blocks
(Unix/Linux) or Clusters (Windows)4. The size of the blocks depends on
several aspects and is different for each file system volume. However, the
information is stored within the Volume Boot Record of the file system
volume.

For discussions, let ν be the target storage volume, and ν can be bootable
or storage-only. Also, ν can be internal or external, and available either locally
or remotely, when required. Note that availability is also a critical requirement
under the SURE-FIT framework. It is a known fact that files come is all sizes

4Cluster and block are used interchangeably throughout this paper.

434 A. Srinivasan and H. Dong

and formats, but a file system volume ν has fixed sized blocks denoted as
bdize
ν . Once formatted, the block size is fixed unless the volume ν re-sized.As a

result, when variable-sized files are stored on volumes with fixed-sized blocks,
some amount of space will inevitable remain unused. This phenomenon where
in space gets wasted within a block assigned to a file and is unusable is
known as Internal Fragmentation (Definition 2.2). Note that the slack space
resulting from internal fragmentation always occurs in the last allocated block
of the file.

Definition 2.2. Internal Fragmentation is the result of assigning one or
more fixed sized allocation units (blocks) to a file or folder and some
amount of space remains unused inside the last assigned block. Based on
Property 2.1 the unused space inside a block that is already assigned to a file
is unusable.

Let the set of all files on ν be denoted as:

F = {fx|x ∈ [1, 2, . . . , y]} (1)

Then, let the set F be divided into two subsets Fnor and Fcov, and denoted as
follows:

F = Fnor

⋃
Fcov (2)

Fnor is the set of files that are not used as cover files as shown in Equation 3:

Fnor = {fp|p ∈ [1, 2, . . . , q]} (3)

F cov is the set of all files that are used as cover files (Definition 2.3) as shown
in Equation 4:

Fcov = {fs|s ∈ [1, 2, . . . , t]} (4)

Once the secret shares are hidden in the slack space of cover files, let the set
of files that are modified, specifically increase in size be denoted as follows:

Fmodified = {fu|u ∈ [1, 2, . . . , v]} (5)

For discussion, let us consider a file fx which is assigned blocks b1, b2, . . . , bm.
Let bm be the last allocated block of fx. Now, without any information about
the target volume, the average-case slack space for any given will be half
(50%) the size of a block (Equation 6). The cumulative slack space for the
entire volume can be computed as shown in Equation 7. Therefore, the bigger
the block size of a volume, the larger the slack space resulting from internal
fragmentation. This is also captured in Figure 1 for various block sizes ranging
from 2–128 sectors per block.

SURE-FIT 435

Figure 1 Hiding a secret share along its hash.

fss
x =

1
2
× bsize

ν (6)

V ss
x = |F | × 1

2
× bsize

ν (7)

Definition 2.3. A cover file is a innocuous looking file on the target volume ν
whose file slack space is used for hiding a secret share.

Property 2.1. There in only one possible pair 〈bi, fx〉 for a given (i, x).
That is, if there are two pairs 〈bi, fx〉 and 〈bi, fy〉, then either (x == y)
or i �= j has to be true. Therefore, all pairs 〈bi, fx〉 exhibit a one-to-one
relationship.

Every file fx on ν, irrespective of the underlying file system,
has two associated sizes: i) logical size (f ls

x) (Definition 2.4); and
ii) physical size (fps

x) (Definition 2.5). This is another way of looking at
the phenomenon of internal fragmentation. The simplest way to determine the
slack space of file fx is to compute the difference between its logical and
physical size, as shown in Equation 8.

fss
x = f ls

x − fps
x (8)

Note that while the logical size of a file is almost always greater than its
physical size, the two sizes can be equal (Equation 9).

f ls
x ≥ fps

x (9)

Definition 2.4. The logical size of a file is the sum total of all the blocks
assigned to that file. Logical size of a file is the product of the block size on
that volume and the number of blocks assigned to the file.

436 A. Srinivasan and H. Dong

Definition 2.5. Physical size of a file is the size of the actual contents (aka
payload) of the file.

Furthermore, each file is allocated one or more blocks where as any given block
can be allocated to one and only one file. Therefore, each new file created or
copied to ν starts at the beginning of a new block (also due to Property 2.1).
This simplifies their organization and makes file tracking easier as they grow.
However, the mapping of file-to-block denoted by the pair 〈fx, by〉(∀y∈{1,2,...,})
exhibits a one-to-many relationship. Note that a pair 〈fx, by〉 can indeed exhibit
a one-to-one mapping if size of fx is less than the size of a block.

Finally, file slack space has two parts: i) RAM slack; and ii) Drive slack.
RAM slack is the unused space from the end of the physical file to the end of
the sector in which the physical file ends. Drive slack is the unused sector(s),
full or partial, within the last block assigned to the file.

