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Abstract

In this research we have used Windows API (Win-API) call sequences to
capture the behaviour of malicious applications. Detours library by Microsoft
has been used to hook the Win-APIs call sequences. To have a higher level
of abstraction, related Win-APIs have been mapped to a single category.
A total set of 534 important Win-APIs have been hooked and mapped to
26 categories (A. . . Z). Behaviour of any malicious application is captured
through sequence of these 26 categories of APIs. In our study, five classes
of malware have been analyzed: Worm, Trojan-Downloader, Trojan-Spy,
Trojan-Dropper and Backdoor. 400 samples for each of these classes have been
taken for experimentation. So a total of 2000 samples were taken as training
set and their API call sequences were analyzed. For testing, 120 samples were
taken for each class. Fuzzy hashing algorithm ssdeep was applied to generate
fuzzy hash based signature. These signatures were matched to quantify the
API call sequence homologies between test samples and training samples.
Encouraging results have been obtained in classification of these samples to
the above mentioned 5 categories. Further, N-gram analysis has also been
done to extract different API call sequence patterns specific to each of the
5 categories of malware.
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1 Introduction

In today’s world everyone is connected and uses internet for most of the
things. This not only creates dependency on the internet but also increases
possibility of exploitation via it. Besides computers, smartphones are also a
great source of connectivity. Managing ever-evolving malware related to these
devices is critical for proper functioning and security. Despite the use of anti-
virus software, new malware and their variants are spreading continuously.
Worms, Backdoors and Trojans are growing at tremendous rate thus affecting
the secrecy, integrity and functionality of the systems. Thus the researchers
and anti-malware vendors are always working in the area of developing new
solutions to counter the effect of malware.

Various approaches like Static analysis and Dynamic analysis have been
proposed for activities related to malware analysis. In Static analysis the binary
code is analyzed without executing it, whereas in Dynamic analysis the code
is executed and its behaviour is monitored. The advantage in dynamic analysis
is that it even works for sophisticated obfuscated binaries where static analysis
is quite challenging and time-consuming. However static features like Opcode
n-gram, Byte code n-gram have been used as features for Malware detection
systems [1–4].

New malware can easily evade traditional hash-based signature detection
by just introducing slight modification in the code or applying obfusca-
tion techniques. But signatures based on dynamic analysis provide better
detection rate as they capture the behaviour of the malware which remains
unaltered even after obfuscation. Further to categorize the malware in different
classes, behaviour specific to particular class needs to be identified.

The main advantage in dynamic analysis is that the run-time behaviour of
the executable is difficult to obfuscate. Also, the dynamic malware analysis
can be easily automated enabling analysis at large scale possible. But the
disadvantage of dynamic analysis is that it captures only one execution trace
of the whole program. Also the program must be run in secure run-time
environment to evade the danger of getting infection while doing analysis.
Both of these limitations can be addressed by using good test vectors for
maximum code coverage and setting safe virtual environment. Egele et al. [5]
given an extensive survey of dynamic malware analysis techniques. We have
used dynamic analysis technique to analyze different class samples, where-in
API call sequences are extracted by running the samples.
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Using API-calls for dynamic malware analysis is not a new concept as
many techniques have been proposed in the literature. Santos et al. [6] proposes
a malware detector based upon frequency of occurrence of operational code
and API-calls. Ye et al. [7] proposed malware detection system based on inter-
pretable string analysis and uses SVM with bagging for classification purpose.
Zolkipli and Jantan [8] presented malware behaviour identification using run
time analysis and resource monitoring and malware classification using artifi-
cial intelligence technique. Islam et al. [9] used static parameters namely string
information, function length frequency and dynamic parameters namely API
function name and function parameters to classify between malware and clean
files. Gandotra et al. [10] gave extensive survey of various researches related
to malware classification. Ranveer and Hirai [11] categorized various features
used in the malware detection systems. They have compared features of static,
dynamic and hybrid type. Youngjoon et al. [12] used API call sequences as
features and they claimed to get accuracy of 0.998 in classification between
benign and malware samples. They have used DNA sequence alignment
algorithm for detection of malware samples.

