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Abstract

Botnets represent one of the most destructive cybersecurity threats. Given the
evolution of the structures and protocols botnets use, many machine learning
approaches have been proposed for botnet analysis and detection. In the
literature, intrusion and anomaly detection systems based on unsupervised
learning techniques showed promising performances. This paper investigates
the capability of the Self Organizing Map (SOM), an unsupervised learning
technique as a data analytics system. In doing so, the aim is to understand
how far such an approach could be pushed to analyze the network traffic,
and to detect malicious behaviours in the wild. To this end, three different
unsupervised SOM training scenarios for different data acquisition conditions
are designed, implemented and evaluated. The approach is evaluated on
publicly available network traffic (flows) and web server access (web requests)
datasets. The results show that the approach has a high potential as a data
analytics tool on unknown traffic/web service requests, and unseen attack
behaviours. Malicious behaviours both on network and service datasets used
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could be identified with a high accuracy. Furthermore, the approach achieves
comparable performances to that of popular supervised and unsupervised
learning methods in the literature. Last but not the least, it provides unique
visualization capabilities for enabling a simple yet effective network/service
data analytics for security management.

Keywords: network and service data analysis, unsupervised learning,
malicious behaviour analysis.

1 Introduction

The general utility of the Internet continues to grow on a yearly basis, and at the
same time, so does the cybercrime threat landscape. There is a wide variety
of network threats on the Internet, with different aims and attack vectors.
Among these, botnets have become one of the most dangerous threats [34].
Botnets consist of compromised machines, or bots, controlled by attackers (the
botmasters) through Command and Control (C&C) communication channels.
Botnets are responsible for many types of attacks these days, including but
not limited to spreading spam, Distributed Denial of Service (DDoS) attacks,
distribution of malicious software, information harvesting, identity theft, or
exploiting computational and network resources of the victims.

The threats are becoming more and more serious [29], as we are seeing
the incoming wave of Internet of Things (IoT), which will connect a plethora
of device categories – not only conventional computers or smartphones, but
also smaller and lower cost devices, e.g. home appliances, security systems,
portable medical devices, etc. Poorly protected IoT devices can be easily
turned into a platform for attacking anything from individual websites to
core parts of the Internet’s infrastructure, hence opens the door for an once
unthinkable generation of botnets. Just recently, in October 2016, the record
of terabit-per-second DDoS attack was first achieved by an army of some
145,000 tiny compromised cameras, digital video recorders in two botnets –
Mirai and Bashlight [9]. The attack on Dyn’s DNS infrastructure disrupts
a long list of high-profile online services, including Amazon Web Services,
Twitter, Spotify, Paypal, and so on [45]. Even more, the source code of the
Mirai botnet was made open-sourced [16], much similar to what happened to
Zeus and SpyEye in the past, which sparked a series of attacks launched by
the botnets in that category [6].

Given the threats posed by botnets, botnet detection has become a critical
component in network security solutions. Machine learning-based approaches
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are used for their ability to learn underlying patterns of data and adaptation
to the dynamic nature of modern botnets. Moreover, to identify novel botnets
in particular, and malicious network activities in general, anomaly detection
systems based on unsupervised machine learning methods are gaining more
and more interest [1].

In this research, a data driven approach for network traffic and web service
behaviour analysis based on an unsupervised neural network technique,
namely Kohonen’s Self Organizing Map (SOM) [21], is investigated.

SOM has a unique combination of unsupervised learning and topological
preserving visualization capabilities, which makes it a promising technique to
support data analytics in a wide range of conditions including cyber-security
environments.

In the wild, i.e. in real life, the amount of ground truth (labeling capability
as malicious or normal) that is available on a network packet/flow or a
service request/session such as web can vary. In practice, we might have
some a priori knowledge about specific packets/flows being malicious, or
specific web requests/sessions as normal but not all. In this research, we
study the proposed approach under different use cases (scenarios): to work
as traffic behaviour classification system, or an anomaly detection system, or
a clustering technique with visualization capabilities for supporting security
experts in finding the malicious behaviours. To this end, the effect of different
data acquisition mechanisms in identifying malicious behaviours is studied
by using three training scenarios (use cases) under the unsupervised learning
paradigm. Furthermore, the approach is evaluated on modern publicly avail-
able datasets, which contain not only botnet behaviours but also other attack
behaviours, with and without payload.

The remainder of the paper is organized as follows. Section 2 summarizes
the related work on malicious behaviour detection and applications of the SOM
in this field. Section 3 introduces the proposed approach and discusses the
methodology, whereas Section 4 presents the evaluation and results. Finally
conclusions are drawn and the future work is discussed in Section 5.

2 Related Work

In this section, we summarized the related works in this field in terms of first
summarizing the architectures of a botnet studied in the literature and then
discussing the different approaches employed to analyze botnet behaviours
from the perspective of traffic and application data.
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2.1 Botnets

A botnet is a network of computers infected with malicious software and
controlled as a group without the owners’ knowledge. A botnet C&C
channel accommodates communications between bots and bot masters, which
differentiate botnets from other malwares. The communication channels
provide botnets the ability of updating its malicious code and protocols, allow
bots to perform attacks simultaneously under the control of a botmaster. Earlier
botnets use Internet Relay Chat (IRC) as the communication protocol for
their C&C channels. Eventually, as this protocol and botnet structures became
obsolete, botnets have abused a wide range of other protocols from HyperText
Transfer Protocol (HTTP), Secure HTTP (HTTPS) to Peer to Peer (P2P), and
even social networks [7, 36]. In general, botnets have two main architectures:
centralized and decentralized. In the centralized architecture, all bots establish
their communication channels with one or more central controlled servers
typically over IRC and HTTP/HTTPS protocols. The obvious advantages
of this topology are speedy command propagation and synchronization.
However, decentralized C&C is increasingly employed in recent years to
overcome the central point of failure problem. By utilizing P2P protocols
to allow each node in a botnet act as a client or a master, decentralized C&C
provides great flexibility and robustness. Moreover, a botnet topology can
be a hybrid model of the two architectures to combine advantages of both
architectures.

2.2 Rule Based and Supervised Learning Based Botnet
Detection

Malicious behaviour detection approaches have evolved extensively and
expeditiously to cope with the advancement in malware architectures and
protocols, as well as the sophistication of new attack vectors. Network
intrusion detection systems, from early researches to many products nowa-
days, are mainly based on searching for a known set of identities, or signatures
within network traffic (packets) to identify malicious activities. Snort [4]
and Bro [30], which are open source network-based deep packet inspection
systems for intrusion detection, are two of the most popular examples of
this category. The systems depend on predetermined rule sets and policy
scripts for not only intrusion detection but also forensic investigations.
As the tools are equipped with many rules/policies which aim to cover a
wide variety of possible network conditions, the system administrators need
to determine which signatures are necessary and enable them accordingly
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to match their network conditions. Otherwise, they need to run the tools with
default configurations, which may cause a huge amount of false alarms [14].

Based on Snort, Gu et al. [11] used a botnet life-cycle model to develop
BotHunter. The tool employs a concept named dialog correlation to combine
alerts generated using a tailored version of Snort to detect botnets and other
coordination-centric malwares based on the assumption that most of the
malwares follow a specific infection life-cycle model from initial inbound
scan to attack behaviours.

