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Abstract

As android devices have increased in number in the past few years, the
android operating system has started dominating the smartphone market.
The vast spread of android across all the devices has made security an
important issue as the android users continue to grow exponentially. The
security of the android platform has become the need of the hour because
of an increase in the number of malicious apps and thus several studies
have emerged to present the detection approaches. In this paper, the android
components have been reviewed to propose a threat model that illustrates the
possible threats that are present in the android. The researchers also present
the attack taxonomy to illustrate the possible attacks at various layers of the
android architecture. Experiments demonstrating the feature extraction and
classification using machine earning algorithms have also been performed.
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1 Introduction

Android is an open-source mobile operating system and is based on the Linux
kernel. Android has gained significance in recent years in the market and
the number of Android users has increased significantly [1]. At this point, it
becomes very necessary for the developers to take care of the security and all
the possible threats to the private data of the android user. Android being an
open-source operating system has gained the attention of many hackers and
attackers as well. Android applications are the software for android operating
systems which can be downloaded from the Google play store and by using
third party applications also. It is important to note that as of March 2020,
the number of malware samples per month is almost half a million [2]. This
growth is directly proportional to the increase in the number of Android users.

It is however a disturbing fact that the number of users unwary of
the possible malware apps is more than aware users. The malware writers
make use of this situation to install their malicious programs on the devices
of such users [2]. As the number of malware apps begins to explode, it
becomes important to understand how malware apps function. Android is
an open-source operating system and thus provides numerous opportunities
to developers and malware writers alike. The developers make use of this
opportunity to improve their experience by downloading e.g. a different
operating system than the one provided or making some code changes to suit
their needs. The attackers modify the code to exploit the vulnerabilities [3] to
gain control for malicious intentions.

Android is vulnerable to attacks in any of its architecture layers such
as the kernel layer, application layer, etc. Existing code defects or issues
provide attackers an attack surface to launch their attacks. Research in the
direction of malware analysis includes studying the different components
of Android OS and an Android application [4]. The analysis encompasses
the usage of features obtained statically or dynamically and then using state
of art technologies, to name a few, machine learning algorithms, or deep
learning [5]. These approaches help identify the presence of malware and the
family it belongs to [6]. The different approaches studied included advantages
over the other and also limitations faced.

Malware Analysis is important in Android as the usage of mobile devices
increases by the day. It is important to identify any threats emerging for
these devices and stop them from doing any damage to the device or user
of the same [7]. This article provides an in-depth explanation of the android
architecture and threat model of android to get a better understanding of how
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android apps may be affected. Understanding android architecture becomes
important to detect malware apps. The threat model of android becomes
important for understanding the vulnerabilities of android and how a breach
can happen due to various reasons. Case studies have been included in this
article to provide a clear understanding of the features and classification [8].
Android implementation being an open market model, can lead to various
breaches and put sensitive information of users at stake.

The major contribution in this paper is

• Propose a threat Model that helps understand the Android vulnerabilities
• Present an attack taxonomy for Android for each of the layers
• Describe the various detection approaches and tools to provide a deep

understanding that help analysis using these techniques
• Demonstrate the feature extraction process and machine learning imple-

mentation for classification

The rest of the paper is organized as follows – in Section 2 the background
about android by explaining its architecture and then the layout of an android
apk has been discussed. Section 3 presents a threat model followed by
attack taxonomy in Section 4. Section 5 includes details for the detection
approaches, its tools, and case studies. Section 6 details the related work for
Android malware analysis and techniques. In the end, Section 7 presents the
future directions and 8 concludes the paper.

2 Android – The Background

Before beginning the analysis of Android apps for identifying whether it
is a malware or not, reader should be able to understand the Android
architecture and an Android app’s structure. This section includes details
about the architecture of Android presenting all the different components
of the stack-based Android operating system. An Android app consists of
different types of artifacts such as files and folders which contribute to the
working of the app. These files present a major source of information to
the malware analyst as several important features can be used for malware
analysis.

2.1 Android Architecture

It is important to understand the basic architecture of Android to understand
its different components and how these are organized. Android architecture
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Figure 1 Android architecture.

[9][10] mainly consists of 5 layers as shown in Figure 1. The following text
explains the different layers and their components.

• The Android Applications – Applications in android are of two
types: Pre-Installed- These include original equipment manufacturer
(OEMs), calculators, etc. The package of these apps resides at /sys-
tem/app/directory. Second is user-installed-these are installed by the
user from app markets like Playstore, etc. These apps and updates to
pre-installed apps reside at /data/app directory. Android uses a special
platform key for pre-installed apps packages. Apps signed with this key
are special as they have system user privileges. For both pre-installed
and user-installed apps, android uses a signature to prevent unauthorized
app updates.

