
Big Data Security Analysis with
TARZAN Platform

Marek Rychlý∗ and Ondřej Ryšavý

Brno University of Technology, Faculty of Information Technology, Department of
Information Systems, IT4Innovations Centre of Excellence, Brno, Czech Republic
E-mail: rychly@fit.vutbr.cz; rysavy@fit.vutbr.cz
∗Corresponding Author

Received 20 November 2017; Accepted 26 September 2018;
Publication 06 November 2018

Abstract

The TARZAN platform is an integrated platform for analysis of digital
data from security incidents. The platform serves primarily as a middleware
between data sources and data processing applications, however, it also
provides several supporting services and a runtime environment for the
applications. The supporting services, such as a data storage, a resource and
application registry, a synchronization service, and a distributed computing
platform, are utilized by the TARZAN applications for various security-
oriented analyses on the integrated data ranging from an IT security incident
detection to inference analyses of data from social networks or crypto-currency
transactions. To cope with a large amount of distributed data, both streamed in
real-time and stored, and for the need of a large scale distributed computing, the
platform has been designed as a big data processing system ensuring reliable,
scalable, and cost-effective solution. The platform is demonstrated on the case
of a security analysis of network traffic.

Keywords: Security, Big data, Framework.

1 Introduction

The abundance of data sources and the exponential growth in the volume
they produce represents new challenges for many traditional ICT fields.

Journal of Cyber Security and Mobility, Vol. 8 2, 165–188. River Publishers
doi: 10.13052/jcsm2245-1439.822
This is an Open Access publication. c© 2018 the Author(s). All rights reserved.

166 M. Rychlý and O. Ryšavý

Digital forensics and security incident analysis is not an exception. Every
day, security analysts and investigators face the problem of insufficient tool
support. The roots of this problem lie in the fact that this dramatic change in
the heterogeneity and volume of data makes the existing methods obsolete.

Traditional workflow of digital forensic consists of the well-defined
procedure of data identification, acquisition, preservation, analysis, and report-
ing. This workflow was devised and refined in the 1990s when the environment
regarding computing technology and software was rather uniform. Also, the
amount of data that needs to be processed was from our perspective rather
small. For most cases, it was possible to perform all above-mentioned steps
using a single forensic workstation. Because of the rapid technology advances
in the ICT, this is no longer true. Not only the increasing amount of data
caused by the drop of storage cost and dissemination of broadband connectivity
represents the challenge for digital forensics. Often even the data acquisition
phase is difficult to achieve with the existing tools and considering the usual
methods of creating the forensic image of the disk drive. Completing this
operation for nowadays common terabyte hard drive lasts several hours.

Investigators also need to face the problem of high diversity of computing
devices. Smartphones, tablets and other connected smart devices massively
penetrate the market. Cloud services are another emerging technology that
changes the requirements on the digital forensics methods. All of this means
that classical approach represented by well-defined workflow and considering
the use of a single forensics workstation cannot meet the current demands. In
many cases, the amount of data that to be processed exceeds several terabytes.
Also, some forms of cyber crime comprise of the combination of several
sophisticated techniques, and for their investigation, it is necessary to process
and correlate information from several big datasets. To cope with this problem,
several researchers suggested to apply big data approach, e.g., [13], and this
field has become an active research area.

In this paper, an integrated platform for analysis of digital data from
security incidents (a TARZAN platform) is proposed to address the issues
mentioned above. The platform allows to gather, store, and process digital
forensic data as big data to perform various security-oriented analyses that
range from an IT security incident detection to inference analyses of data
from social networks or crypto-currency transactions.

The paper is organized as follows. Section 2 discusses related work on
data security analysis and processing platforms. In Section 3, we provide a
case study of a PCAP analysis tool utilizing the proposed platform for real-
time security analysis of network traffic. Section 4 introduces the TARZAN

Big Data Security Analysis with TARZAN Platform 167

platform and describes its architecture and core services. The results of the
case study implementation on the platform are discussed in Section 5. Finally,
we draw conclusions in Section 7.