Wurzinger et al. proposed a botnet detection model based on the observable
command and response patterns of the botnet communications [43]. The work
attempts to build the malware traffic patterns by identifying hosts’ responses
and inspecting the preceding traffic to locate the commands. The system then
derives signatures for detecting such C&C behaviours, and deploy them as
signatures in Bro for detecting future events. On their botnet datasets, which
they generated in a controlled environment, the extracted detection signatures
outperform BotHunter.

Although signature-based Intrusion Detection Systems (IDSs) are efficient
in detecting known attacks, which have been analyzed by security experts to
release appropriate rules/policies, the approach is highly vulnerable against
“zero-day” attacks. Moreover, the systems are heavily depended on receiving
frequent signature updates, much like anti-virus solutions, to maintain the
detection ability on even small variations in attack vectors. Thus machine
learning techniques naturally found their applications in the field for the ability
to automatically learn from data and extract patterns that can be used for
distinguishing attack behaviours.

Gu et al. also proposed BotMiner, an approach based on group behaviour
analysis for botnet detection [10]. Based on the assumption that the bots
communicate with C&C servers/peers and perform malicious activities in a
similar or correlated way, Botminer employs clustering approaches and cross
cluster correlation on communication traffic and malicious activities to find
similar communication behaviours, as well as network activities. Botminer
obtained promising results on datasets consisting of campus traffic and botnet
traffic generated in sandbox environments, where botnet detection rates were
from 75% to 100%.

Zhao et al. investigated a botnet detection system based on packet header
information and time intervals [46]. Decision Tree based machine learning
algorithms were utilized to generate detection models using network flow
features of traffic packets. The work focused on P2Pbotnets on HTTPprotocol,
which employ fast-flux based DNS techniques for their resilience. A dataset
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consisting of normal traffic from several legitimate sources and botnet traffic
from the Honeynet project, [38], was used to evaluate the proposed method.
Their results show that the system achieved high detection rates on offline
data, but also generated high false positive rates on unseen botnet traffic.

Nagaraja et al. proposed BotGrep – a monitoring framework that con-
structs graphs of traffic patterns for P2P botnets using traffic flows [27].
From the built graphs, the work localizes botnet members with unique
communication patterns by finding structured overlay topologies. The authors
applied the model on Internet service provider sized benign network traffic,
with Honeynet botnet traffic injected to demonstrate the concept. Their results
reached up to 99% detection rate with 1% false alarm rate.

Haddadi et al. employed two machine learning algorithms, namely C4.5
Decision tree, and Symbiotic Bid-based Genetic programming, for building
detection models [12]. One of the objectives was to find the feature sets that
best describe the botnets and to return a solution that is suitable for a signature-
based botnet detection system. Their results were compared against Snort
and Bothunter to confirm the advancement of proposed method over packet
payload inspection based systems [14].

Yan et al. proposed PeerClean – a multi-phase detection system targeting
P2P botnets [44]. The first phase clusters individual connections or hosts
with similar flow traffic statistics into groups. Then PeerClean extracts
collective connection patterns from each group using a proposed dynamic
group behaviour analysis method. Finally, a SVM classifier is trained using
group connection patterns to identify botnet groups. The system was evaluated
on a mixed data which consisted of traffic captured from an edge router of a
campus network and botnet data from their sandboxed environment.

2.3 Unsupervised Learning Based Botnet Detection

Unsupervised learning approaches have also found their applications in the
field, especially in anomaly detection systems. Perdisci et al. used an ensemble
of one-class SVM for payload-based anomaly detection systems [31]. They
used a clustering algorithm originally proposed for text classification problems
to reduce the dimensionality of the feature space obtained from n-gram
analysis of payload. Then the anomaly detectors are applied to each description
of the payload to produce aggregated results. They obtained 97% detection
rate with 3% false alarm rate.

Kayacik et al. proposed an approach to network intrusion detection based
on a hierarchy of SOMs [20]. Using 1999 KDD Cup dataset for training,
two hierarchical SOM architectures were proposed. The first architecture uses
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only six basic features from the dataset and generates a three-layered SOM
hierarchy, where the first layer SOMs are used to generalize data from each
feature individually. Output of each first-layer SOM is clustered to six clusters
for higher layer training. The second architecture uses all 41 features to directly
train a two-layer SOM model, which is similar to the second and third layers in
the first model. Their method achieved the best performance of a detector based
on an unsupervised learning algorithm on the KDD dataset with a detection
rate up to 90.4% and false alarm rate of 1.38%.

Ippolity et al. developed a threshold based training approach, namely
Adaptive Growing Hierarchical SOM, for building an online network
intrusion detection system [18]. In their work, system parameters are adjusted
dynamically by using quantization error feedback to adapt to the new training
data. A dynamic input normalization process is applied to accommodate live
training conditions. Furthermore, the SOM units are monitored using the
proposed confidence filtering and forwarding mechanism. The results on 1999
KDD Cup dataset and their own simulated traffic reached up to 97% detection
and 2.6% false positive rates.

From another network security perspective, although malicious bots are
responsible for approximately one third of web traffic [45], most of IDSs work
on Transport & Network level are not adequate in protecting web applications
against the threat. Web application firewalls (WAF) are becoming more and
more popular to protect specific websites with their focused protection and
content specific capabilities. Zolotukhin et al. proposed an anomaly detection
model for WAFs, by modelling normal web user behaviours using several
clustering and anomaly detection algorithms and applying the model to detect
attacks as deviations from the norms [47]. Razzaq et al. proposed an ontology
based technique for analyzing web requests and detect web attacks [33]. By
capturing the context of a web application and its underlying protocols, the
work aims to detect the attacks dynamically and effectively in specified portion
of a web request. Nguyen et al. surveyed generic feature selection methods for
HTTPtraffic filterfing in WAFs [28].Additionally, they generated HTTP-CSIC
2010 datasets for evaluation of WAFs.

Recently, Hofstede et al. presented an approach for web application brute-
force attack and compromise detection based on flow data that are exported
using IPFIX [17]. For maximum compatibility, the approach uses histograms
of packet payload sizes and Hierarchical Cluster Analysis to discriminate
attack from non-attack traffic. The approach is evaluated using datasets
collected in the production network of a large web host in the Netherlands
and shows advancement over approaches that do not use flow data.
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2.4 Summary

As seen in the discussion presented above, while both supervised and
unsupervised machine learning has been studied in the field of network and
service (application) security, there exists several issues in the literature that
inhibit a widespread deployment of such systems:

• Many approaches are heavily dependent on deep packet inspection
[10, 31, 43], which makes them become nearly impossible to be applied
to encrypted network traffic.

• Many systems, [27, 44, 46], focus only on a specific botnet
architecture/botnet connection protocol.

• Many previous works were built upon and tested against the 1999 KDD
cup dataset (almost 20 years old!) and its variants [18, 20], which have
many drawbacks [35], or datasets from closed environments [10, 11, 31,
43, 44]. This raises the question about how these systems would actually
perform under current networks and services representing up to date
malicious and normal behaviours.