• Android Framework – The Android framework consists of different
packages and classes that the developer can implement for performing
common functions. It is like an interface between the app and the
runtime environment.

• Application Components – There exists four main components dis-
cussed as follows. Activities – It enables the user of the system to
be able to take action on the smart device. It is in the form of an
application component or UI and is available for the user to view. Broad-
cast Receivers – It handles the communication established between the
android operating system and android apps. These are useful in case of
implicit intents and apps can receive intent corresponding to a specific
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task. Services – It handles background processing that is associated with
applications. E.g. when someone downloads something from a website.
Content Providers – It handles the data and database management of
an android application. Some additional components include Intents.
These are message objects that are sent from one app component to the
other. These contain information such as the action to be performed, the
component to which the intent is being targeted, and some additional
flags. All common actions involve intents to be passed around the
system.

• Dalvik Virtual Machine – The Dalvik VM is a virtual machine for
Android devices. It is register-based, as opposed to JVM which is stack-
based. Its syntax looks like JAVA and also it works the same as JVM
but it cannot be used because of its large memory consumption which
is not possible in small devices like Smartphones, Tablets, etc. The
overall development process is that first a developer writes code in what
syntactically looks like JAVA code. This source code compiles into a
.class file. The resultant class file is then converted into Dalvik byte
code. All class files in the source code together form the classes.dex
file which is the executable file for the DVM. The byte code is loaded
and then interpreted by Dalvik VM. The zygote is the first process that
starts as soon as the device boots up. This process has the responsibility
of loading and starting all the other services and libraries that are to be
used by the Android. Thus, the Zygote is a loader for the different apps
and works by creating copies of itself. This also creates some interesting
areas of attacks. Zygote also starts System server processes. If it is killed,
then the system comes into a reboot state.

• Native Code- Android system consists of several Native Code based
files. It consists of Libraries that may be vendor-specific and non-vendor
specific. It also contains Core system services that setup the underlying
OS environment and native android component. These libraries are sus-
ceptible to memory-based attacks because of code-based vulnerabilities
in the Native code files.

2.2 Android Application Structure

It is important to understand the Android package structure before beginning
with the reverse engineering of the app. An Android app is packed into an
APK file consisting of several files and folders. In particular, the Android
manifest.xml file stores the app’s metadata such as package name, required
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permission, components like activities, services, broadcast services, content
providers, etc. The folder res stores icons, images, string/numeric/color, con-
sonants, UI layouts, menus, animation compiled into binary. The folder assets
contain the application’s assets which can be retrieved by AssetManager.
The executable files classes.dex stores the Dalvik byte code files that are
understandable to Dalvik VM. The Meta-INF file contains the information
related to the signature of the app developer certificate. These are explained
as below
AndroidManifest.xml: Every Android app contains a Manifest XML which
contains the following:

• unique package name and version information.
• Activities, Broadcast Receivers, Services, and Instrumental definitions.
• Permission requested
• Information on external libraries packaged and used by the application.
• Additional supporting directives such as UID preferred installation

locations and UI.

META-INF: It is a directory that contains:

• MANIFEST.MF: the manifest file
• CERT.RSA: the certificate of the application
• CERT.SF: the list of resources and digest of corresponding lines in

MANIFEST.MF file

3 Android Threat Model and Attack Surfaces

Android is an open-source Operating System for mobile applications that can
easily be attacked by hackers. The adoption of an open market model has
made Android vulnerable to attacks from outside. Users have easy access
to alternative app markets other than Google’s play store from where apps
that are not available on the play store, can be downloaded [11]. There is
no implementation of isolation mechanisms for apps downloaded from third
parties. These apps can easily abuse the granted permissions and affect other
apps [12]. The Android Debug Bridge can help users install an app without
having to use any app markets. Using a PC, any app can be installed on the
android device. The attacks on Android are very different from attacks on
operating systems, computers, or servers. The reason is that mobile phones
are portable which leads to the possibility that they can easily be lost or stolen.

They are portable and thus can be connected to untrusted networks or
Wifi. Mobile phones are an integral part of users lives and also carry their
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sensitive and private data compared to any other computer, server, or laptop.
Some of the common mistakes committed by the users of the device are
discussed in the following section that becomes a threat to the device and
can make the device vulnerable. Granting of Permission: One of Android’s
main security measures is asking for Permissions at the time of installation. It
can be cumbersome for the user to understand each permission the application
asks for. The users tend to give permissions without understanding them. This
gives malware applications, easy access to the android device.