2 Related Work

Several approaches were already proposed to perform security, forensic,
and inference analyses. Because conventional technologies are not always
adequate to support long-term, large-scale analytics [9], big data approaches
to the digital forensics started to emerge addressing their own challenges
(see [13, 16]). However, the most of the existing approaches focused on
particular selected topics of IT security, related often only to networking
security, rather than providing a general framework to support and integrate
various forensic data to analyse them and their inferences in a broader context,
such as in the cases of [21] and [22].

In [21], a digital forensic data reduction process were proposed based on
a selective imaging, to speed up the forensic process by locating evidences,
or by providing examiners with a quick understanding of the data to enable a
better focus for full analysis (e.g., for a cross-device or cross-case analysis).
Although the proposed process is general enough to support the examination of
various types of the stored big data, it is not designed for custom autonomous
big data analyses.

Feature Collection and Correlation Engine (FCCE, [22]) was introduced
to find correlations across a diverse set of data types spanning over large time
windows with very small latency and with minimal access to raw data. The
engine entailed a complete framework for ingesting, aggregating, storing, as
well as retrieving big data, by implementing feature extraction, aggregation,
storage, and retrieval APIs, respectively. It was applied in IT security to detect
fluxing domain names and identify persistent threat infections. However, the
engine did not provide an implementation platform to build system utilizing
the implemented APIs.

Network forensic analysis, which is the subject of the case study presented
in this paper to demonstrate the TARZAN platform (see Section 3), com-
prises of methods for capturing, collecting and analysing network data for
information gathering, evidence identification, or security incident investiga-
tion. A new generation of Internet services opens space for new cybercrime
activities. Security analyst and Law Enforcement Agency officers have to
act accordingly to detect unlawful or unauthorized activities efficiently. The
investigation is not possible without the tool support. While technology

168 M. Rychlý and O. Ryšavý

advances provide hardware technology able to capture communication at
speeds that match current wire speed the software equipment for analysis
of captured traffic has difficulties with packet traces of several gigabytes.

Network forensic analysis methods were implemented in various tools.
General purpose tools include network analysers (Wireshark, TCP dump), IDS
systems (Snort, Bro), fingerprinting tools (Nmap, p0f), and tools to identify
and analyse security threats.

Tools dedicated to network forensic analysis implement specific features
to aid investigation process. They can capture an entire network traffic and
allow an investigator to analyse it and reconstruct the communication. Several
widely used open source tools exist. In the following, we briefly overview
three freely available tools that employ the typical features. Survey of network
forensic tools can be found in [19].

PyFlag is a general purpose forensic package which can be used as
disk forensics, memory forensics, and network forensics tool. This tool was
developed by M. Cohen of Australian Federal Police in 2005 [10]. PyFlag
is designed around the Virtual File System concept. For each supported data
source a specific loader is implemented. To deal with PCAP files, the PCAP
filesystem loader opens PCAP file, parses and dissects individual packets
up to lower layer protocols, collects related TCP packets into streams and
finally applies higher level protocol dissectors. A forensic investigator is
usually interested in high-level information that can be extracted from the
communication. PyFlag enables to reassemble the content of communication,
e.g., web pages, email conversation, etc.

Network Miner1 is an open source tool that integrates packet sniffer
and higher-layer protocol analysers into a tool for passive network traffic
monitoring and analysis. Because captured traffic can be processed in the
same way, Network Miner is also a valuable tool for network forensics
analysis. Network Miner offers several useful features, such as the possibility
of operating system identification, traffic classification, and reassembling the
transferred files for HTTP, FTP, TFTP and SMB protocols.