• Several systems employ complex and computationally expensive analy-
sis architectures [10, 18, 27, 44]. The models are also based on specific
assumptions about correlation and synchronization in traffic patterns.
These requirements introduce limitations for the models to be ubiquitous
for network and service data analysis.

Furthermore, the fact that in practice either there is no labelled data or there
is very few of them reduces the versatility of systems employing supervised
learning techniques. On the other hand, approaches based on unsupervised
learning in the aforementioned works provided comparable results to that of
supervised learning approaches, while enabling an intrusion detection system
to potentially generalize the learned data for recognizing novel threats. The
novelty and the functionality of the proposed approach in this research lie in
the following aspects:

• The research is positioned in unsupervised learning and visualiza-
tion landscape, thus concurrently seeks a simple solution that is less
dependent on expert knowledge and labelled data, and more flexible
in deployment.

• The research explores a wide range of data acquisition conditions and is
examined against diverse datasets of not only modern botnets but also
web attack behaviours.



Unsupervised Monitoring of Network and Service Behaviour Using SOM 23

• The capability of the approach in supporting security experts in analyzing
unknown/unlabelled data is also explored, by applying the model
for recognizing unseen botnets, and investigating unlabelled majority
portions of the datasets used.

3 Methodology

The principle interest of this research is to explore the capabilities of an
unsupervised learning approach as a data analytics tool for network and system
behaviour detection under different real-world data acquisition scenarios. To
this end, SOM is employed to build an analysis system, not only supported by
its unsupervised nature but also its abilities in visualizing the data. Different
SOM training scenarios are used for evaluating real-world data acquisition
strategies for behaviour detection and to overcome the lack of well-labelled
data.

3.1 Datasets

Obtaining high quality data and processing them appropriately for designing
and evaluating attack behaviour detection systems typically involves
considerable difficulties. In this research, three publicly available datasets
(log files) are used. First two sets, CTU13 and ISOT contain botnet
(malicious) and normal (non-malicious) traffic data, while the remaining
dataset, HTTP-CSIC contains web requests/traffic representing both malicious
and normal intent. The datasets ensure a wide range of malicious as well as
normal behaviours and categories, both with and without traffic payload. This
enables the proposed SOM based approach to be evaluated under different
network security scenarios and applications.

3.1.1 CTU13
The CTU13 botnet traffic datasets were captured in 2011 by Malware Capture
Facility Project of Czech Technical University [8]. The goal was to have a
large database of real botnet traffic mixed with normal traffic and background
(unidentified) traffic. These datasets, which are referred as CTU13a-m, consist
of thirteen traffic traces of different botnet samples. For each sample, a
different malware was executed to establish connections on several protocols
and performed different actions.

Due to privacy reasons, only the network flow files containing basic flow
features extracted using Argus are made publicly available by the CTU.
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The features are: the duration, port numbers, the direction, source and
destination types of services, the number of packets, the number of bytes,
the number of source bytes, and the protocol. The list of features is supported
by almost every traffic flow exporter. All of the provided features, except the
direction, are employed in this research. By using only the provided basic flow
characteristics, this research intends to test the performance of the proposed
approach using minimum a priori information, and hence aims to minimize
the blind sights and not to miss the new (unknown) malicious behaviours.

The labelling process of the CTU13 dataset, as discussed in Garcı́a
et al. [8], can be summarized in three steps. First, the Background label is
assigned to the whole traffic. Then, the Normal label is assigned to the traffic
that can certainly be identified as traffic from the known normal and controlled
computers in the network. Finally, the Botnet label is assigned to all the traffic
that comes from or to any of the known infected IP addresses. Hence, in
CTU13 dataset, there is a large portion of data for further exploration, because
ground-truth is not known for this portion. Garcı́a et al. labelled this portion
as Background. This portion (background) is also referred as the unknown
portion of the data in this research.

3.1.2 ISOT
The ISOT botnet dataset, provided by University of Victoria [46], is the
combination of several publicly available malicious and non-malicious
datasets, including datasets from the Traffic Lab at Ericsson Research in
Hungary [37] and Lawrence Berkeley National Laboratory [23] for legitimate
and background traffic, and Storm and Waledac botnet traffic from the
French chapter of honeynet project [38]. Waledac and Storm were two of
the most prevalent P2P botnets with decentralized communication protocols.
While Storm using the old-fashioned P2P Overnet as its communication
channel, its successor Waledac utilizes HTTP and a fast-flux based DNS
network for concealing malicious activities. The Ericsson Lab traffic contains
general traffic from a variety of applications, including HTTP web browsing
behaviour, World of Warcraft gaming, and popular bittorrent clients such as
Azureus. Additional non-malicious background traffic is also incorporated
in this dataset from the LBNL trace data, which contains network traces
for a variety of activities spanning from web and email to backup appli-
cations as well as streaming media in an enterprise network environment.
This work employs all 71 numerical features extracted from ISOT dataset
using Tranalyzer with default configuration and basic plugins [24]. The
basic plugins are: basicFlow, basicStats, tcpFlags, icmpDecode, connStat,
descriptiveStats [3].
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3.1.3 HTTP-CSIC
The HTTP dataset CSIC 2010 from the Information Security Institute of
Spanish National Research Council (CSIC) [28] contains thousands of web
requests for testing web attack protection systems. The attacks are targeted to
an e-Commerce web application developed at CSIC. The dataset is generated
automatically and contains 36,000 normal requests and more than 25,000
anomalous (attack) requests. This dataset includes attacks such as SQL
injection, buffer overflow, information gathering, file disclosures, Carriage
Return Line Feed (CRLF) injection, Cross Site Scripting (XSS) attack,
server side include, parameter tampering and so on. There are three types
of anomalous requests included in the dataset:

1. Static resource requests, which try to request hidden (or non-existent)
resources. These requests include obsolete files, session identifier in URL
rewrite, configuration files, default files, etc.

2. Dynamic resource requests (attacks), which modify valid request
arguments: SQL injection, CRLF injection, XSS attack, buffer
overflows, etc.

3. Unintentional illegal requests. These requests do not have malicious
intention, however they do not follow the normal behaviour of the web
application and do not have the same structure as normal parameter values
(for example, a telephone number composed of letters).

From the provided requests in the dataset, numerical representation vectors
are extracted using a set of heuristically determined features for training and
testing the proposed system. The list of features can be found in our previous
work [24].

3.2 Learning Algorithm – Self Organizing Map

Self Organizing Map [21] is based on unsupervised, competitive learning to
produce a non linear, ordered two-dimensional similarity map, which is a
projection of multi-dimensional input space. The SOM map, or output space,
consists of nodes or neurons which can act as decoders or detectors of their
respective input space domains after the training process. Hence, the SOM
provides visualization and summarization options for high dimensional data
with topological relationships preserved.

Define the training set χ as a list of all input vectors x =
[ξ1, ξ2, ..., ξn]T ∈ R

n. The original SOM iterative learning procedure can
be summarized as follows:
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(i) Initialize a M1 × M2 two-dimensional, typically a hexagonal or
rectangular, lattice W of neurons, each has a weight vector wi =
[ωi1, ωi2, ..., ωin]T ∈ R

n and a position ri in the 2D plane. The weight
vectors can be assigned randomly or linearly based on input range.