Rooting of the device: To gain more control of their devices users tend
to root their devices to achieve customization not essentially provided by
the Android system. While rooting the device provides users with more
permissions to use their device, it can also lead to personal data being exposed
to infiltration [13]. Network Level Threat: Connection over insecure network
or fake access point of a network can be the two possible network-level
threats. Connection over an unsecured Wifi network means that connection
is allowing the movement of data without any kind of encryption i.e. in the
form of plain text which is very dangerous. Any hacker present within a
certain range can eavesdrop and collect the information with the use of proper
tools and knowledge. Fake access points: Hackers or attackers can create fake
access points. One may misunderstand these fake access points like the one
provided by some standard organization but it is not the case. They are made
by hackers to access the private information of the user.

Phishing: Phishing is a technique in which the user of the application gets
fooled by the fake SMS or emails. The user responds to these emails and
provides all the personal information which leads to easy access of the user
account to the attacker. Another form of advanced phishing attack allows
the hackers or attackers to act as network operators and send Open Mobile
Alliance Client Provisioning messages to the user. Crypto Jacking attack:
Crypto-jacking is a technique by which the hacker uses the victim’s device
without his/her consent for mining the cryptocurrency. The battery perfor-
mance of the android device suddenly deteriorates and the system shows
that the android device is less on space. Sometimes, this kind of attack
also leads to overheating of the components of the android device. Broken
Cryptography: This type of threat comes into the picture when the developer
has either used a very weak algorithm in the security of the app or has used a
strong algorithm but has implemented it in an insecure manner.

Data Leakage: Data leakage is also known as unintended data leakage. It
takes place when a piece of certain important information that is taken as
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an input by the device is placed in an insecure place in the device and the
malicious apps access that information. It becomes easy for the attacker to
access this information by writing a small piece of code, the attacker can
easily track the location and then access the private data of the victim. There
are many different possible scenarios of data leaks. Example logging, URL
catching, analytics data sent to third parties, etc.

• Data logging: Logging is a technique that is used by developers to debug
while developing an application. Centralized logging is provided by the
android by the Log API using the logcat command. These logs contain
information on what all events are taking place on a device but it should
not contain any private information of the user.

• Analytics data sent to third parties: Some apps are designed in a way that
allows the use of third-party API which may access information like the
location of the device etc.

• URL catching: Some of the web view-based applications have an issue
of leaked URL which allows attackers or hackers to access the browsing
history, cached data and in some cases, the hacker may even get to the
extent of taking the complete session of the user.

The threat model of Android can be illustrated concerning the different
layers of Android architecture as shown in Figure 2. It shows how a layer in
Android open stack architecture can be susceptible to threat. These threats
have been exploited by attackers in the past and the attack taxonomy is
presented in detail in the following section. To present the attack taxonomy of
android, the attacks at various layers of the android architecture like the kernel
layer, the middleware layer consisting of the native components, libraries, and
hardware abstraction layer, the application layer have been discussed. This
taxonomy broken down for each layer helps understand the vulnerabilities
associated with each of the layers.

3.1 Kernel Layer

The kernel is like the heart of the Android ecosystem. The kernel is respon-
sible for all the major functionalities inside the android device which include
management of device drivers, power and process management, etc. So, an
attack on the kernel can tamper with the working of the complete android
device. The kernel is attacked to get the root access of the device. Despite sev-
eral security mechanisms like application sandboxing, cryptographic APIs,
etc, certain vulnerabilities are present in the kernel layer of android. The
vulnerability within the android kernel layer is the most dangerous. Taking
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Figure 2 Android threat model.

advantage of any such vulnerability, an attacker can acquire the ability
to bypass system protection mechanisms and carry out some malicious
behaviour, such as gain root privilege and steal personal data [14].

Attacks Targeting Root Privilege: Attack has been shown in Figure 2 as line
1 [15–17]. There are two types of attacks that come under this category one
is the Droid kungfu Attack and the other one is the Gooligan attack.

• Droid Kungfu attack: It is a malware that comes in the encrypted
form in the repackaged application and it gets decrypted on getting
installed in the device. It is capable of overcoming the Application
sandboxing mechanism. It unlocks all the system files and functions
by gaining the root privilege in the device. DroidKungfu malware
uses the exploits known as RageAgainstTheCage (CVE-2010-EASY)
and Exploid (CVE-2009-1185) to escalate privileges [18]. Such attacks
are prevented by Security Enhanced (SE) Android present in android
devices.