Above mentioned research mainly is in the area of classification between
malware and benign samples. Nothing much has been done in regard of sub-
classification between various families of malwares. Park et al. [13] classified
various variants of worms based on system call graph matching. They used
maximal common subgraph as a feature to find similarities in worms. But
their model is not able to provide higher classification accuracy. Nari et al.
[14] presented a framework for malware classification into their respective
families based on only the network behaviour. They have used network flow
and their dependencies to build behavioural profile. Families considered for
classification were variants of trojans, backdoors and worms. Their framework
would not classify malwares with no network signatures.

The techniques on analysis of API-calls in conjunction with permissions
and system call behavior has also been used for classification of Android
based malwares. Here also dynamic analysis is performed to generate behavior
patterns from malicious APKs [15, 16]. Effectiveness of these results in
Android environment motivated us to perform such experiments on Windows
based malwares.

In our study, five classes of malware have been analyzed: Worm, Trojan-
Downloader, Trojan-Spy, Trojan-Dropper and Backdoor. We took the main
classes of windows malware and observed their behaviours related to files,
registry, network, services etc. by observing total 534 API calls related to
each category. The main contribution in this paper is developing a technique
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for malware classification and further extracting signatures for all these five
classes based on API call sequences.

2 Methodology

2.1 Overall Malware Classification and Characterization
Framework

The Proposed Malware Characterization Framework is mainly using
Win-API hooking technique for API call sequence extraction and Fuzzy
Hashing technique for signature generation, matching and classification. To
carry out this we have downloaded malware samples from available internet
resources [17–19]. Further this malware dataset is tagged as per Kaspersky’s
Antivirus classification through free VirusTotal [20] scanning engine. In
this work we have selected five classes of malware: Worm, Backdoor,
Trojan-Downloader, Trojan-Dropper and Trojan-Spy. The reason for selecting
these five classes is that we were able to get sufficient number of tagged
samples for these categories.

Modules for API hooking and DLL injection were implemented in
C language to extract the Win-API call sequences. In all a set of 534 Win-APIs
were hooked. All the samples were run and their API call sequence was
observed. Repeated consecutive API calls were removed while generating
signatures to remove redundancies. To have higher level of abstraction, we
bundled similar API-calls in one category. In all 26 such categories (A...Z)
were created and all the API calls were replaced with the corresponding
category. We generated these 26 categories based on the functionality of the
Win-API calls.

We have selected 26 categories to categorize the Win-API set od 534
calls, as we observed that these are sufficient to capture the higher level
of functionality description of any application. For example, category ‘I’
belongs to Registry write operations and include Win-APIs like RegSetVal-
ueA, RegSetValueW, RegSetValueExA, RegSetValueExW, RegCreateKeyA,
RegCreateKeyW etc. Also we get support from many text mining tools for
Alphabet domain (A...Z). We also observed that increasing the number of
categories does not increase the accuracy of results.

Fuzzy Hashing algorithm ssdeep [21] has been applied to the categorized
API call sequences to get the fuzzy hash signature of each malware sample.
Thus, a Fuzzy hash signature repository has been created for all the samples of
different classes. For a given test sample, we use the same procedure to extract
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its fuzzy hash signature. Further we apply fuzzy hash signature matching
algorithm [21] between the given test sample and all the samples in the
signature repository. These matched values were averaged for each of the five
classes and the sample is classified to the highest matched class. We have also
extracted unique Win-API call patterns for each category of Malware, which
are in terms of sequences of theseAPI calls.The schematic diagram of Malware
Classification framework is shown in Figure 1. It shows two phases: Online
Phase and Offline Phase. Offline Phase is the learning phase for our classifier.
Here a database of Fuzzy hashes is prepared from the known malware samples.
In the online phase a new malware is subjected to same procedure and its fuzzy

Figure 1 Proposed malware classification framework.
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hash is calculated. This fuzzy hash is then compared with the existing database
of fuzzy hashes of known malware. Closest matching class of malware is then
assigned to it. Implementation details regarding all the above-mentioned steps
are given in the Sections 2.2 to 2.5.