(ii) A random input vector x is presented to train the lattice. A distance
measure is calculated between x and all the SOM nodes. One popular
choice for the distance measure is the Euclidean distance, d(x, wi) =
‖x − wi‖ where ‖x‖ =

√∑n
j=1 ξ2

j . Then the winning node wc, or the

best matching unit (BMU), is identified by minimum distance to the input
vector. c = arg mini d(x, wi).

(iii) Weight vectors of the winning neuron and its neighbours are adjusted
according to the input vector:

wi(t + 1) = wi(t) + hci(t)(x − wi(t)), (1)

where hcci is the neighbourhood function and t is the discrete time
coordinate. Acting as a smoothing kernel defined over the lattice points,
the neighbourhood function plays a vital role in the SOM convergence
process. It defines the magnitude of influence each input training
vector has over the SOM nodes, and implicitly the update region
around the BMU. The neighbourhood function can simply include the
neighbourhood set of neurons around node c. However, more frequently
the neighbourhood function has a Gaussian form:

hci(t) = α(t) · exp

(
−‖ri − rc‖2

2σ(t)2

)
, (2)

where αt is the learning rate factor and σ(t) is the kernel width, also
called the neighbourhood radius. Both α(t) and σ(t) are scalar-valued
and monotonically deceasing over time.

(iv) Repeat steps (2–3) by a predetermined number of iterations or until the
convergence criterion is satisfied, i.e. the corrections to the SOM weight
vectors become zero.

3.2.1 Batch SOM Training and Visualization
In practice, the SOM batch training algorithm is generally preferred for
faster convergence rate, less computational cost, and less number of learning
parameters. The SOM training process usually consists of two phases: coarse
training, during which the high-level topographic order of the SOM is quickly
formed, and fine training, for obtaining a more accurate final state. Different
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from the original SOM learning algorithm, steps (ii-iii) are performed for all
data points of the training set at once:

(ii’-iii’) For each SOM node i, collect a list of all training data points x whose
BMU is wi. The weight vectors of SOM nodes are then updated as
follows:

wi(t + 1) =
ΣN

j=1hci(t)xj

ΣN
j=1hci(t)

, (3)

where N is the training set size.
(iv’) Repeat step (ii’-iii’) in two phase: coarse training phase with large

neighbourhood radius σcoarse(t) and small number of iterations
lcoarse, followed by fine training phase with small and constant
neighbourhood radius σfine(t). The fine training phase can have
higher number of iterations lfine, or is continued until convergence.

The batch SOM algorithm is employed for this work. The parameters and the
initialization method are presented in Section 4.

Furthermore, in this research, hit map (Figure 1(b)), a combination of the
U-matrix [39] (the distance matrix between SOM nodes) and the SOM hit
distribution, is extensively employed for visualizing the SOMs. On a hit map,
the background colour represents an interpolated shading version of U-matrix,
while the size and colour of each node represent volume and class label of
best matching data for each SOM node, respectively.

3.2.2 Verification of SOM’s Learning Ability
To verify the performance of the SOM post training, tSNE [40], an independent
non-parametric mapping method for data visualization, is employed. Figures 2
and 3 present the tSNE mappings of the original datasets (see 3.1), as well
as the mappings of the codebooks, which is the set of all weight vectors
of the SOMs trained on the respective datasets. Specifically, Figures 2(a)
and 3(a), show the tSNE mappings of ISOT and CTU13a respectively, while
Figures 2(b) and 3(b), show the tSNE mappings of codebooks of the trained
SOMs using the corresponding data. In these figures the size of each node
denotes the number of data points that hit the node, and the mixed colour
in a node denotes that the node is the BMU for data from more than one
class. It is noteworthy to mention that SOM and especially tSNE are capable
of representing non linear properties. So, one shall only expect to see the
structure similarity (but not the linear similarity) between the mappings of
the same dataset, e.g. between Figures 3(a) and 3(b). The similarity between
the mappings clearly demonstrate the abilityof the SOM in summarizing
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Figure 1 Visualization of data distribution on the trained SOM.

-50

-30

-10

10

30

50

-40 -20 0 20 40

60

40

20

0

-20

-20 0 20

-40

-40
-60

-60 40 60

(b) tSNE mapping of the SOM
trained on ISOT

(a) tSNE mapping of ISOT

Figure 2 tSNE mappings of ISOT dataset and the SOM trained on ISOT.

and generalizing the input data. On visually comparing subplot (a) to the
corresponding subplot (b), it is apparent that the SOM codebooks preserve
the general structure of the data, while also reducing the noise and combining
similar data regions into SOM nodes. Specifically, the distribution with which
each class is represented is retained, as is the degree of mixing/purity with
which different classes are expressed.
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Figure 3 tSNE mappings of CTU13a dataset and the SOM trained on CTU13a.

3.3 Network Traffic Flows

A network traffic flow is defined as the logical equivalent of a call or
connection, which connects a pair of terminals and contains a group of
features [2]. From the viewpoint of the network layer, a traffic flow is a
sequence of packets sent from a particular source to a particular unicast,
anycast, or multicast destination. From an upper-layer viewpoint, a flow could
consist of all packets in one direction of a specific transport connection or
media stream. However, a flow is not necessarily 1:1 mapped to a transport
connection. Traditionally, flow classifiers have been based on the 5-tuple of
the source address, destination address, source port, destination port, and the
transport protocol type. Flow features typically include descriptive statistics
that are calculated from aggregating Network and Transport layers header
information of the packets in a flow.

The use of packet header properties (especially Network and Transport
layers) as descriptive characteristics of a flow makes the approaches based
on flow Application layer independent. Moreover, given that network traffic
encryption is very popular in both benign applications, for protecting users’
privacy and sensitive information, and malicious ones, for hiding from the
detection systems that analyze network packet payload, the detection approach
using only flow exported from packet headers may improve the state-of-the-
art in unsupervised learning based network and system analysis. Although
botnet master can effectively change a part of malicious packet payload, or
encrypt the connection to evade signature based detection systems, it would be
much harder to change the abstract depiction of network connections formed
by the flows. The reason is that ultimately the malicious connections are still
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established automatically by predefined code, and hence would be different
from diverse normal user and computer behaviours.

Flows can be extracted from network traffic using proprietary flow
exporters in routers and switches, e.g. Cisco Netflow [5] and Juniper
JFlow [19]. On the other hand, open source flow exporters can also extract
flows from network traffic captured at network devices as well as network
terminals with a wide variety of features and great flexibility. Good perfor-
mances achieved by such flow exporters, e.g. Argus [32] and Tranalyzer [3],
were demonstrated in Haddadi et al. [13]. Hence in this research, Tranalyzer
is employed for exporting the flows from raw network traffic.

3.4 System Architecture

The proposed system architecture is shown in Figure 4. Fundamentally the
system is based on a data-driven approach using unsupervised learning with
visualization abilities (SOM) to learn network and system behaviours with
minimum a priori knowledge.