• Gooligan Attack: It is a malware that exploits the zero-day vulnerability
(CVE-2013-6282) found in kernel API, [18] the zero-day vulnerability
is called “zero-day” because it is the duration during which vulnerability
is exposed and used by the attackers while there is no patch provided by
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the vendor. In such kinds of attacks, some malware application is used
to perform the read/write operations on the memory of the kernel.

Attacks targeting memory: Such types of attacks target memory and cause
memory corruption of the device as shown in Figure 2 in line 2. In such kinds
of attacks, the attackers target the bug that is present in the kernel. These
loopholes or bugs are used by attackers, to add malicious content in the kernel
address space or redirect the execution of the kernel to the address space
where the malicious content is present [18]. There are many kinds of attacks
that come under this category like the return to libc attack, jump-oriented
programming attack, return-oriented programming attack, etc. [19, 20].

Attacks targeting the bootloader: Attack has been shown in Figure 2 as line 3.
Bootloader [21] is the piece of code that takes care of what all applications are
needed to boot up so that the device runs properly when switched on. It is also
responsible for the security of the device by ensuring the integrity of the chain
of trust policy [18]. According to the CoT policy, the bootloader has to verify
the integrity of processes in each stage during booting before the execution of
the processes. When the booting of the system takes place then the attackers
find a way to get the root access by putting the malicious code, but here
the security feature of the bootloader comes into play. There are different
bootloaders like Huawei, Qualcomm, Nvidia having certain vulnerabilities
that can be identified using BOOT STOMP [21]. CVE-2014-9798 and CVE-
2015-8893 are vulnerabilities found in the Qualcomm bootloader [18].

Attacks targeting device drivers: A device driver is a way of setting up
communication between hardware and software. Every hardware running on
a device has a specific driver installed with it. Attacking drivers have the
power of making the system unusable. Attackers can attack the driver which
can lead the complete system to crash as shown in Figure 2 line 4. As soon
as the new driver is released in the market the attacker starts finding the flaws
in the code and uses this flaw to attack the kernel of the device. There is
sufficient time between finding that flaw and fixing that flaw, the attacker
makes full use of this time and launches the attack [7], such attacks are called
time of check to time of use (TOCTOU) attacks.

3.2 Middleware Layer

This is the layer just above the kernel layer. It consists of the android
runtime and the native components layer, which further consists of a hardware
abstraction layer (HAL) and all the libraries of android.
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Attack targeting HAL: Hardware abstraction layer consists of the interface
of various applications like GPS, Bluetooth, Wi-Fi, etc. A key reinstallation
attack is one such attack. One mandatory condition for executing such an
attack is that the attacker should be in the Wi-Fi range of the device. Such
kind of attack as shown in Figure 2 line 5, can cause two things one is
that it can steal the personal data and the other is that it can decrypt the
encrypted files as well. Another kind of attack is a brute force attack it
aims at stealing all the private passwords of the system. A brute force attack
can be prevented by incorporating strong encryption algorithms and the Key
Derivation Process (KDP) employing the SCRYPT function for generating a
key-based password [18].

Another attack that targets the drivers of the android system is the Invis-
ible man attack. It can even go to the extent of stealing the bank details. It
gets into the system when the user installs fake Flash updates, disguised as
authenticated ones, from the unauthorized website [18]. In the recent versions
of the android, the security has been improved by providing a separate
hardware abstraction layer for every driver present in the android. It helps in
limiting the privileges and grants only those permissions which are necessary
for the execution of an application.

Attack targeting libraries and native components: Libraries are the most
important part of the android application package file. Most of the libraries
or the core libraries present in the android system are written in C/C++
[22, 23]. Some of them are even responsible for maintaining the security of
the android system but none of them is error-free. Attackers find these bugs in
the libraries and launch an attack on the android system as shown in Figure 2
line 6. All these bugs and errors are fixed in the updated versions of the
libraries.

Attacks targeting third-party libraries: Some faults take more than usual time
to get solved which leads to really serious security threats as that time is
utilized by the user to perform the attack on the device [18, 24]. In 2016,
buffer overflow vulnerability was reported in the getaddrinfo() function; this
function was used to search domain names included in the GNU C library.
The solution to the above-mentioned problem took 7 months during which
attackers caused severe damage by the attacks. Most of the attacks take place
in this layer because some unnecessary permissions are granted by the user
during installation time, some information is so dangerous that once given
will provide open access to the complete system. Such an attack has been
shown in Figure 2 as line 7.
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Many detection tools are present for the detection of attack in the sys-
tem but attackers can easily surpass these tools by using code obfuscation
techniques. Some of the popular tools are WHYPER [25], LibSift, LibScout,
etc. [18] WHYPER is a tool that uses NLP for detection, it has a dataset of
581 applications and an outstanding accuracy of 97.3%.