2.2 Malware Dataset Preparation and Extraction of Win-API Calls

Malware samples were downloaded from internet [17–19]. These samples
were not tagged, meaning no class specific information was available. But for
training purpose we required tagged malware samples. To address this issue,
we have used the online scanning services provided by Virustotal [20]. In
particular, KasperskyAnti-Virus engine classification was used to tag malware
samples to appropriate classes.

Five Classes of Malware has been selected for further analysis: Worm,
Backdoor, Trojan-Downloader, Trojan-Dropper and Trojan-Spy.

Trojan-Downloader, Trojan-Spy and Trojan-Dropper are the malware
classes be-longing to Trojan family. These malware are disguised as legit-
imate software and perform malicious functionality in background. Trojan-
Downloader downloads additional program (usually malware) from internet
and infect the system. Trojan-Spy steals user’s passwords and personal
data by monitoring user’s activity on computer. They generally perform
keyboard hooking for stealing login or credit card information of user. Trojan-
Dropper drops malicious programs to a system once executed. Unlike Trojan-
Downloader, they contain these additional files compressed or encrypted
inside their own body. Generally these additional files are stored in resource
section of executable. Backdoors as name implies opens a back door (con-
nection) for hacker or another program. Worm typically replicates itself and
generally has intention of infecting whole internal network of user to perform
malicious functionality.

For experimentation, we selected 520 samples for each class of malware:
Worm, Backdoor, Trojan-Downloader, Trojan-Dropper and Trojan-Spy. We
ran all these 2600 samples in virtual machine and extracted their Windows
API (Win-API) call sequences. Here 2000 samples are taken for learning
and 600 samples for testing purpose. The Win-API’s provide access to the
fundamental resources available to the Windows system. These are defined
in Windows DLLs like kernel32.dll, advapi32.dll, gdi32.dll, comct32.dll,
user32.dll, shell32.dll and ntdll.dll. There are multiple versions of Win-APIs
which are represented with different suffixes: ‘A’, ‘W’, ‘Ex’, ‘ExA’and ‘ExW’
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based on Unicode and ANSI types. For our research we have selected 534
Win-API calls, which seems relevant for behaviour analysis of malware.

A C-program was written for User Level inline API hooking which uses
Detours [22] library to extract the Win-API calls. Hooking is a technique used
to modify the behaviour of API calls in operating system or applications or
other software by intercepting their function calls or messages passed between
User/Application layer and kernel layer. They are used for Debugging, Mon-
itoring, and Intercepting messages and to extend functionality of any given
binary.

Malware class namely Rootkits mainly employ hooking to hide itself in the
system. Hooking can be done either in user-mode or in kernel of OS. Kernel
hooking requires valid signed drivers and in-depth internal knowledge of OS
kernel. User-Mode hooking is relatively simple and it is achieved by hooking
Windows APIs or third party libraries. There are mainly two techniques to
perform user land hooking namely Inline Hooking and Import Address Table
(IAT) Hooking. Import address hooking patches the import address table of PE
file to trick the application into execution of another function which carries
out malicious functionality. Inline hooking is achieved by overwriting the
beginning of DLL with a jump to the function which carries out malicious
functionality. Inline hooking is considered more robust than IAT hooking as
they do not have any problems related to DLL binding at run time. Also it
can be used to hook other function calls, instead of only system calls. This
technique is widely used by professionals.

The Win-API call sequences were extracted by running every sample for
30 seconds in the Virtual environment on Windows-XP. Consecutive same
API calls were clubbed together to remove redundant information from API
call sequences.

2.3 Categorization of Win-API Calls

We have categorized the total set of 534 Win-API calls into 26 Categories based
upon the function these APIs are performing. These categories are developed
by us and are shown in Table 1. This categorization has been done to club all
the APIs used to achieve a higher level functionality into a single category. For
example Win-API calls like Send, Recv, WSARecv and Connect are related
to socket communication and hence are placed in Socket Communication
category. These Categories are labelled by letters: A to Z. So each extracted
Win-API call is replaced with its corresponding labels (A–Z). Thus every
sequence of Win-API calls is mapped to a categorized sequence which is in
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terms of A to Z letters. The categorization is done with the aim of providing
a higher level abstraction and also to make the model simple. Without this
categorization we will have lot of redundancy in the extracted data, which
will make feature extraction task more difficult.