Xplico2 is a modular tool aimed at the reconstruction of the data content
carried in the network traffic. The software consists of the input module
handling the loading source data, decoding module equipped with protocol
dissectors for decoding the traffic and exporting the content, and the output
module organizing decoded data and presenting them to the user. Contrary to

1http://www.netresec.com/?page=NetworkMiner
2https://github.com/xplico/xplico

Big Data Security Analysis with TARZAN Platform 169

PyFlag and NetworkMiner, Xplico is not a typical desktop application but it is
deployed as a server service with the web-based interface. The authors claim
the possibility to analyze large PCAP files of many gigabytes. Because the
Xplico design is a classical client-server architecture, the performance of the
tool is limited by the hardware configuration of the server running the Xplico
backend.

To analyse the network traffic as big data, a scalable internet traffic
analysis system was presented in [17]. The system, which was able to process
multi-terabytes libpcap dump files, utilized Apache Spark for data processing
to analyse captured transmitted data and protocol fields. Unfortunately, the
system did not allow to integrate non-network data and perform the analyses
of the network data in broader contexts.

Another approaches to the network traffic security big data analysis were
presented in [8, 14, 20, 24]. Apache Metron [5] and Apache Spot [7] projects
are more interesting. They try to form general frameworks for security analyses
of IT threats, secondary processing also firewall and application logs, emails,
intrusion-detection reports, etc. However, analogously to the first case, also the
all of these approaches were focused primarily and narrowly on the network
data and unable to find correlations with other forensic data or to provide a
comprehensive platform for big data forensics.

3 Case Study: PCAP Analysis

Digital investigators process network traffic as a source of evidence in many
types of computer crimes. Captured traffic can be analyzed to obtain the
content and also to show the actions taken by the offender. Network traffic can
also be important for corroborating evidence. Obtaining network traffic as a
source of evidence is usually more complicated than other digital evidence.
Transmitted data are only available on the network device for a limited
amount of time. Inappropriate collection method can lead to data corruption
or incomplete capture. As messages exchanged between applications are
segmented into many pieces, it is important to gather all relevant packets
and be able to combine them again into data streams. When collecting data on
shared links, there may be a huge amount of traffic from which only a fraction
is relevant to the investigation. Moreover, many different protocols are in use
which requires applying corresponding decoding algorithms. Although exist-
ing tools for information security can be adapted for a forensics investigation,
they usually lack features for evidence collecting and preservation. For the
forensic investigation, there are two important activities, namely examination

170 M. Rychlý and O. Ryšavý

and analysis [11]. The examination is characterized by the mostly automatic
data processing that ends with a collection of relevant data extracted from
the data source. The analysis follows examination, and it is often a manual
or more interactive activity that interprets the significance and meaning of
the extracted data. Also, data correlation, finding links and patterns in the
extracted data is the desired result of the analysis.

From the examination viewpoint, the important features of network
forensic tools are as follows:

• Flow reconstruction. Because network conversation is split into many
packets exchanged by communicating applications, the first step of data
examination is to combine these fragments to form flows again.

• Protocol identification. Network communication is governed by
protocols. There are many protocols in the Internet communication. The
ability to identify which protocol was used to data exchange is crucial for
further processing. Protocol identification is difficult for encrypted traffic
where traditional pattern based methods may be less accurate results.

• Protocol decoding. To understand the communication we often need
to extract data from protocol header fields and data payload. Network
forensic tools support a wide variety of protocols. Sometimes these
decoders can identify anomalous packets that do not conform to the
protocol specification.

• Data reduction. Not all data needs to be analysed. Data reduction can
filter out uninterested data. The filter applied depends on the information
obtained from the protocol decoding step. We can be, for instance,
interested only in Web traffic.

• Data recovery. If communication is not encrypted, the communication
payload is visible. This gives us the possibility to recover digital objects
from the communication such as web pages, images, e-mail messages.

• Pattern search. The common investigative approach is to search for
occurrences of known patterns, e.g., email addresses, keywords, etc.
Pattern search in network traffic needs to consider specifics of various
protocols, such as encoding, compressing, etc.