2.2 Impact of System Events on IH in Slack Space

While altering some of the file meta-data such as its name and copying it to
a different location within the volume will not impact the information hidden
within the file slack space. However, actions that alter the payload – both
direct such a content modification, and indirect such a changing the extension
that forces payload alteration, will have varying degrees of impact on the
information hidden in the file slack space. In this paper, we have focused
primarily on file system actions that directly impact a file’s payload. Two key
actions that will alter the file payload are – adding content to the file and
deleting content from the file.

Specifically, deleting content from a cover file is not as much of a serious
threat as adding content to the cover file. This is because when content is
deleted from a file, depending on the size of the deleted content, one or more
blocks are freed and released to the OS for reuse. At this point, logical access
to the block with the secret share is lost, while the secret share itself is intact.
Therefore, as long as the freed blocks of a cover file are not overwritten, the
corresponding secret share can be retrieved if the physical address of the start
of the slack space is known.

On the other hand, when content is added to a file, is the file’s the slack
space this is first utilized. If the contents being added to the file exceeds the
file’s slack space, only then are additional blocks assigned. Hence, when a
cover file grows in size, the contents in its slack space are the first to be
overwritten. Hidden information can also be lost due to numerous other causes.
However, a detailed discussion on this topic is beyond the scope of this paper.
Interested readers can refer to [15, 19, 20, 18, 5] for additional details.

SURE-FIT 437

3 Information Hiding with Tunable Fault Tolerance –
SURE-FIT

3.1 Threshold Secret Sharing Schemes

The concept of secret sharing among n parties has been employed in a
wide array of applications including numerous cryptographic protocols. Some
popular applications include secure multiparty computation [2, 3], proactive
secret sharing [7], secure key management [13, 9], and Byzantine agreement
among participants [16]. However, with the original secret sharing scheme,
there is one major problem – it has zero fault tolerance since all n shares are
necessary to recover the original secret. To overcome this problem, Shamir
presented (t, n)-threshold secret sharing in [21].

A (t, n)-threshold secret sharing is a method of sharing a secret among
a given set of n users such that any subset of t participants constitutes an
authorized set and can recover the secret by pooling their shares together
while no subset of less than t participants can do so [21]. The broad idea of
(t, n)-threshold secret sharing is presented in Figure 5(a).

3.2 IH in Slack Space – Need for Fault Tolerance

Assume a secret file is split into n parts and hidden by distributing them
across the slack space of n different cover files. This secret, without the
concept of threshold sharing, will need all n parts in order to reconstruct
the original secret file. Even if a single cover file grows in size overwriting
the contents in the slack space, then the that “part” of the secret file in the
slack space will be overwritten, either partially or completely. Whatever the
case may be, with just (n − 1) valid parts, the original secret file cannot be
reconstructed. This idea is captured intuitively in Figure 2. This problem can
be overcome by leveraging the threshold secret sharing scheme discussed
in Subection 3.1. Our proposed SURE-FIT framework is one such solution,
which is an adaptive and secure IH framework. One of the key advantages
of this framework is its fault tolerance utilizing threshold-based information
hiding.

3.3 SURE-FIT Framework Overview

SURE-FIT is a threshold-based IH mechanism that is robust to modifications
to file contents, read-write errors, bad sectors, disk de-fragmentation among
others, as long as t out of n shares have survived. Let us assume that a secret file

438 A. Srinivasan and H. Dong

Figure 2 Flow diagram of secret file recovery with the basic model [24].

f i
sec is processed into n secret shares. Let each secret share of f i

sec be denoted
as si

j and let Si
j the set of all secret shares of a message f i

sec (Equations 10, 11).
Now, we have the following:

Sj
i =

{
si
0, s

i
1, . . . , s

i
n−1

}
(10)

Sj =
{
si
0|j = {0, 1, . . . , n− 1}} (11)

Let all element of the set Si
j be hidden in the slack space of a unique file on

a target volume. The high-level process flow diagram for the framework is
presented in Figure 3. As can be seen, SURE-FIT accepts as input a secret file
(fsec) from the user. It then generates cryptographically secure secret shares
from the original secret file using the polynomial method of computation. It
then passes the shares to a hash computation engine. Finally, each secret share
and its corresponding hash are concatenated resulting in a secret “chunk” of
the form [share || hash]. Each chunk is then written to the slack space of
a unique cover file, and this idea is captured in Figure 5(a). Simultaneously,
SURE-FIT also generates a map file for fsec with an entry for each hidden
chunk [share || hash], resulting in n entries. Each map-file entry is a pair of
the form < sid, pabo >, where pabo is the physical address of the chunk’s start
byte-offset.