2.4 Creating Fuzzy Hash Signatures

We have applied ssdeep [21] program to compute Context Triggered Piecewise
Hash (CTPH), also called fuzzy hash, on the categorized API call sequences.
The concept of fuzzy hashing has been used as it has the capability to compare
two different samples and determine the level of similarity between them.
Instead of generating a single hash for a file, piecewise hashing generates
many hashes for a file based on different sections of the file. CTPH algorithm
uses the rolling hash to determine the start and stop of each segment. CTPH
Signature generation algorithm combines these section hashes in a particular
way to generate the fuzzy hash of the file. Also, two inputs with sequence
of identical bytes in between them can be identified using CTPH matching
algorithm ssdeep [21]. We have selected this technique because CTPH can
match inputs that have homologies and these sequences may be different in
both content and length. As length of extracted Win-API sequences for each
sample is different, fuzzy hashing technique suits us the most. These hashes
constitute the signature repository. For our analysis, we have developed a
repository of 2000 fuzzy hash signatures, 400 for each class.

Table 2 shows API call sequences and their fuzzy hash signatures for few
samples of worm class. A signature of the file contains three parts (block size
and two hashes) separated by colon letter. Block size ‘b’ of a file having size

‘n’ is calculated by using mathematical formula: b = 3 × 2�log2( n
64) �. First

hash is computed with ‘b’ and other hash with ‘2b’. With two hashes in single
signature one can compare two different signatures bx and by if bx=by or
bx=2.by or by=2*bx.

2.5 Matching Fuzzy Hash Signatures

We have calculated and stored fuzzy hashes for samples of different classes of
malware. Comparisons between different files can be performed via just fuzzy
hashes, rather than actual files themselves. This is very helpful when looking
at a new fuzzy hash to see if it might be related to any other fuzzy hashes in a
database. For example, fuzzy hashes for both whitelisted and blacklisted can
be generated and stored in a database.
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Table 1 Categorization of Win-API Calls
Category Code No. of API Some Examples
Input/output Create A 14 CreatefileA, CreatePipe,

CreateNamedPipeA
Input/output Open B 10 OpenFile, OpenFileMappingA
Input/output Write C 25 WriteFile, WriteConsoleW, WriteFileEx
Input/output Find D 13 FindFirstFileA, FindNextFileW
Input/output Read E 18 ReadFile, ReadFileEx, ReadConsoleA
Input/output Access F 19 SetFileAttributesW, SetConsoleMode
Loading Library G 7 LoadLibraryExW, FreeLibrary
Registry Read H 15 RegOpenKeyExW, RegQueryValueA
Registry Write I 13 RegSetValueA, RegSetValueW
COM/OLE/DDE J 154 OleCreate, OleLoad, CoBuildVersion
Process Create K 10 CreateProcessA, ShellExecute,

WinExec
Process Read L 33 GetCurrentThreadId,

ReadProcessMemory
Process Write M 10 WriteProcessMemory, VirtualAllocEx
Process Change N 12 SetThreadContext,

SetProcessAffinityMask
Process Exit O 3 TerminateProcess, ExitProcess
Hooking P 5 SetWindowsHookA, CallNextHookEx
Anti-Debugging Q 4 IsDebuggerPresent,

OutputDebugStringA
Synchronization R 13 CreateMutexA, CreateSemaphoreW
Device Control S 6 DeviceIoControl, GetDriveTypeW
Socket Comm. T 70 Send, Recv, WSARecv, Connect
Network Information U 17 Gethostbyname,

InternetGetConnectedState
Internet Open/ Read V 13 InternetOpenUrlA, InternetReadFile
Internet Write W 2 InternetWriteFile, TransactNamedPipe
Win-Service Create X 2 CreateServiceW, CreateServiceA
Win-Service Other Y 11 StartServiceW, ChangeServiceConfigA
System Information Z 35 GetSystemDirectoryW, GetSystemTime
Total APIs 534