Forensic data analysis can involve different methods and procedures. The
following techniques are commonly applied:

• Developing the timeline from significant events offers investigators a
high-level view on the extracted data. Different kinds of communication
can contribute to timeline by various events, such as e-mail delivery, web
search, file download, etc.

Big Data Security Analysis with TARZAN Platform 171

• The temporal analysis aims to identify patterns or anomalies that are
often processed by the further and deeper analysis. For instance, we are
seeking for the periods of peak data transfer or occurrences of an unusual
protocol.

• The relation analysis provides links among different entities. Relations
can be analysed on different layers, linking devices, services, or end-
users.

• Classification methods assign extracted data to different classes
according to the predefined criteria, such as system traffic, web traffic,
suspicious traffic, malware related traffic, etc.

• Clustering techniques can deal with a lot of entities by grouping them
according to some essential characteristics. Often these methods do not
require learning and thus are easily applicable.

• Correlation is a statistical technique that can identify the relation between
different entities. It is, for instance, possible to identify the same activity
recorded in various data sources.

Digital investigation is a time-consuming and labour-intensive process. Thus,
there is a strong emphasis on using tools that can reduce the examination time
and improve the automation of analysis activities. In the next section, we will
show, how the proposed platform can achieve both requirements. First, exam-
ination time can be reduced by allocating more computation nodes. Second,
some analysis can be automated by applying machine learning algorithms.

The complex PCAP analysis requires processing of a huge amount of data.
The processing must be done both in real-time to detect security incidents or to
perform security audits, and later on large stored datasets to answer queries of
an analyst.As the such processing is difficult to do by conventional centralized
approaches in highly scalable, high-throughput, and fault-tolerant way [9], the
PCAP analysis tool will be implemented on the TARZAN platform.

4 The TARZAN Platform

To ensure communication of TARZAN applications and provide them with
required services and a runtime environment, the TARZAN platform consists
of three core components, namely, Platform Bus which implements a dis-
tributed communication bus for the applications and the components, Platform
Storage which provides a distributed storage service (NoSQL databases,
distributed filesystem, resource registries, etc.), and Platform Computation
component to provide the runtime environment for distributed computation
tasks of TARZAN applications.

172 M. Rychlý and O. Ryšavý

TarzanPlatform

+bus : PlatformBus

+storage : PlatformStorage

+computation : PlatformComputation
subscriptions__management__

ManageSubscriptioonsoo

PublishMessage

ReceiveMessage

communnicationnn

ddatabasedd

fifififilesystemFileDistStorage

DataDistStorage anagementtasks_maa

oncomputatioo

ManageTasks

ExecuteTask

cconcc figurationConfinn gService

M

storage

notifications_and_callbacks

notifications_and_storage

Figure 1 The TARZAN platform architecture.

In Figure 1, architecture of the TARZAN platform is modelled in an UML
composite structure diagram. Each of the three core components provides
its services to TARZAN applications by the platform’s external interfaces.
Moreover, the components communicate and cooperate inside the platform.
The individual components are described in the following sections.

4.1 Platform Bus

The main goal of the platform bus core component is to enable asynchronous
communication of other TARZAN components. More specifically, the plat-
form bus implements a publisher-subscriber communication model based
on message queues. A client is able to publish messages to particular topics
acting as a producer, or to subscribe to receive messages of particular topics as
a consumer (see the corresponding interfaces in Figure 1). The platform bus
guarantees delivery of the published messages to their appropriate consumers.

The communication via the bus is utilized by both external TARZAN
applications and the core TARZAN components. In the first case, the
applications can connect themselves to various data sources to ingest sensor
data, events, logs, etc.; interconnect their components into data process-
ing topologies to perform data parsing, normalizing, validating, marking,
enrichment, etc.; and consume or feed data from/into the platform storage
components. In the second case, the platform bus helps the other core
components to send/receive their data, for example, to store the transmitted
data into the platform storage and deliver the storage update notifications, or

Big Data Security Analysis with TARZAN Platform 173

Message

Topic Partition

Producer

Consumer

ConsumerGroup

1..* 1
1

1..*

1

*

*

1

sender 1

*

consuming from

sent by

enqueued in

submitted to

Figure 2 A conceptual model of basic entities in Apache Kafka.

to deliver input data and pass output data of tasks of the platform computation
including callbacks.