Once hidden, the secret file f i
sec can be recovered in its original form only

when a minimum of t valid shares are input to the recovery function, where
t ≤ n. Note that any subset of t valid shares will suffice the need. SURE-FIT
provides in-place integrity verification of extracted shares to ensure secret file
recovery is attempted only when t valid shares are available. Therefore, each

SURE-FIT 439

Figure 3 Hiding a secret share along its hash.

chunk [share || hash] upon retrieval is subject to integrity verification. Only
shares that are valid are copied to a temporary recovery buffer. This process
of chunk validation continues till t valid shares are available in the temporary
recovery buffer. The t secret shares are then collectively processed to recover
the original secret file. The whole process of IH with fault tolerance is captured
in Figure 4.

Figure 4 Flow diagram of secret file recovery with the proposed SURE-FIT Model. countSH
rightarrow track n; countTH rightarrow track t.

440 A. Srinivasan and H. Dong

3.4 SURE-FIT Framework Working

Algorithm 1: Generate List of Available Cover files.

Input: Lall
fcov

and Lused
fcov

Output: Lfree
fcov

/* Add unused cover files to the temp list */
Ltmp ← Lall

fcov
\Lused

fcov

if Ltmp == ∅
then

return ∅
end
else

while Ltmp �= ∅ do
/* Add temp list elements to list of free

cover files */
Lfree

fcov
← Ltmp

⋃
Ltmp.getNextF ile()

end
return Lfree

fcov

end

One of the most critical aspects of SURE-FIT is that 4t is a tunable
parameter. Therefore, by its value in the range t ∈ {2, 3, . . . , (n − 1)}, it
is possible to empirically establish an optimal value for t specific to the
IH requirements and constraints of the target volume. The values of t = 1
and t = n present trivial boundary conditions, each of which has a security
weakness.

A value of t = 1 implies that each secret share is the complete secret
message. This scenario is vulnerable to single point failure, since the adversary
need only to obtain a single share to extract the entire secret file in its original
form. On the other hand, a value of t = n is very secure and robust to
cryptanalytic attacks since each share in the slack of a unique file will have
a different payload, consequently making it hard for the adversary to obtain
any type of information regarding slack space data. However, the scheme is
extremely sensitive and has zero fault tolerance. Loss of even a single share
due to cover file modifications, block corruption, or defragmentation will make
it impossible for the original secret message to be recovered. This scenario is
presented in its generic for in Figure 5(b) and a specific case of t = n = 5 is
presented in Figure 5(c).

SURE-FIT 441

Figure 5 SURE-FIT (n, t)-threshold based IH.

Algorithm 2: Hide Secret Shares & Generate Map File.

Input:
∣∣Si

∣∣ = n, and Lfree
fcov

Output: f i
map

/* Number of shares hidden initialized to 0 */

Si
hid ← 0

/* Number of shares to be hidden initialized to n */

Si
rem ← {Si}

f i
sec = Si

j =
∑n−1

j=0 Si
j

f rem
sec ← fall

sec − fhid
sec

init.F ile(fmap, null)
init.bufblock(null)
While f rem

sec �= 0 do
if ssfx

c < f rem
sec then

bufblock ← [f rem
sec − ss f cov

x]
f rem

sec ← [f rem
sec − ss f cov

x]
end

else

442 A. Srinivasan and H. Dong

bufblock ← f rem
sec

ssf cov
x ← bufblock

bufblock ← f rem
sec

if f rem
sec �= 0 then

fmap ← gen.MapFile()
end

else

fenc
map ← enc.F ile(fmap)

end

end

end

To achieve a balance between fault tolerance and single-point failure, we
will empirically determine an optimal range for threshold t under our proposed
SURE-FIT using the referenced real-world systems [12] as the benchmark. In
the following paragraphs, we provide the step-by-step working of the proposed
SURE-FIT:

• Step-1 Process secret file into n secret shares.
The contents of the secret message to be hidden are pre-processed. During
pre-processing, the secret message is mapped to Zp such that fsec ∈ Zp.
Subsequently, (t− 1) elements are randomly chosen from Zp, and these
(t − 1) elements are denoted as {a1, a2, . . . , a(t−1)}. Additionally, the
user needs to set a0 = fsec. The secret file to be hidden using the threshold
scheme is interpreted as a binary string as shown in Equation 12, where
np is a prime number such that np ≥ n, and d > 0 denotes the bit-
length of the secret share. In Equation 13, each of the (np − 1) shares is
interpreted as d -bit strings.

s ∈ {0, 1}d(np−1) (12)

s = {s1, s2, . . . , s(np−1)} =
np−1∑

i−1

si ∈ {0, 1}d (13)

We have s0, which is a zero string, as shown in Equation 14, from which
we have Equation 15.

s0 = 0d (14)

s0 ⊕ a = a (15)

SURE-FIT 443

At this point, the secret shares can be computed as presented in
Equation 16.

si =
{
a(xi)|i = {0, 1, . . . , n− 1}} (16)

Additionally, an MD5 hash value is generated for each share si and
appended to the share. The process of generating secret shares, hash
value for each share, and appending each share and its corresponding
hash value is performed offline by the message originator.
• Step-2 Hide each secret share in a distinct cover file slack space.