Ssdeep matching algorithm calculates the matching between fuzzy hashes
of two different samples. This score is based on the edit distance algorithm.
The string edit distance is a measure of how many edit operations are required
to take one of the signatures and turn it into the other. Allowed opera-
tions during string matching are insertions (weight=1), deletions (weight=1),
transposition (weight=5) and substitutions (weight=3). After matching a
comparison score is generated between 0 and 100. We have used this matching
score as malware classification criteria.
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Table 2 Sample fuzzy hash signatures of worms
Malware API Call Sequence Fuzzy Hash
Worm 1 ZLMLZLMLRLZLZLSJLQBRLGSG

SLZLDGZLRZJLSJSLHLHGQGLG
ZBGZGZLZLZLMLMLMHZGML
ZLZAFWMWMWMF. . .

24:Nbz94nARL3dSaNN0yYRD1F
KKGb5mSDSu5mFNaaxQ1Xy
7YpK/G:Bz9KA19X0yYQ1bVmG

Worm 2 ZLMLZLMLRLZLZLSJLQLZBRL
SLSLDGZLRZJLSJSLHLH
GQGLGZBGZGZLZLZLMLM
LMHZGMLZLZAFWMLMLMZF. . .

24:M4hz94nARL3d
SaNN0yYRD1FKKGb5c
UEKsNQq:M8z9KA19X0yYQ1bc

Worm 3 SLZLGLZLZLQBRLTLHLHZSHML
ZIRLZCACSLSMGLSJSLHLHGQG
LGZBGZGZLZLZLMLMLMHZGML
ZLZAFLMLMLMZ. . .

24:lM2dV94nAsVPrr9WK0JPOEU
f9uuSHS0uYC35AAW5AAtwYQ
4l3qNb2X:NP9KAMPr6JPOE8935
AAW5AAtwIlcc

3 Classification Results and Analysis

Our framework presently contains 2000 fuzzy hash signatures, 400 of each
class. The ssdeep tool also has a fuzzy hash signature matching module which
gives a matching score between 0 (totally different) and 100 (exactly same).
For testing purpose, we took 120 samples for each category making a total
of 600 samples. These samples were taken from different sources than the
training samples. The test samples were run and their API call sequences
were observed. Fuzzy hashes were calculated for all these categorized API
call sequences. Fuzzy hash matching score was calculated between the test
sample and all the samples of the training set. So average matching score is
calculated for each class of test data. Further, we calculate matching score of
test sample with each of the training sample to calculate the average matching
score. Table 3 gives the consolidated average matching score between test
samples and training samples for all the classes. It was observed that maximum
matching is obtained between test samples and training samples of the same
class. Diagonal entries in the table show the average matching between test
and training samples of same class. These results gave us the confidence that
fuzzy hashing can be used to classify the samples in different classes. So
each of the 120 test samples were individually classified to the class based on
maximum average matching score.

Figure 2 gives the details of the classification results for 120 test samples
of each of the five categories.

Since there is no classification system available in literature for the
above mentioned categories, so we have given comparison of our system
with malware vs benign classifiers [11, 12], which are much simpler.
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Table 3 Average matching score (0–100) of fuzzy hashes between different classes of test
samples and training samples

Dataset of 2000 Signatures (400*5)

Test Samples (# 120) Worm Backdoor
Trojan-
Dropper

Trojan-
Downloader Trojan-Spy

Worm 25.28 5.42 3.16 7.6 1.74
Backdoor 5.42 22.14 1.31 5.3 3.5
Trojan-Dropper 3.16 1.31 24.77 5.45 10.55
Trojan-Downloader 7.6 5.3 5.45 27.73 7.01
Trojan-Spy 1.74 3.5 10.55 7.01 26.63

Figure 2 Classification results of 600 (120 * 5) test samples.