To achieve high-throughput message passing in highly scalable distributed
environments, the platform bus is based on Apache Kafka [4]. In Kafka,
messages are communicated in topics. Each topic, as a general category
of particular messages, consists of multiple partitions (queues). A producer
submits a message to a particular topic (or topics) where in each topic,
the message is assigned to a particular single partition (automatically for
load-balancing or as required by the producer). A consumer can belong to
a particular consumer group and subscribes to one or more topics. In each
of the subscribed topics, the consumer has assigned particular partition for
exclusive reception. For relationships of these concepts, see Figure 2.

In TARZAN, Kafka’s concepts of a message, topic, partition, producer,
consumer, and consumer group are utilized for consuming data sources and
communication with computation tasks as follows.

4.1.1 Broadcasting from data sources
A data source (producer) submits data (a message) of a particular type (topic)
under the data source’s identification (partition). A subscriber (consumer)
listens to a particular topic and a particular partition, that is for messages of
the particular type from the particular data source. A message will be received
by (broadcasted to) all subscribed consumers in different consumer groups.

174 M. Rychlý and O. Ryšavý

• Messages = data produced by the sources.
• Topics = individual data source types (e.g., PCAP).
• Partitions = particular data sources (e.g., a sensor monitoring a network

traffic on a particular network interface).
• Consumer groups = subscribers for data produced by a particular data

source (e.g., a component for processing/analysing/storing PCAPs).

4.1.2 Load-balancing of data processing tasks
A client (producer) submits a task invocation (message) to a particular service
(topic) without any partition (it will be assigned automatically by Kafka for
load-balancing). In the case of a request-reply task invocation, the message
should contain also the client’s identifier which will be utilized for the callback
(a particular partition name in “callback” topic).

• Messages = task invocations including data payloads and callback
addresses if needed.

• Topics = names of individual services (e.g., PCAP Analyzer).
• Partitions = individual instances of a particular service (e.g., a particular

process of the PCAP Analyzer).
• Consumer groups = single-member groups representing the instances

as above.

4.1.3 Delivery of the Tasks’ Replies
A particular service task instance (producer) submits a reply/result (message)
to the previously received task invocation as a callback. The reply (message)
will be delivered to a particular client who sent the task invocation (to his
partition in “callback” topic).

• Messages = replies/results to the previously submitted task invocations.
• Topics = a single topic with name “callback” only.
• Partitions = one partition for each individual client.
• Consumer groups = single-member groups representing the clients

as above.

4.2 Platform Storage

While the platform bus described in the previous section is necessary for data
processing, the platform storage implements the data persistence in distributed
environments. The distributed data storage is the necessary requirement of
distributed data processing to be able to scatter and deliver data across

Big Data Security Analysis with TARZAN Platform 175

processing nodes. Three types of data storage services are supported: a
distributed filesystem, a distributed database, and a distributed and synchro-
nized configuration service (see the corresponding interfaces in Figure 1).

The platform storage services are utilized by both external TARZAN
applications to provide a shared storage and by the core TARZAN components
to store the platform runtime data. In the second case, the storage services are
utilized for a resource registry of various resources accessed and manipulated
by the platform (e.g., topic and partition names for the platform bus, or
declarations and definitions of tasks in the platform computation components).

For the distributed filesystem and the distributed and synchronized
configuration service, Hadoop Distributed File System (HDFS) from Apache
Hadoop [2] and Apache Zookeeper [1] were adopted, respectively. Both
software products are widely utilized in the TARZAN platform and well-
integrated with other components. For example, the platform bus based on
Apache Kafka is utilizing Zookeeper for message queue management and the
platform computation component based on Apache Spark is utilizing HDFS
for a data storage and Hadoop for a cluster management.