Raw input data is processed to numerical vectors, which are network
flows from traffic captures or request characteristics for web log files. The data
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Figure 4 Proposed system architecture.
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is then pre-processed, e.g. for normalization purposes or for dimensionality
reduction purposes, before being input to the SOM learning algorithm. The
original data distributions are always kept intact. Hence the SOM is obtained
post training in a completely unsupervised manner. Since no label information
or human-defined knowledge of data is used for the proposed SOM training
process, only one layer of SOM with sufficient resolution is employed.
This is supported by the presumption that learning from data, SOM may
form well-separated node regions to differentiate distinct communication
behaviours.

To quantify the system performance, if the ground-truth of the training
data is available, it can be applied for labelling the SOM nodes post training.
The labelled SOM can then be used to classify unseen testing sets. On
the other hand, when label information is not available, cluster analysis
based on the trained SOM topology visualization, e.g U-matrix, can be used
along with domain expert knowledge and information from other sources
to derive meaningful insights from the data. Moreover, possessing powerful
visualization capabilities, the trained SOM can be employed to investigate the
unknown data, using knowledge learned in the training and labelling phases.

3.4.1 Training Scenarios
In this research the SOMs are trained using three different scenarios based on
the chosen training data [25]:

(i) use both known normal/legitimate and known malicious traffic for
training purposes, as done in the previous supervised learning approaches
[18, 20];

(ii) use only normal/legitimate traffic for training purposes as done in the
previous unsupervised learning (anomaly detection) approaches [1, 47];

(iii) use only malicious (botnet/C&C) traffic or anomalous requests for
training purposes as done in some of the previous one-class classifier
approaches [31, 41].

The reason behind these training scenarios is to not only represent the real-life
security conditions, but also to shed light into understanding the perfor-
mance gains/losses under different types/amounts of labelling information,
i.e. ground-truth. For example, the data collected by honeypots is usually only
considered as being representative of malicious behaviour. On the other hand,
in idealistic cases of networks where there are no attacks, the data collected
contains only legitimate traffic. Moreover, even when a threat is discovered
in the collected traffic, it is very challenging to fully identify the extent of the
threat and label the data collected.
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Table 1 SOM traning parameters
Parameter Value
SOM map 2D hexagonal lattice
Initialization method Linear initialization
Number of nodes (M1 · M2) 10

√
N

Neighbourhood function Gaussian
lcoarse 100
lfine ≥400, depends on convergence criteria
σcoarse 0.25 · max(M1, M2) to max(1, 0.05 · min(M1, M2))
σfine max(1, 0.05 · min(M1, M2))

4 Evaluation

The proposed system in this research is built based on SOM Toolbox 2.1 [22].
The SOM training parameters are summarized in Table 1. The initialization of
the SOM can be done by assigning a random weight vector, or a random input
data point to each node. However, as stated in Kohonen [22], SOM learning
is generally faster (in terms of convergence) if regular initial values are given
to the maps. Thus, the SOMs in this research are initialized linearly.

4.1 Labelling the SOM Nodes

As described in Section 3.4, three different training scenarios based on three
distinct training data compositions are employed. For each scenario, when
the ground-truth of the input data is available, the SOMs can be labelled post
training as the following:

• Training scenario (i), using both Normal and Malicious data: post
training, for each SOM node i, the set of labelled training examples
whose BMU is wi is collected. From this set, votes toward different
classes are calculated with training data distribution taken into account
to offset the skewness in the data. For example: If node i is the BMU of 50
examples, out of which 18 are labelled “A” and 32 are labelled “B”, and
given that the input data has a distribution of 60% “A” and 40% “B”, then
the votes are calculated as viA = 18/0.6 = 30, and viB = 32/0.4 = 80.
This leads to the node being labelled as “B”. It is also noteworthy that
the trained SOM usually consists of well-separated regions of different
classes (Figure 1(b)). Thus, the votes are routinely dominated by only
one class. For the remaining SOM nodes on the trained map that do not
have best matching data examples, the labelling process is done based
on the nearest neighbours basis. Specifically, the nodes are assigned the
labels of the majority of their neighbouring nodes.
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• Training scenarios (ii) and (iii), using only Normal or Malicious data,
respectively: Since the training data of these two training scenarios
contains only one class, the SOMs are labelled after training by adopting
an outlier detection principal. Specifically, a threshold τ is determined
for each trained SOM to specify the set of important map units, which
represent the core behaviours of the training class. Basically the set
of important map units is defined as the minimal set of SOM nodes
with the greatest hits that are BMUs for at least τ · N training data
points. Although the value of τ varies from one data to another, the
principle assumed here is that τ needs to be greater or equal to 0.9 to
retain a sufficient number of nodes representing the behaviours of the
training class. The selected τ values will be justified by the Receiver
Operating Characteristic (ROC) curves. Naturally, any number of mech-
anisms could be assumed for outlier detection [26], the thresholding
approach adopted here represents a convenient starting point. Future
work could conduct a wider study of the relative significance of assuming
different approaches.

4.2 Datasets

From the original network traffic captures (CTU-13 and ISOT traffic files)
and the web access logs (HTTP-CSIC request files), the datasets are exported
as numerical vectors representing network flows or HTTP requests (see 3.1).
Tables 2 and 3 present the flow and the request distributions in CTU13, ISOT,
and HTTP-CSIC datasets, respectively. The botnet C&C and botnet attack
traffic in CTU13 sets are distinguished as C&C and Botnet in the table. Due to
the highly skewed distributions, the C&C flows and Botnet flows in CTU13 c-g
and j-l datasets are considered one class (Botnet and C&C) in the experiments.
Given that the SOM is built based on the distances between data vectors and
nodes, the features of the training data are normalized with zero means and
unit variance before they are used for training.

4.3 Performance Measurements

Except where noted, all results are analyzed with respect to 20 independent
trials in three fold cross validation in order to ensure statistical significance.
For the classification tasks, the results are measured in terms of: Accuracy,
Class-wise Detection Rate (CDR), Class Detection Rate (DR), and Precision
of malicious classes. While Accuracy and Detection rates show the system’s
capability in correctly classifying test (unseen during training) instances into
classes, the Precision denotes the percentage of raised alerts that is accurate.
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Table 2 Data distribution in CTU13 sets

Scen. Bot # Packets # Flows
Normal
Flows

C&C
Flows

Botnet
Flows

Background
Flows

a Neris 71,971,482 2,824,637 30,387
(1.08%)

341
(0.01%)

40,620
(1.44%)

2,753,288
(97.47%)

b Neris 71,851,300 1,808,123 9,120
(0.50%)

673
(0.04%)

20,268
(1.12%)

1,778,061
(98.34%)

c Rbot 167,730,395 4,710,639 116,887
(2.48%)

63
(0.00%)

26,759
(0.57%)

4,566,929
(96.95%)

d Rbot 62,089,135 1,121,077 25,268
(2.25%)

49
(0.00%)

1,719
(0.15%)

1,093,228
(97.52%)

e Virut 4,481,167 129,833 4,679
(3.60%)

206
(0.16%)

695
(0.54%)

124,252
(95.70%)

f Menti 38,764,357 558,920 7,494
(1.34%)

199
(0.04%)

4,431
(0.79%)

546,795
(97.83%)

g Sogou 7,467,139 114,078 1,677
(1.47%)