The secret shares generated from the given secret file are now each written
to the slack space of unique files on the target storage volume ν. When
hiding the secret shares, the user creates a map file fmap with the physical
address of the byte offset for each share. The fmap also includes a hash of
the original secret messageH[fsec]. The fmap can be optionally encrypted
using an asymmetric algorithm making it easy to exchange encrypted data
with colluding partners. Finally, the user can exchange the fmap offline
with colluding partners to ensure complete secrecy.
• Step-3 Reconstruct the original secret message.

The secret message extractor() binary reads the map file fmap and
extracts one share of the secret message at a time, verifying the integrity
of each extracted share. This process continues until t valid shares have
been extracted. At this point, the rebuild() binary is invoked, which
will take as input the t valid shares and output the reconstructed original
message. At this point, msg verify() binary is invoked to authenticate
the recovered secret message. This is done by computing the hash of the
recovered secret message and comparing it to the hash of the original
secret message included in the map file.

If the extractor() binary completes extracting all hidden secret
shares without successfully recovering t valid shares, then it terminates
with a message to the user. Note that a user intending to recover the
original secret message has to successfully extract a minimum of t valid
shares. This set of t valid shares constitute a qualified subset of secret
shares S′ ⊆ S.

Table 2 provides a matrix summarizing the different cryprographic primitives
that are available for our IH purposes. The matrix specifies the security
objective(s) each identified cryptographic primitive satisfies. The matrix also
notes the type of cryptographic key used by each identified primitive. In our
prototype implementation, we have used the “hash” primitive, as discussed

444 A. Srinivasan and H. Dong

Table 2 Summary of cryptographic primitives and the security objective(s) each satisfies

Cryptographic Primitive

Security Objective Hash MAC Digital Signatures

Message Integrity
√ √ √

User Authentication X
√ √

Non-Repudiation X X
√

Cryptographic Key None Symmetric Asymmetric

above, for simplicity. However, the proposed IH framework can be easily
extended to use other primitives based on the specific security objectives that
need to be satisfied.

4 SURE-FIT Validation

4.1 Prototype Environment and Evaluation Parameters

With threshold secret sharing mechanisms, there are three key aspects: i) total
number of shares n, ii) threshold value t, and iii) survivability robustness
(n− t). In addition to n and t, other parameters that impact the performance
of the framework include νsize, fsize

sec , and |F |. All these parameters were
tweaked and fine tuned, one at a time, to optimize the performance of
SURE-FIT on our prototype implementation on a Ubuntu Linux machine.
Fault tolerance capability of SURE-FIT was measured in terms of secret
shares’ survivability, which was in-turn measured through secret message
recover-ability. In our emperical evaluations, we construct the secret mes-
sage shares using the threshold secret sharing algorithm presented in [21].
Below are key parameters we consider in our prototype implementation
of SURE-FIT.

• n = {25, 30, 35, 40, 45, 50}
• t ≤ n2 �• νsize: 100K, 250K, and 500K blocks
• (bsize

ν): 2048 bytes

Below, we present two scenarios discussing the impact of the three parameters
on the robustness and fault tolerance capabilities of SURE-FIT.

• Scenario-1: Lower threshold value with higher (n − t) augments
resilience of SURE-FIT with robust fault tolerance. User can recover
the secret message in its entirety even if a significant number of shares

SURE-FIT 445

are lost. Essentially, if the number of shares that survive nsurvive ≥ t,
the original secret message can be successfully reconstructed from the
surviving shares. However, keeping t low, irrespective of n, increases the
risk of guessing or brute-force attacks.
• Scenario-2: Keeping both n and t high increases the space and time

complexity of recovering the secret file in its entirety. However, such a
system will have very robust fault-tolerance and can recover the secret
file even if a significant number of secret get corrupt over time.

During message reconstruction, we divide the set of n extracted of secret
chunks into two subsets: i) nsurvive – shares that survive and are intact; and
ii) ncorrupt – shares that get corrupted and are now unusable. If all chunks are
extracted validated for integrity, then we have:

n = nsurvive

⋃
ncorrupt (17)

4.2 Cover File Modifications & Recoverability

To evaluate the performance of our proposed IH techniques when cover files
are modified, we measure the probability of survival of cover files against the
threshold parameter t. To accomplish this, we randomly select files on target
disk ν and modify them by growing them by a few bytes. Then, we measure
the percentage of the n shares were lost due to growth in cover file size and
if our mechanisms survive with at least t valid recoverable shares. During
our evaluation, we did test adding new files to ν after deleting existing files.
However, none of the newly added files were written to those blocks that were
freed previously when files were deleted. For empirical analysis, we vary the
percentage of files on ν that are modified. Since the files are selected randomly,
we believe the representation of files from both Fnor and F cov are proportional
to their ratio. We measure the intersection of the set of modified files and
cover files. As long as the resulting set intersection has a cardinality less than
threshold parameter t, the secret message can be successfully recovered. From
the results presented in Figure 6, we see that when as few as 5% of files from
the set F grow in size, varying n has very little impact on survivability under
the SURE-FIT framework. Approximately 95% of the chunks survive. Even
when 25% of files from F grow in size, on average 75% of shares survive. This
can then be used to fine-tune the threshold in accordance with the percentage
of files grown.