For this we have divided our 5-class problem into five 2-class problems,
namely: Worm vs rest, Backdoor vs rest, Trojan-Dropper vs rest, Trojan-
Downloader vs rest and Trojan-Spy vs rest. Table 4 gives the classification
accuracy and FPR for these five 2-class problems, and Table 5 gives the
accuracy & FPR for 2 class classifier problems (Malware vs Benign) [11, 12].
These classification results indicate that there exist class specific signatures
for every class which can be extracted manually by thorough inspection. Thus
some malware class specific signatures in terms of patterns were extracted.
Table 6 gives few of the distinctive patterns extracted for each category. The
table also shows the presence of these patterns in the other classes. These
patterns are extracted using basic n-gram analysis which is based on exact
matching algorithm. However many more patterns can be considered if we
use approximate matching algorithms. It is the presence of these Win-API
patterns, which aids in the fuzzy hash based classification of the five classes
of Malware. Also our unique categorization of Win-API calls made this task
easier and effective as now we have an abstract and simplified data to work on.
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Table 4 Performance of our framework
Classification Problem Classification Accuracy (%) FPR
Worm vs rest 96.33 0.022
Backdoor vs rest 92.67 0.045
Trojan-Dropper vs rest 93.66 0.039
Trojan-Downloader vs rest 96 0.025
Trojan-Spy vs rest 95.33 0.029

Table 5 Performance of malware detection models given in [11, 12]
Malware Detection Model based on feature
(Malware vs Benign) Classification Accuracy (%) FPR
Opcode n-gram + Byte code n-gram [1] 95 0.06
Opcode n-gram [2] 99 0.03
Opcode n-gram [3] 92 0.03
Byte Code n-gram + Opcode n-gram [4] 96 0.01
Opcode n-gram + API [6] 96.22 0.07
API + String + function length frequency [5] 97.05 0.055
Portable Executable Header + Strings [7] 93.7 0.15
System Call [23] 96.8 0.04
API Call with DNA sequence alignment [12] 99.8 -

Table 6 Presence (%) of some distinctive API patterns in malware
PATTERN Worm Backdoor Trojan-Downloader Trojan-Dropper Trojan-Spy
EBMZRFZ
RMHMHZH

0 0 24.16 0 0

LFAFECEAE 23 0 0 0 0
MLMLMLM
LMLMLHDG

0 58.95 0 0 0

GLGLGLS
MHMHM HM

0 12.3 0 0 0

ZDGLMH 3.75 0 25.83 0 2.5
LSLZXMXL 0 0 0 0 33.33
FLHZSRGL
MLPLPLPL

0 2.1 0 0 32.51

LPLP LMLZJL 26.67 0 0 0 0
LPLJLJ 0 21.90 1.67 46.15
LJZJHLJH 12.3 0 0 0 0
PZLSLZMLDG
DGLDGZ

16.7 0 0 0 0

FZRFM JRIHLFIM 0.83 0 0 21.97 1.25
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Careful examination of these patterns reveals that their presence is more
frequent in malware belonging to same class. These patterns can be treated as
run time signatures for each malware class and hence can be used as features
by the anti-malware products.

4 Conclusion

Classification based on fuzzy-hash based matching score on Win-API call
sequences gives good results to classify different kinds of malware. Five differ-
ent classes of malware were analyzed: Worm, Backdoor, Trojan-Downloader,
Trojan-Dropper and Trojan-Spy. The Win-APIs were categorized into 26
categories based upon their functionality and further analysis was carried
out on these categorized sequences. With n-gram analysis on the categorized
sequences, we were able to extract class specific patterns for all the five classes
of Malware. Fuzzy hashes of these categorized sequences were calculated with
ssdeep algorithm. Fuzzy hash based matching score was calculated between
different categorized sequences. High fuzzy hash matching score was observed
in samples belonging to same class. It was established that the fuzzy hash based
matching score can used as classification criteria as it successfully captures
the homologies in the behavior of the malware samples belonging to the same
class.

5 Future Work

The proposed malware classification system will be extended to other malware
classes. Fuzzy hash based matching scheme can be replaced with more sophis-
ticated text pattern matching techniques. Extracted unique subsequences can
also be considered as features for classification. Number of samples in each
category will be increased for more accuracy. We propose to integrate all
the activities into a single automated system which will check all running
programs for malicious behaviour. At present API hooking has been done
at User level which will be extended to Kernel level, if possible. A similar
approach will be used to capture behaviour of applications based on other
Operating systems like Linux, Android etc.
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