26
(0.02%)

37
(0.03%)

112,337
(98.47%)

h Murlo 155,207,799 2,954,231 72,822
(2.47%)

1,074
(0.04%)

5,053
(0.17%)

2,875,281
(97.33%)

i Neris 115,415,321 2,087,509 29,967
(1.44%)

2,973
(0.14%)

182,014
(8.72%)

1,872,554
(89.70%)

j Rbot 90,389,782 1,309,792 15,847
(1.21%)

37
(0.00%)

106,315
(8.12%)

1,187,592
(90.67%)

k Rbot 6,337,202 107,252 2,718
(2.53%)

3
(0.00%)

8,161
(7.61%)

96,369
(89.85%)

l NSIS.ay 13,212,268 325,472 7,628
(2.34%)

25
(0.01%)

2,143
(0.66%)

315,675
(96.99%)

m Virut 50,888,256 1,925,150 31,939
(1.66%)

536
(0.03%)

39,467
(2.05%)

1,853,207
(96.26%)

Table 3 Data distribution in ISOT and HTTP-CSIC datasets

ISOT # Packets # Flows
# Normal
Flows

# Storm
Flows

# Waledac
Flows

25,284,617 264,882 212,203(80.11%) 18,721(7.07%) 33,958(12.84%)
HTTP-
CSIC # Requests # Normal Req.

# Malicious
Req.

71,485 56000(78.34%) 15,485(21.66%)

In security applications, high precision classification systems will reduce the
amount of false alerts that require attention from the network administrators.
The measurements and the data distributions will be presented in % in the
following sections.
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Accuracy =
#correctly classified test instances

#test instances
. (4)

DRi =
#correctly classified class i test instances

#of class i test instances
. (5)

CDR =
1

#classes

∑
i

DRi, (6)

Precision =
#correctly classified malicious test instances

#test instances classified as malicious
. (7)

4.4 SOM Classification Results

4.4.1 Training scenario (i) - Normal and malicious
Table 4 presents in detail the classification performance of the SOMs trained
using scenario (i), using both normal and malicious data for training the
SOMs. The results are obtained on the unseen test partitions of the datasets.
Based on the same trained SOM, results on both 2-class and multi-class
schemes are available. As it shows in Table 4 and Figures 5 and 6, this
training scenario achieves high performance with clear separation between
non-overlapping groups of BMUs of traffic classes on the hit maps. For
example, in Figure 5, which visualize data distribution of different traffic
classes in CTU13a and CTU13m on the SOMs, it is clear that the different
classes are either separated by a lighter area in the SOM Umatrix, which
indicates large inter-node distances, or empty nodes. Figures 6(a) and (b)
shows hit maps of the SOMs trained on ISOT and HTTP-CSIC datasets,
respectively.Although the separation between legitimate and malicious classes
are not as obvious as that of the CTU13 sets, one can still easily distinguish
different traffic classes by looking at the hit maps.

Moreover, in the CTU13 sets with separate classes for C&C and Botnet
attack traffic, most of the incorrectly classified Botnet (C&C) flows are still
classified as C&C (Botnet). The same observation can be made between
Waledac and Storm botnet traffic in ISOT dataset as well. 2-class DRs in
Table 4 present the classification performances of the trained SOMs using
scenario (i) when only two classes (Normal and Malicious) are taken into
account. This also shows the flexibility of the SOM in particular and unsu-
pervised learning in general in interpreting the learned model on the data. By
not using the ground-truth in the learning process, the system instead learns
to generalize the input data, and provides the ability to obtain results based on
specific interests.
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Table 4 Classification performance of SOM training scenario (i)
Multi-class DRs 2-class DRs

Dataset Accuracy CDR Normal
C&C/
Storm

Botnet/
Waledac Normal Malicious Precision

CTU13
a 98.15 97.51 99.25 95.92 97.35 99.25 99.93 99.45
b 96.57 95.67 99.36 92.18 95.46 99.36 99.80 99.72
c 99.66 99.77 99.59 99.95 98.25
d 99.54 99.66 99.51 99.82 95.38
e 98.86 99.25 98.68 99.82 93.58
f 99.22 99.35 98.79 99.92 98.08
g 97.20 97.78 97.16 98.41 56.75
h 99.55 99.46 99.56 99.34 99.49 99.56 99.92 95.43
i 96.43 97.32 99.15 96.84 95.96 99.15 99.83 99.87
j 99.81 99.46 98.98 99.94 99.85
k 99.73 99.56 99.23 99.90 99.74
l 99.19 99.38 98.90 99.85 97.49
m 96.73 93.30 99.40 85.72 94.79 99.40 99.92 99.52
ISOT 95.31 93.69 95.91 91.38 93.77 95.91 98.80 85.71
HTTP-
CSIC

92.81 93.67 92.42 94.91 69.77

Figure 5 Hit maps of two CTU13 sets on the SOMs trained using scenario (i).

Finally, it should be noted that the SOMs trained using both normal and
malicious data achieved comparable results to that of supervised learning
systems in the papers where the ISOT and HTTP-CSIC datasets are introduced.
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Figure 6 Hit maps of ISOT and HTTP-CSIC datasets on the SOMs trained using scenario (i).

On ISOT dataset, the detection rates of REPTree classifier with reduced subset
in Zhao et al. [46] were 97.9% and 98.1% for Normal and Malicious flows,
respectively. On the HTTP-CSIC dataset, the average accuracy and Normal
DR obtained using decision tree learning algorithms in Nguyen et al. [28]
were 93.65% and 93.1%, respectively.

4.4.2 Training scenario (ii) - Normal only and (iii) - Malicious only
The testing results of the SOMs trained using only normal data and only
malicious data are presented in Tables 5 and 6, respectively. Figure 7 shows
the ROCs of classification systems based on the two scenarios.

Among the two training scenarios, the results are generally better with the
scenario using Normal data only. Ensuring the False positive rates no greater
than 8%, the scenario (ii) is typically able to detect more than 60% of malicious
data vectors. On the other hand, the training scenario using only Botnet traffic
observes poor performance on most of CTU13 datasets and HTTP-CSIC.