446 A. Srinivasan and H. Dong

Figure 6 SURE-FIT survivability when cover files grow.

4.3 Disk Block Corruption & Recoverability

We evaluate the robustness of SURE-FIT in the face of block corruption on
the target storage volume which could be erratic and random or due to wear.
Additionally, blocks can go bad either in a specific locality or randomly across
the disk. We evaluate both scenarios through our prototype. To this aim, we first
hide the secret file on the target disk and generate the map file. Subsequently,
we evaluate the above two scenarios of block corruption as follows and corrupt
random blocks of the disk by marking blocks as “corrupt”. Then, we execute
our “recovery” algorithm using the map file generated during hiding. If the
algorithm encounters a secret share within a “corrupt” block, that share is
deemed no longer usable and is discarded. With this, we determine what
percentage of the n shares were lost due to block corruption if our mechanisms
survive with at least t valid recoverable shares. In our empirical studies, we
have varied the following parameters: νsize was set to 100, 250, and 500
thousand blocks; n was varied from 25 to 50 in steps of 5; disk corruption rate
was varied in 5% increments from 5 to 50%, and t upto n

2 . From the results
presented in Figure 7, we see that in almost all scenarios, secret chunks greater
than t survive the corruption. For those scenarios in which the surviving shares
are close to t, it was determined that at t = 45%, SURE-FIT will have enough
tolerance to survive.

We take this a step further to determine the survivability of our mechanisms
by gradually increasing the percentage of corruption and observing the number

SURE-FIT 447

Figure 7 SURE-FIT survivability when blocks on ν get corrupt after hiding the shares.

of valid secret shares that survive. This has two benefits: i) it helps evaluate
the robustness of our mechanisms, and ii) it determines the empirical value
for the threshold corruption rate that our mechanisms can withstand.

4.4 Disk Defragmentation & Recoverability

Similar to internal fragmentation, file systems can also suffer from external
fragmentation. External Fragmentation is the creation of holes of one or more
contiguous blocks on the file system due to the creation, modification, or
deletion of files. The effect of external fragmentation is compounded when
fragmented files are deleted as this leaves numerous small regions of free
spaces (or holes). Eventually, the system counters this by coalescing all free
spaces using the defragmentation process. Defragmentation is advantageous
and relevant only to file systems on electromechanical disk drives. They are
unnecessary and rather counter-productive on solid-state drives with random
access technology.

We have evaluated the performance of SURE-FIT and its robustness in
the face of a defragmentation on the target disk. To this aim, we take drives
from real-world that exhibit external fragmentation and hide a secret file using
SURE-FIT framework within the slack space of allocated files. Then, we run
the system defragmentation routine followed by our “recovery” algorithm,

448 A. Srinivasan and H. Dong

Figure 8 SURE-FIT survivability when ν is defragmented.

Table 3 Impact of n, t, and (n − t) on fault tolerance

n t n − t Fault-Tolerance

High High Low/Medium Low/Medium

Low High Low Low

High Low High High

Low Low Low Low

with the corresponding map file, to recover the original secret file in its entirety.
The results from these experiments are presented in the Figure 8. For greater
percentages of a system’s blocks that are in use, the percentage of secret shares
that survive drops drastically. However, despite the relatively large drop, the
percentage of shares that survive is still comfortably above the threshold, and a
sufficient amount of valid shares are present to reconstruct the secret message.

5 Analysis and Observations

Since the secret file fsec is processed into n secret shares, any t of which
can be pooled to recover the secret file fsec in its entirety, it is critical to
extract and process the least number of valid shares, the threshold number t.
However, as discussed in Section 2, cover files can get modified or deleted

SURE-FIT 449

and storage volume can get defragmented among other things which will
result in potential loss of the secret message shares. Therefore, it is imperative
that there be some mechanism to detect corrupt shares before proceeding to
reconstruct the original secret message. SURE-FIT computes a hash for each
secret share generated, appends the hash to the end of the corresponding share,
and then writes it in the slack space of a unique cover file alongside the secret
share itself.