3.3 Application Layer

Hackers are capable of finding a way to attack any kind of application whether
it is preinstalled, installed using Google play store, or installed using any
third-party source [26]. Some attackers gain root access to the system and
bring the system to a standstill. Some attacks steal private information and
sell it for money or use it to collect the ransom. Attacks that target the
applications mostly cause over usage of memory, battery, and processing
power. The applications that are installed from third-party sources are the
most dangerous ones. Permissions are asked from the user while installing an
application when an application is installed from a source other than google
play store. Then there are certain permissions which are not required for an
application to run but can be asked from the user which the user allows but
can lead to the execution of malicious activity in the background while the
application is running, such as stealing personal information by acquiring
the permission of accessing the messages which are not required to run an
application.

Runtime Information Gathering Attack (RIG) is an attack, as shown in
Figure 2 line 8, through which attackers can accumulate information from
the victim’s system, during the run-time of the malicious application [18].
This attack taxonomy provides a clear view of the different types of attacks
that are possible in the Android system. Having studied these attacks layer-
wise makes it easier to understand the vulnerabilities that are possible in these
layers. Also, it allows the analyst to study the different artifacts that may be
exploited by the attacker. These artifacts help to study the features that can
later be used in the detection of malware. The researchers further study these
detection approaches in the following sections.

4 Malware Detection System

In this section, the malware detection approaches have been discussed. These
approaches are classified as static, dynamic, and hybrid approaches based on
the type of feature being used for detection. Further, the reverse engineering
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tools that have been proposed in past research that aid in the detection of
malware have also been discussed. Two case studies for extracting features
from APKs using the tool MOBSF are also done and their results are also
evaluated. To enable the reader to understand the use of features, the machine
learning algorithms that classify the data into malware or benign have been
explained. Their performance parameters are listed so that the analyst can
compare these algorithms and choose the better out of these.

4.1 Detection Approaches

The malware detection approaches have evolved over the years. While most
research studies discuss the detection mechanisms, in [27], the use of pre-
diction technologies using the cyber kill chain and industrial control system
to reduce cyber-based attacks has been explained. This article discusses the
detection approaches for Android malware analysis. From the signature-
based techniques now the behaviour-based, deep learning-based approaches
are being studied to provide an efficient and faster detection mechanism [28].
In [28], Aslan et al. have presented the malware detection approaches that
can be divided into broad categories viz. static and dynamic. The detection
approach can further be classified using the features that are obtained from
these analyses. It may be a signature-based or cloud-based or behaviour-based
approach which can be decided by choosing the feature obtained after the
application has been statically or dynamically decomposed to reveal its fea-
tures. In [29], Wang et al., have also discussed the static, dynamic, and hybrid
approaches and have explained each of the features that are obtained from
one of these techniques. In the section that follows the different detection
approaches and the features that can be revealed using these techniques have
been studied.

Static Analysis – Static analysis techniques were the most favoured
techniques for detection purposes such as signature matching. The static anal-
ysis techniques work based on extracting several features from the artifacts
present in the application. E.g. in an apk the different files and folders present
in the apk can be used to reveal the features. The researcher can obtain
opcodes, strings, permissions, etc from the different files. The process of
static analysis includes decompressing the apk first to reveal its complete
structure. This will include folders and files. The files such as Manifest.xml
are very important to extract the features related to permissions, intents,
activities, etc. The following text presents a discussion on research works
using the static features [29] such as API class, opcodes, network addresses,



244 C. Negi et al.

Intent, intent filter, permissions, etc. In [30], Arora et al. have discussed
identifying malware by using the permissions in pairs. They compare graphs
built using different benign and malware dataset using the permissions pairs.
In [31], Feng et al. have also used permissions over the neural network for
detection.

In [32], Liu et al. have used the apriori algorithm to identify the permis-
sion combinations and then ranking them in order of threat before feeding
the feature vector to the classification algorithms. In [33], Xu et al. has also
considered using Inter Component Communication (ICC) between the apps
as the means for detection They consider all of the Intent, intent-filter, and
app components while performing the classification. In [34], Octeau et al.
have used probability modeling using the ICC. The components are linked
through ICC and these links are weighted based on probability modeling.
In [35], Jerlin et al. have proposed the use of API Calls as a method of
detection. They first identify the upper and lower boundary for the values
of the features and then applying the Rete algorithm for generating rules to
detect malware. A multi-dimensional naı̈ve Bayes algorithm is later used or
classification. In [36], Garcia et al. have used API and identified them into
categories such as package level and method level. To increase accuracy, they
have also considered reflection and native code as a feature while performing
detection.