On ISOT dataset, the trend is reversed, where SOM training by only
botnet flows gives far better results than the SOM trained by normal data
only. However, considering that ISOT dataset is a combination of normal and
malicious data provided by different organizations, this might be the reason
why the trend is reversed. The normal traffic in ISOT dataset was provided by
LBNLand the malcious traffic was captured using Honeypots [46]. That means
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Table 5 Classification performance of SOM training scenario (ii) Normal only
Dataset τ Accuracy CDR Normal DR Malicious DR Precision
CTU13a 0.90 38.64 45.12 88.25 2.00 18.15
CTU13b 0.95 58.42 68.05 92.56 43.55 92.26
CTU13c 0.95 94.82 96.59 93.76 99.42 78.54
CTU13d 0.93 91.55 87.43 92.49 82.37 51.63
CTU13e 0.95 87.84 79.09 92.02 66.15 59.70
CTU13f 0.94 94.09 94.72 92.06 97.39 88.36
CTU13g 0.94 88.52 79.55 89.22 69.88 19.79
CTU13h 0.93 86.61 63.17 91.34 35.01 26.35
CTU13i 0.93 38.05 59.76 89.56 29.96 90.69
CTU13j 0.95 63.32 75.50 91.95 59.05 97.82
CTU13k 0.95 93.88 93.33 92.23 94.42 97.33
CTU13l 0.95 85.64 81.62 91.61 71.63 78.40

CTU13m 0.95 68.73 71.28 93.35 49.21 88.79
ISOT 0.93 75.76 52.96 90.82 15.10 29.04

HTTP-CSIC 0.94 90.01 81.21 93.99 68.42 68.02

Table 6 Classification performance of SOM training scenario (iii) Malicious only
Dataset τ Accuracy CDR Normal DR Malicious DR Precision
CTU13a 0.94 83.02 81.34 70.17 92.52 83.90
CTU13b 0.90 61.90 44.71 1.01 88.41 67.22
CTU13c 0.95 92.31 92.06 92.46 91.65 82.85
CTU13d 0.93 57.38 71.88 54.09 89.67 21.83
CTU13e 0.90 26.01 48.45 15.30 81.60 16.74
CTU13f 0.94 66.69 71.25 51.94 90.56 55.70
CTU13g 0.93 50.11 63.00 49.10 76.90 14.53
CTU13h 0.95 51.72 70.10 48.02 92.19 16.26
CTU13i 0.95 93.44 92.23 90.57 93.90 98.48
CTU13j 0.92 82.50 58.68 26.52 90.84 89.26
CTU13k 0.94 86.49 81.72 72.18 91.25 91.20
CTU13l 0.95 56.70 66.62 41.96 91.27 40.56
CTU13m 0.90 50.97 46.04 3.30 88.78 53.65
ISOT 0.95 65.39 75.16 58.93 91.39 39.54
HTTP-CSIC 0.94 45.49 64.71 36.80 92.62 21.62

the results are based on data captured at different organizations (networks)
under (potentially) different topologies and conditions.

Another observation that can be made based on the scenario (ii) results
on CTU13 sets is that the performance suffers when the amount of training
data is not sufficient, e.g. on CTU13 a, b, m. This suggests that expanding
the normal training set to cover more normal behaviours and protocols can
improve the results obtained using scenario (ii).
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(a) CTU13 sets, training scenario
(ii) Normal only

(b) CTU13 sets, training scenario
(iii) Maliciousonly

(c) ISOT and HTTP-CSIC, training
scenario (ii) Normal only

(d) ISOT and HTTP-CSIC, training
scenario (iii) Maliciousonly

Figure 7 ROCs of classification systems based on SOMs trained using scenarios (ii) and (iii)
on the datasets.

The summary of the performances of the three SOM training scenarios
are presented in Figure 8. As expected, SOM training scenario using both
normal and malicious examples achieves the highest performance. Hence,
for higher accuracies, data analytics systems trained on both malicious and
normal behaviours should be preferred. The results also suggest that when a
complete set of training data is not available, SOMs can be trained on well-
identified normal data only and still achieve a reasonable performance, given
that the data is diverse enough to cover most of the legitimate traffic.

Another observation from the experiments is that C&C and botnet attack
traffic (in the CTU13 datasets) are relatively different. The examples of this
can be seen in Figures 5(a) and (b), where the two malicious classes distributed
over separated regions in the hit maps. This might be based on the essence
of these two traffic types. While flows labelled Botnet represent attacks and
malicious activities, C&C flows are for maintaining the botnet and issuing
attack orders. Thus, naturally the hackers would want to conceal the C&C
traffic to make it as similar to the normal traffic as possible. The observation
suggests that independent investigation strategies for Botnet and C&C traffic
may improve detection systems’ performance.
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Figure 8 Summarization of classification performance (CDR) of the three SOM training
scenarios. The columns represent average values, while the errorbars correspond to one standard
deviation.

4.5 SOM vs Other Learning Algorithms

In this subsection, the performance of the model proposed in this research
is benchmarked against other learning techniques, both unsupervised and
supervised, from the literature. Four selected algorithms are: C4.5, Naive
Bayes, X-means clustering, and EM, in which the former two are supervised,
while the latter two are unsupervised. The chosen algorithms are amongst
the most popular ones in data mining [42]. To comply to the training data
requirements of these algorithms, only training sets consisting of both normal
and malicious data (as in scenario (i)) are employed. To implement these
benchmarking algorithms, we used WEKA with default parameters [15].

The classification performances of the five algorithms on CTU13, ISOT,
and HTTP-CSIC datasets are summarized in Figure 9. It is clear that the
SOM outperformed EM and even Naive Bayes, which is a supervised learning
algorithm. In comparison with X-means, the SOM is comparable on most of
CTU13 datasets, and outperformed on CTU13b, i, m, ISOT, and HTTP CSIC.
The results of SOMs are also comparable to C4.5, and even better in CDR
for CTU13a, CTU13i and HTTP-CSIC. Friedman Aligned-Ranks test results
provide statistical support for the analysis.

The advantages of the proposed system are not only in the classification
performance, but also in the ability to visualize the data. For example, when
ground-truth is available, one can analyze SOM hit maps (Figure 5) to identify
the regions, and hence the portion of the data, that may require further analysis.
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Figure 9 Summarization of classification performance (CDR) of five algorithms. The
columns represent average values, while the errorbars correspond to one standard deviation.

On the other hand, when the ground-truth is not available, proposed approach
is still able to provide the expression on the structure of input data. Finally, in
the case where training data is incomplete, it is possible to train the SOM in
one class fashion to work as an outlier detector as in 4.4.2, while it is more
challenging to do the same with the aforementioned algorithms.

4.5.1 Adaptability of the algorithms on novel malicious
behaviours

To examine the ability of the algorithms on detecting novel (new/unseen
during training) malicious behaviours, one experiment with special training
and testing sets is carried out. The training/testing split is done in the same
manner as in Garda et al. [8], where 5 sets (a, b, f, h, i) in CTU13 are used
for training, while the rest (CTU13c-e, g, j-m) are used for testing. The split
ensures that the testing set contains only novel botnets (Rbot, Virut, Sogou,
NSIS.ay) that are not included in the training set (Neris, Menti, Murlo).
Furthermore, while the botnets in the training set are only IRC botnets, or use
a proprietary protocol for their C&C communication, the botnets in testing set
establish their connections on not only IRC but also HTTP/HTTPS and P2P
protocols [8]. The SOM and other algorithms are trained using both normal
and botnet traffic flows in the training set (as in scenario (i)). Due to the training
data size, only 25% or the original training data is randomly sampled to train
the algorithms.
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Figure 10 Accuracy of 5 algorithms on CTU13 novel botnets testing set.

The results are presented in Figure 10. It is apparent that the SOM was able
to retain its good performance on the novel botnets, while the algorithms for
comparison failed. This demonstrates the potential of the proposed approach
in dealing with unseen behaviours, even when new communication protocols
are employed for botnet C&C, by reducing the dependence on a priori ground-
truth in the learning process.

To further analyze the SOMs in this experiment, the hit maps for training
and testing data are plotted in Figure 11. As it is shown in the figure, although
the C&C and botnet attack behaviours in the testing set are somewhat different

Figure 11 Hit maps of training and testing data, novel botnet detection experiment.