SURE-FIT indeed appears to have key characteristics of a steganographic
technique. However, on a closer look, unlike steganography-based IH, SURE-
FIT never alters the actual payload of the cover file. Instead it relies on
effectively utilizing the unused space within the last allocated block of the
cover file, which is otherwise inaccessible to both the user and the OS. While
inclusion of the in-place integrity verification mechanism enables SURE-FIT
to detect corrupt shares instantly, it also adds to the computation and storage
overhead. Nevertheless, without such an integrity verification mechanism,
corrupt shares would not be detected until much further in the process, and
reconstruction of the original secret message would fail.

More importantly, detection of failed attempts to recover the secret file
would be of little help without knowing which of the t shares used are corrupt.
The inclusion of in-place integrity verification mechanism saves significant
amount of time that would otherwise be wasted in processing corrupt shares in
an effort to reconstruct the original secret message. Therefore, in our opinion,
the small amount of latency incurred by SURE-FIT for achieving integrity
and minimizing unwanted computation of corrupt shares is a necessary trade-
off. Results comparing SURE-FIT with and without hash and the simple
technique presented in [11] are presented in Figure 9. Finally, analysis of
cover files associated with corrupt shares can be leveraged to further optimize
the performance by avoiding file types that are highly likely to get modified.
The proposed information hiding technique SURE-FIT satisfies the three core
security requirements, namely Confidentiality, Integrity, and Availability. The
small increase in hash computation time is computed and results are presented
in Figure 9.

5.1 Confidentiality

SURE-FIT provides confidentiality of the secret message through (t − 1)-
recovery resistance. Consequently, knowledge of any t′ < t shares of the
secret message is not sufficient to reconstruct the secret message in its entirety.
This security property is enforced across the board and hence applicable

450 A. Srinivasan and H. Dong

Figure 9 SURE-FIT (with and without hash) vs. Simple [24].

to legitimate colluding members and unauthorized third party users. Addition-
ally, the threshold parameter t can be fine-tuned to be robust to different degrees
of collusion. When the colluding users’ group leader has specifics of the
capability of a rogue insider or an outside party, the system configuration, and
the system limitations, the threshold parameter t can be tuned to appropriate
levels preventing collusion among users who have turned malicious or have
been taken over by external malicious actors.

5.2 Integrity

Hashing the secret-shares and hiding them along with the hash value enables
the user to verify the integrity of each and every secret share retrieved before
counting a share toward the required t shares.This not only helps with verifying
the integrity of shares as and when they are retrieved, but also helps minimize
computation in successfully reconstructing a secret from valid shares.

SURE-FIT provides robust security against message integrity attacks.
Hash values using a function such as MD5 are computed for each of the n secret
share. The hash values are then appended to their corresponding secret share
and finally written to the slack space of files on ν. When a colluding partner
retrieves the shares to construct the secret message, each secret share is verified
with its hash, only when the integrity check succeeds, the corresponding secret
share is counted and included towards the required t valid shares.Additionally,
a hash value is computed for the secret message as a whole and stored in map
file. entire secret file.

SURE-FIT 451

5.3 Availability

Availability is perhaps the most complex security property to achieve.
A popular solution to enforcing availability of information or any other
resource is through redundancy. In our proposed SURE-FIT, user’s knowledge
of any t′ ≥ t is sufficient and required to recover the original secret message
in its entirety. This security property provides reliability of the technique by
assuring recoverability of the secret message in the face of accidental or
intentional data loss. Such loss could for numerous reasons such as cover
file modification, disk block corruption, cover file deletion and block’ reallo-
cation, erasure of free space, etc. To this aim, it is imperative that the user
optimize the number of shares n, and the threshold parameter t relative to n.

6 Related Work

In classical data hiding, data is hidden in places that tools don’t typically
look. Metasploit’s Slacker [1] hides data in the slack space in both FAT and
NTFS systems. FragFS [25] hides data throughout an NTFS system’s MFT.
RuneFS [6] hides data in bad blocks, since most tools will simply ignore bad
blocks. WaffenFS [4] will hide data in the ext3 journal. KY FS [6] hides data
in directory entries. Data Mule FS [6] hides data in the reserved i-node space.
Data can be hidden in unallocated pages of Microsoft office files, so it may
appear to be a regular word document.

In [8], authors have presented the following as the primary goals of Anti-
forensics – Avoiding detection, Disrupting information collection, Increasing
the examiner’s time, and Casting doubt on a forensic report or testimony. Two
additional goals identified further include – Subverting the forensics tool and
Leaving no evidence that an anti-forensic tool/process has been run.