In [37], Yong et al. propose to use comparison tools to identify the
changes between the source code and the new code. Then from this change
point build the data flow and from syntax, the analysis gets the statement
block tree. From analyzing the new code also a function call path can be
generated. These all are analyzed to get the data change path. In [38], Nguyen
et al. have considered a special type of CFG called lazy binding CFG. They
first propose to convert the lazy binding CFG to images and then using deep
learning they classify the apk into malware or benign.

Dynamic Analysis – Dynamic Analysis is preferred more nowadays as
the malware writers are smartly hiding the malicious code in the code using
obfuscation and packaging. The malware has evolved over the years and now
the variety of malware includes oligomorphic, metamorphic, polymorphic,
packaged, etc. These can easily evade the static analysis techniques but reveal
their true nature when subjected to dynamic analysis. An apk is executed
either in an emulator or on a real device and all events/actions related to it are
captured through logs. These logs are then used to obtain the features that are
used for further detection. The following text discussed the dynamic features
such as [29] System Calls, Network features, API calls, used permissions,
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Table 1 Features, algorithms, and datasets
Features Machine Learning Algorithms Dataset

API 1. Random Forest, 1NN,3NN, SVM [42]
2. SVM,kNN, Random Forest [43]
3. C4.5, DNN, LSTM [44]

1. Drebin, Virusshare
2. Google Play, Anzhi,

LenovoMM, Wandoujia
3. Benign – Androzoo

Malware – AMD

Permissions 1. NLP (Bag-of-words, Vector space
model) Naı̈ve Bayes, Logistics
regression, SVM, NB-SVM [45]

2. SVM, ID3, RF, NN, KNN and
bagging [46]

1. Google Play
2. StormDroid

Intent 1. SVM [33] 1. Google Play, Drebin

Opcode 1. MLP [47]
2. Manhattan distance, BPNN, SVM,

CNN, SVM [48]

1. Google Play, Drebin
2. Google Play, Drebin

SMS Event, Phone events, Battery feature, User Interaction. In [39], Das
et al. have used system calls as a feature to identify malware. They use strace
and monkey tool to execute the app and get the logs from which the system
calls are obtained. These are then normalized using tf-idf or some frequency
measure which are then fed to classification algorithms. In [40], Turrisi Da
Costa et al. propose to use system calls to identify mobile botnets.

Hybrid Analysis – Using any single approach is not as efficient as the
combination approaches for detection. Disadvantages in each of static and
dynamic analyses led to a new approach called hybrid which works by
using both in different ways. Several hybrid-based approaches [41] make use
of static analysis followed by dynamic analysis to get complete coverage.
Sometimes Dynamic analysis aided by static analysis also combines to give
another hybrid approach. Some of the features that are used for analysis have
been given in Table 1. Table 1 also lists the Machine Learning algorithms
used and the dataset used for these research papers.

4.2 Reverse Engineering Tools

The Malware detection methods have been broadly classified as static,
dynamic, and hybrid as also discussed in the previous section. Several tools
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have emerged over the years to aid in these types of techniques. This section
lists and reviews some of the tools that have been shown as great importance
in the detection of malware.

APKtool [49] – A very common reverse engineering tool that helps to
decompress an apk. The tool can decompile the apk into files and folders
which can be analyzed statically. Androguard [50] – Another tool that aids
in static analysis is androguard. It is built using Python and can work with
different types of android resources such as dex files, apk files, XML files,
etc to retrieve features from these files. FlowDroid [51] – This tool helps in
performing the taint analysis of an application. The tool helps to identify the
flow of the data from a source to a sink. This ensures that no vulnerability is
left out while performing the analysis. Android Tamer [52] – It is like an OS
for Android for performing the malware analysis. It is a VM that comes with
several inbuilt tools that aid in malware detection. DroidBox [53] – DroidBox
is for dynamic analysis of an app. It helps to generate the logs when an apk
is run with it. It performs several actions on its own so that different dynamic
features such as phone and SMS events, user interaction can be captured and
studied later.

In the following sections, the implementation of these tools is studied so
that a better understanding of the features and tools can be made available.

4.3 Case Study on Feature Extraction

This section discusses a very important step concerning the detection process.
The detection algorithms work on the features of the different artifacts of an
apk. These features lay the foundation stone for the detection and classifica-
tion of an incoming application. As discussed in the previous sections, static
and/or dynamic analysis is performed on the apk to obtain the features. Where
static features can be obtained by extracting some signification strings from
the files, dynamic analysis requires that the code is executed and behavior is
observed. This is mostly done on an emulator so that its environment can be
controlled.