Unsupervised Monitoring of Network and Service Behaviour Using SOM 43

from the botnets in the training set, and appears to be more similar (closer
in the hit maps) to the normal traffic, the SOM was still able to success-
fully identify them. These results also suggest that the shifting in network
behaviours should be gradually incorporated (by re-training) into the system to
maintain a good detection capability. This can be done by periodically training
the SOM at regular intervals, or re-training when new network behaviours
are noticed.

4.6 SOM for Analyzing Unknown Data

In this subsection, the trained SOMs presented in Section 4.4 are used to
analyze the distribution of Background (unlabelled/unknown) data in the
CTU13 sets. Since there is neither ground-truth nor packet capture payload
provided by the CTU for this portion of the datasets, the SOMs trained using
scenario (i) are employed as the baseline to analyze the unknown data portion
of the CTU13 dataset, backed by the promising results obtained in the previous
sections. As shown in Figure 12 and Table 7, the proposed system identifies
most of the Background flows as Normal/Legitimate (53%–67%, depending
on the CTU13 dataset analyzed), and only a small portion (0–6%) as possibly
Botnet traffic. On the other hand, the rest of the Background traffic flows
appear to be very different from both Legitimate and Botnet/C&C.

The proposed system suggests that these flows are labelled as anomalies
for further investigation. Manually inspecting the background flows labelled
as Anomaly shows that many of them have unfamiliar protocols that were not
seen in the training data, for example Address Resolution Protocol, RTP, RTP
Control Protocol, and Internet Group Management Protocol. This intuition
suggests that the training sets need to be expanded to cover more behaviours
and protocols.

SOMs trained by only Normal data (scenario (ii)) show very similar
Background data distributions to scenario (i). The two scenarios agree not
only in the Normal flow distributions but also in which flows are labelled
as Normal. On average, 84.8% (sd 4.14) of the Background flows labelled
as Normal by the SOMs trained using scenario (ii) are also labelled as
Normal by the SOMs trained using scenario (i), while only 1.92% (sd 1.81)
is identified as Botnet by scenario (i) SOMs. On the other hand, SOMs
trained by only Botnet/C&C data (scenario (iii)) label most of the Back-
ground flows as Botnet, with completely different distributions from what
obtained from scenario (i). Specifically, only 7.06% (sd 6.17) of Background
flows labelled as Botnet by scenario (iii) SOMs is confirmed by scenario
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Figure 12 Hit maps of CTU13i Background (left) and training data (right) on the SOM
trained using scenario (i).

Table 7 Distribution of CTU13 Background traffic flows on the trained SOMs

CTU13
Training Scenario (i) Training Scenario (ii) Training Scenario (iii)

Normal Anomaly Botnet Normal Anomaly Not Botnet Botnet
a 53.00 44.67 2.32 51.13 48.87 74.18 25.82
b 58.74 40.33 0.93 60.11 39.89 26.17 73.83
c 57.67 38.19 4.14 54.39 45.61 87.85 12.15
d 67.75 29.64 2.60 69.91 30.09 66.14 33.86
e 65.25 30.14 4.61 74.33 25.67 15.52 84.48
f 65.81 33.91 0.28 67.24 32.76 68.88 31.12
g 63.76 29.80 6.45 55.61 44.39 37.44 62.56
h 65.30 31.59 3.11 62.67 37.33 52.83 47.17
i 65.71 32.70 1.59 56.80 43.20 87.88 12.12
j 60.94 32.90 6.17 61.29 38.71 36.55 63.45
k 52.63 40.94 6.43 33.55 66.45 56.32 43.68
l 56.17 24.86 18.97 56.37 43.63 43.69 56.31
m 54.02 41.39 4.59 49.76 50.24 33.34 66.66

(i) SOMs, while 59.07% (sd 18.08) of those flows is identified as Normal by
scenario (i) SOMs.

To further investigate the Background traffic, we calculate the average
quantization error for each identified class (Normal, Botnet, Anomaly) of
the Background traffic. For the sake of simplicity, this calculation is done
on the data and the trained SOMs from 4.5.1. The quantization error ranges
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Scenario (i) Scenario (ii) Scenario (iii)

Figure 13 Quantization error ranges of Background flows by labels assigned using SOMs
from three training scenarios. The box represents the interquartile range, while the whiskers
extend to the 9th percentile and the 91st percentile. Red line and plus sign shows the median
and mean, respectively.

for labelled Background flows by the three training scenarios are shown in
Figure 13. Using scenario (i) trained SOMs, the average quantization errors of
flows labelled as Normal is 1.06, while it is 0.42 for Botnet flows. These low
quantization errors demonstrate that SOMs trained using scenario (i) label the
Background traffic as Normal and Botnet with high confidence, considering
that the overall average quantization error is 4.69. On the other hand, for the
flows labelled as Anomaly, the average quantization error is 10. This higher
value confirms the hypothesis that anomaly traffic contains very different
behaviours/patterns that were not present in the training data. Similarly, SOMs
trained using scenario (ii) give average quantization errors of 2.26 and 5.83 for
flows classified as Normal and Anomaly. On the other hand, training scenario
(iii) produces SOMs with much higher quantization errors when applied on the
Background traffic. On average, the Background flows are classified as Botnet
and Not Botnet with quantization error values of 23.74 and 7.63, respectively.
These very high error values indicate that SOMs trained using scenario (iii)
are not suitable for Background/unknown data analysis.

5 Conclusion and Future Work

The main objectives in this research are: (i) investigating the capability
of SOMs as an unsupervised data analytics system for modelling and
classification of network behaviours, and (ii) using this capability for analyzing
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unknown/unlabelled traffic. Specifically, the research shows the capability of
such an approach without scrutinizing network packet content. Thus, this
enables a simple solution that is more flexible and adaptable to different
deployment conditions and environments.

Using three different SOM training scenarios, the capabilities of this SOM
based approach are analyzed and evaluated on publicly available datasets of
modern botnets and web attacks. The obtained results are comparable to that
of previous supervised machine learning-based approaches, even though the
proposed approach is based on the unsupervised learning paradigm. Detection
rates of Botnet and Normal classes are up to 99.95% and 99.59% with the
training scenario using both classes. Moreover the experiments on unseen
botnets and unknown traffic portions show the potential of the approach for
building a strong data analytics system for unknown traffic analysis. Our data
analytics results on unknown traffic also suggest that when examples (with
ground truth) of both malicious and normal behaviours are not available for
forming a training dataset, SOMs can be trained on normal data only and
still achieve a competitive level of performance, given that the data is diverse
enough to cover most part of the legitimate traffic.

For future work, multiple directions are promising for extending the
research. Feature extraction and selection methods can be applied to reduce
the unnecessary linear dependency between the input features. More analysis
in the combined use of SOM hit counts and quantization errors as a filter
for unseen data can be carried out. This would test the ability of such an
approach in reducing the noise in data and increasing the accuracy. Finally, the
performance of the SOM-based data analytics system can be studied against
other datasets, to examine its potential of detecting other types of network
attacks and malicious activities.
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