Marcus Rogers has identified the following as the broad areas of Anti-
Forensics in [17] – Data Hiding, Artifact Wiping, Trail Obfuscation, and
Attacks against the CF Process and tools. Our proposed SURE-FIT falls
under “Data Hiding” and “Trail Obfuscation” categories presented by Marcus
Rogers. Thompson and Monroe [25] have categorized information hiding
into the following three broad categories – 1) Out-of-Band, 2) In-Band, and
3) Application Layer and our proposed SURE-FIT falls under the category of
“In-Band” according to [25]. Srinivasan and Wu [23] have proposed a novel
steganography technique for data hiding using duplicate file names, which
exploits a subtle yet serious file system vulnerability. This is the only other
work that, unlike contemporary steganographic techniques, uses merely the

452 A. Srinivasan and H. Dong

cover file name for information hiding and not actually modify data in the
cover file.

StegFS [10] is one other steganography related work that works similar to
our technique in that it does not modify the contents of the cover file. However,
it is important that we draw the distinction clearly at this point. StegFS is a
modified ext2 file system that hides encrypted data in unused blocks of the
file system. Additionally, it renders the hidden data to look like a partition in
which unused blocks have recently been overwritten with random bytes using
some disk wiping tool.

In [24], Srinivasan et al. have presented a technique for hiding information
in the slack space of files. Their proposed technique once again suffers from
the lack of fault tolerance capabilities. Like all the other techniques, this
method is also vulnerable to loss of even a single byte of information hidden in
the slack space of a file. The reason for the blocks to appear as overwritten with
random data is because both encrypted data and random data have very high
entropy values ranging between 7.5–8 bits-per-byte. Entropy is the measure
of randomness of data, and higher the entropy value of given data the more
random that data is and hence less predictable.

In [24], authors have tested the following two scenarios and measured the
resulting entropy of the blocks – 1) entropy of an encrypted data file with
ASCII characters – which had an entropy value of 7.89, and 2) entropy of a
blank encrypted volume – TrueCrypt – which had an entropy of 7.99. Note
that the higher the entropy value, the more random the data, where as the lower
the value, the more uniform the data. Interested readers may refer to [14] for
further details on taxonomy and applications of IH techniques.

7 Conclusion and Future Work

In this paper we have presented SURE-FIT, a novel information hiding
framework. The proposed framework enables fault tolerant information hiding
in slack space of files on secondary storage drives. Our proposed SURE-
FIT is an asynchronous and first of its kind “Digital Dead Drop” robust to
detection and data loss with tunable fault tolerance. SURE-FIT leverages
fundamental cryptographic primitives that are provably secure, a variation
of Shamir’s threshold secret sharing scheme [21], to achieve its robust fault
tolerance. This augmented technique provides reliability when saving secret
data in the slack space of existing allocated files that serve as the cover file.
Unlike existing IH techniques, SURE-FIT achieves robust security and stealth
of hidden information. Most importantly, it is the reliability and fault tolerance

SURE-FIT 453

capabilities of SURE-FIT that clearly differentiate it from other state-of-the-art
IH tools and techniques. This is a critical requirement given that the operating
environment is highly dynamic and can potentially overwrite the contents in
slack space. The framework computes the hash of each secret share and saves
it along with the corresponding share in the slack space. During recovery
process, SURE-FIT makes use of in-place integrity verification mechanism to
validate secret chunks immediately upon retrieval. Any chunk that is corrupt
while at rest will be discarded. This ensures that reconstruction of the original
secret message is not attempted until t valid shares are retrieved into the
temporary recovery buffer. Finally, through a prototype implementation on
a Ubuntu system, we have validated the robust fault tolerance and secret
survivability under the SURE-FIT framework.

References

[1] Metasploit slacker.
[2] Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988). Completeness

theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the twentieth annual ACM symposium on Theory of
computing, 1–10. ACM.

[3] Cramer, R., Franklin, M., Schoenmakers, B., and Yung, M. (1996).
Multi-authority secret-ballot elections with linear work. In Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 72–83, Springer, Berlin, Heidelberg.

[4] Eckstein, K., and Jahnke, M. (2005). Data Hiding in Journaling File
Systems. In Digital forensic research workshop (DFRWS), 1–8.

[5] Fu, S., and Xu, C. Z. (2007). Exploring event correlation for failure
prediction in coalitions of clusters. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing (p. 41). ACM.

[6] Grugq. (2005). The art of defiling.
[7] Herzberg, A., Jarecki, S., Krawczyk, H., and Yung, M. (1995). Proactive

secret sharing or: How to cope with perpetual leakage. In Annual Inter-
national Cryptology Conference, 339–352. Springer, Berlin, Heidelberg.

[8] Liu, V., and Brown, F. (2006). Bleeding-Edge Anti-Forensics. Presenta-
tion at InfoSec World Conference and Expo.

[9] Marsh, M. A., and Schneider, F. B. (2004). CODEX: A robust and secure
secret distribution system. IEEE Transactions on Dependable and secure
Computing, 1, 34–47.