Here, the process of static analysis using tools such as Android Tamer, and
MOBSF [53] has been discussed. Android Tamer is a Virtual Machine that
consists of several inbuilt tools. MOBSF is one such tool that comes bundled
with the Android Tamer. It can be used for both static and dynamic analysis
of an apk. For static analysis, upload the apk in the user interface of MOBSF.
The tool performs operations on the apk to list out all the features of the apk
such as permissions, components, APIs, code nature, etc. The experiments
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Figure 3 Permission features.

 
Figure 4 API feature.

were performed for a test apk using MOBSF. Figure 3 shows the permission
features. The tool MOBSF will list out all the permissions that have been
defined for the app in question. MOBSF also categorizes the permission in
categories such as dangerous or normal so that the analyst can point out if
the app is using any dangerous permissions and flag it as a possible malicious
app. Figure 4 lists the APIs.

The details such as the filename in which the API call is being made
are also listed. Figure 5 contains the Components details such as activities,
services, etc. It includes all the filenames along with package names of the
files for each of these categories. Figure 6 lists the entries in the manifest file
which also contains the description related to the Manifest entries. As shown
in Figure 6, the LaunchActivity has an alias that can be shared with other
apps. These can also be downloaded as a report for further analysis. Once
these features have been obtained, analysts can proceed with the classification
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Figure 5 Component feature.

 
Figure 6 Manifest features.

of the file based on its features using machine learning techniques. This has
been discussed in the next section.

4.4 Case Study on Machine Learning Classification

Machine Learning techniques are being used as a quick and efficient means
of malware detection. Machine learning techniques can be classified into
three broad categories: Supervised, unsupervised, and reinforcement learn-
ing. These categories are further categorized as supervised – regression-based
and classification based. Unsupervised consists of clustering-based tech-
niques. Several algorithms for each of these techniques are available e.g.
logistic regression, naı̈ve Bayes, Decision tree. Using ensemble learning
the performance/accuracy of the classification models can be enhanced.
The different ensemble learning techniques are bagging, boosting, and
voting.
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Table 2 Classification results (in %)
Algorithm TPR FPR Precision F-Measure ROC

J-48 97.3 3.2 97.3 97.3 97.5

AdaBoost1(J48) 98.7 1.7 98.7 98.7 99.8

Bagging(J-48) 98.0 2.6 98.0 98.0 99.6

Voting(J48) 97.3 3.2 97.3 97.3 97.5

Figure 7 Threshold curve.

As a part of demonstrating the implementation process using machine
learning, the dataset [55] consisting of 215 features has been used. The
features include API calls, Intent, permissions, etc. The experiments were
conducted in the Weka tool using 10-fold cross-validation. The first classifier
used is J48 which is a decision tree. Table 2 below shows the results thus
obtained. The J-48 performance is improved by using ensemble techniques
such as AdaBoost and bagging. The voting technique, however, makes no
change to the results.

The following metrics were considered for evaluating the performance of
the models

• TPR – is the True positive rate also called sensitivity or recall. It is the
number of actual positives correctly identified. Its value is TP/(TP+FN)

• FPR – is the False Positive rate and is the ratio of incorrectly classified
instances to actual negatives. Its value is FP/(FP+TN)
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• Precision – is the number of positives that belong to the positive class.
• F-Measure – helps combine the result of precision and recall. Its formula

is (2*precision*recall)/ (precision +recall)
• ROC – Receiver Operating characteristics is the performance measure

and is a probability curve.

Figure 7 is the threshold curve for all the four different algorithms chosen
for this study. The minimum AUC-ROC (Area under Curve – Receiver Oper-
ating Characteristics) shown is for the J48. The other ensemble algorithms
show a better value. The AUC-ROC curve is to measure the performance
of a classification model for different threshold values. The AUC is the area
under the curve and the higher the value of AUC the better is the classification
model.

5 Related Work

With the advent of the Internet and increased usage of smartphones and
mobile devices, the rise in attacks on these devices has also been significant.
The attackers are finding new ways to compromise the device to either sell or
maliciously use the device user’s information. Intrusion detection in Android
is an emerging field and several research topics have tried to understand the
complexities involved in identifying an efficient system for detection. The
researchers have explored many analysis approaches in conjunction with the
latest technologies to be able to come up with a system that not only identifies
malware but also classifies it into its respected families.

Several survey papers cover the details about attacks on Android. Bhat
et al. [18] have presented the different possible attacks on Android concerning
its architecture. All the details related to attacks and possible defenses of
the same have been discussed. They also discuss techniques that can help
in preventing attacks through the use of tools. They have also discussed
the malware analysis approaches categorized as static, dynamic, and hybrid.
Faruki et al. [9] have also discussed android security in their paper. They have
presented an in-depth analysis of the Android internal structure explaining
the different components and security mechanisms. They have discussed
security issues in Android including a detailed review of the different types
of malware. For this, they have also given a chronological description of the
malware. Static and dynamic approaches have also been discussed and several
tools and their techniques are presented in detail.
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Aslan et al. [28] in their paper have classified the malware analysis
approaches into signature-based, behavior-based, heuristic-based, model-
checking-based, deep learning-based, cloud-based, mobile-based, IoT-based.
For each of these classifications, they have presented corresponding tech-
niques and their detailed evaluation. Another paper that discusses the mal-
ware analysis is by Wang et al. [29] in which the researchers have performed
an in-depth analysis of the features for each of static, dynamic, and hybrid
approaches.

The malware analysis can be categorized based on the features obtained
from the application. The features obtained without executing the app are the
static features and those obtained by executing the app are dynamic features.
Several pieces of research focus on the usage of a single or combination of
features. Wang et al. [56] have used locally sensitive API calls to perform
malware analysis in their research. The accuracy and recall rate they obtain
for classification of malware into families is as high as 0.96. Ma et al. [57]
in their paper have also used API calls to perform malware analysis. They
use the API calls, their frequency, and the sequence to construct an ensemble
method and provide comparisons of this ensemble method with the individual
model’s performance.

Using permissions as a feature for malware analysis Alswaina et al. [46]
have presented an approach in which they identify a reduced set of per-
missions using an extremely randomized tree. These permissions are then
represented using binary values and weighted values, results of which are
compared to achieve a better model. Arora et al. [30] have also presented
their approach using permissions, they have however used permissions in
pairs. They have identified different permission pairs that can be classified
as dangerous and based on these graphs are constructed for different datasets
which are then compared with malware datasets to identify malware. In [58]
Zhang et al. have shown the use of op-code for malware analysis. They
proposed to construct a Dalvik opcode graph using weighted probability. This
graph is then reduced so that the complexity can be reduced. The similarity
between the existing and new graphs is used to label the new one as malicious
or not.

This paper focuses on reviewing the malware analysis approaches by
analyzing the threat model and the different types of attacks. This article also
shows the usage of the features utilizing a case study in which the different
machine learning algorithms are implemented on a dataset. This article also
shows the feature extraction techniques using the tool MOBSF which reveals
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both static and dynamic features of an application. Such case studies have not
been presented in other research papers.

6 Future Directions

The Android OS continues to get evolve fixing the vulnerabilities reported
by releasing the patches but still malware writers keep exploiting any small
loophole they can find. Thus, the research in this area continues to grow by
looking for new avenues of improvement at all the dimensions of the Android.
Some of the future directions that need to be studied are

• Cloud Context – The mobile devices are resource-constrained and thus
need to use the cloud to enable the huge computing requirements at
users’ end. The introduction of cloud brings in threats related to the
cloud environment that seems to be a promising research direction.

• Efficient and faster results – Another direction that is possible is for a
faster and result-oriented solution for malware detection. Possible use
of deep learning also in cloud context and combinational approaches is
required to develop such a system.

• Deep learning implementation – Machine learning (ML) algorithms
have disadvantages related to time consumption. This cane be improved
by use of deep learning-based algorithms where the time consumption
for the analysis is less as compared to ML techniques. These algorithms
need to be studied in depth to come up with efficient malware analysis.

• Stronger and secure algorithms – malware writers are smart enough to
understand the detection process and thus write newer malwares that can
evade these algorithms. There is a need to secure the algorithms so that
these can not be broken for safer environment.

7 Conclusion

In this article, the Android system by presenting a detailed study on the
Android architecture and the attack taxonomy of Android for each of its
layers has been reviewed. To enable the readers to get a better understanding
of how the Android system is susceptible to threat from the outside world a
threat model has been proposed. The attack taxonomy and threat model will
ensure a better understanding of the possible vulnerabilities in Android. The
detection approaches and the different tools that aid these techniques have
been discussed. To provide a better understanding, case studies illustrating
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the feature extraction mechanism using the tools and the machine learning
implementation for the detection and classification are presented. Some of
the gaps identified during this study are also given as future directions to
enable further research in those areas.
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