454 A. Srinivasan and H. Dong

[10] McDonald, A. D., and Kuhn, M. G. (1999). StegFS: A steganographic
file system for Linux. In International Workshop on Information Hiding,
463–477. Springer, Berlin, Heidelberg.

[11] Medsger, J., and Srinivasan, A. (2012). ERASE-entropy-based san-
itization of sensitive data for privacy preservation. In Interna-
tional Conference Internet Technology and Secured Transactions,
427–432. IEEE.

[12] Medsger, J., Srinivasan, A., and Wu, J. (2015). Information Theoretic
and Statistical Drive Sanitization Models. J. Info. Privacy and Sec., 11,
97–117.

[13] Pedersen, T. P. (1991). A threshold cryptosystem without a trusted
party. In Workshop on the Theory and Application of Cryptographic
Techniques, 522–526. Springer, Berlin, Heidelberg.

[14] Petitcolas, F. A., Anderson, R. J., and Kuhn, M. G. (1999). Information
hiding-a survey. In Proceedings of the IEEE, 87, 1062–1078.

[15] Pinheiro, E., Weber, W. D., and Barroso, L. A. (2007). Failure Trends in
a Large Disk Drive Population. In FAST (Vol. 7, No. 1, pp. 17–23).

[16] Rabin, T., and Ben-Or, M. (1989). Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, 73–85. ACM.

[17] Rogers, M., and Lockheed, M. (2005). Anti-forensics. Lockheed martin.
San Diego, California. Available at: http://cyberforensics.purdue.edu/
documents/AntiForensics\LockheedMartin09152005.pdf

[18] Schroeder, B., and Gibson, G. (2010). A large-scale study of failures
in high-performance computing systems. In IEEE Transactions on
Dependable and Secure Computing, 7, 337–350.

[19] Schroeder, B., and Gibson, G. A. (2007). Disk failures in the real world:
What does an mttf of 1, 000, 000 hours mean to you? In FAST, 7, 1–16.

[20] Schroeder, B., and Gibson, G. A. (2007). Understanding failures in
petascale computers. In Journal of Physics: Conference Series (Vol. 78,
No. 1, p. 012022). IOP Publishing.

[21] Shamir, A. (1979). How to share a secret. Communications of the ACM,
22(11), 612–613.

[22] Srinivasan,A., Dong, H., and Stavrou, A. (2017). FROST:Anti-Forensics
Digital-Dead-DROp Information Hiding RobuST to Detection & Data
Loss with Fault tolerance. In Proceedings of the 12th International
Conference on Availability, Reliability and Security, 1–82. ACM.

SURE-FIT 455

[23] Srinivasan, A., Kolli, S., and Wu, J. (2013). Steganographic information
hiding that exploits a novel file system vulnerability. Int. J. Sec. Net., 8,
82–93.

[24] Srinivasan, A., Nazaraj, S. T., and Stavrou, A. (2013). HIDEINSIDE—A
novel randomized & encrypted antiforensic information hiding. In Inter-
national Conference on Computing, Networking and Communications
(ICNC), 626–631. IEEE.

[25] Thompson, I., and Monroe, M. (2006). FragFS: An advanced
data hiding technique. BlackHat Federal. Available at: http://www.
blackhat.com/presentations/bh-federal-06/BH-Fed-06-Thompson/BH-
Fed-06-Thompson-up.pdf

[26] Wikipedia. Dead drop. https://en.wikipedia.org/wiki/Dead drop

Biographies

Avinash Srinivasan is currently an Associate Professor in the CIS department
at Temple University (TU) and a Fellow of the National Cybersecurity Institute
at Washington D.C. Dr. Srinivasan earned his Bachelor of Engineering in
Industrial & Production Engineering (1999) from University of Mysore (India)
with Honors. He also has an M.S. in Computer Science from Pace University,
(NY 2003 and a Ph.D. in Computer Science from Florida Atlantic University
(FL, 2008). Dr. Srinivasan’s research interests broadly span the areas of
Cybersecurity and Digital Forensics. He has 47-refereed publications in
scholarly conferences and journals, including IEEE-INFOCOM, ACM-SAC,
IEEE-ICC, IEEE-ICDCS, and IEEE-MALWARE. Since 2008, Dr. Srinivasan
has been involved as PI/Co- PI on federally funded research from agencies
including DoEd, DoJ, DHS, NSF, and DoD/NAVY. Dr. Srinivasan has over
400 hours of formal training in Cybersecurity and Digital Forensics.

456 A. Srinivasan and H. Dong

Hunter Dong attended Temple University where he earned his Bachelor
of Science in Computer Science and graduated cum laude (2017). He
was accepted into and participated in National Science Foundation funded
Research Experiences for Undergraduates (REU) program in summer of
2016. Dong also graduated from George Washington High School (2013)
where he earned his International Baccalaureate (IB) Diploma and achieved
an AP Scholar with Distinction award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