Although the distributed database service is not designated for a particular
NoSQL database, Apache Cassandra [3] is the preferred database in the
TARZAN platform. The main reason for this preference is a perfect integration
of Cassandra with the rest of the software stack (e.g., well-established
Cassandra-Spark and Cassandra-Kafka connectors). Moreover, Cassandra
provides an optimal storage for large sensor data [23].

4.3 Platform Computation

To support distributed computing on data communicated and stored in the
TARZAN platform, the platform computation core component is provided.
The component allows TARZAN applications to run tasks, e.g., to process
(normalize/aggregate), enrich, label, combine, etc. the data and to utilize other
TARZAN components.

Tasks for the platform computation component are registered by external
application components and then they can be executed by TARZAN
applications (for the corresponding interfaces, see Figure 1) as demonstrated
in Figure 3 to perform malware or data-breach detections, or to analyse Bitcoin
transaction based on capture network traffic, firewall logs, Bitcoin blockchain,
and social network profiles.

As the most of the use-cases for data processing in the TARZAN platform
operate on big data (in the sense of data characterized by four Vs: volume,

176 M. Rychlý and O. Ryšavý

+bus : PlatformBus
+storage : PlatformStorage
+computation : PlatformComputation

TarzanPlatform<<component>>
PCAPIngestor

<<component>>
FirewallIngestor

<<component>>
BitcoinTransIngestor

<<component>>
SocialNetworksIngestor

<<component>>
DataBreachIncidentMonitor

<<component>>
MallwareActivityMonitor

<<component>>
BitcoinTransAnalyzer

<<component>>
MalwareRecognition

<<component>>
DataBreachDetection

PublishMessage

ManageTasks

ExecuteTask DataDistStorage

ReceiveMessage

Figure 3 An example of external application components utilizing the TARZAN platform
(the ingestors on the left side are feeding data to the platform, computation tasks and an
application on the top and bottom are processing the data, and the monitors on right side are
passing results to clients).

variety, velocity, and value [12]), the platform computation tasks must be
able to do big data processing. The applications need to process both data
streams and data batches (e.g., to do a real-time analysis of firewall logs and
to execute on-demand tasks, respectively). Therefore, Apache Spark [6] has
been selected as the implementation technology for the platform computation
component and it tasks, as it supports both the stream and batch processing of
big data.

For the batch data processing in Spark, computation tasks can utilize a
data abstraction called Resilient Distributed Dataset (RDD) to execute various
parallel operations on a Spark cluster and to gather resulting data in shared
broadcast variables and accumulators provided by Spark on the cluster’s
nodes. In the case of the stream data processing, Spark Streaming provides
computation tasks with Discretized Stream (DStream) abstraction where each
stream is represented by a continuous series of RDDs that is divided into
micro-batches and processed by the tasks in the similar way as in the batch
processing above. Because DStreams follow the same processing model as
batch systems, the two can naturally be combined [25] and the platform
computation component and it tasks can implement identical algorithms for
both the stream and batch processing.

5 Evaluation

The TARZAN platform has been evaluated by means of the PCAP analysis
case study described in Section 3. A corresponding TARZAN application has

Big Data Security Analysis with TARZAN Platform 177

been implemented to read and analyse data of network traffic monitoring stored
in the PCAP format. After the PCAP data are read from input PCAP files or
real-time generated by network traffic monitoring tools, they are transferred
(including their related meta-data) via platform bus for a primary analysis
by tasks of platform computation. The tasks also ensure that both the input
data and the output primary analysis results are stored in platform storage.
Afterwards, a secondary analysis can be executed on the stored data and the
previous results to perform various security and forensic analyses, e.g., to
detect communication patterns, apply clustering methods for data mining, etc.

The primary analysis is operating on continuously incoming data and
the primary analysis tasks implement real-time stream processing to quickly
extract traffic basic features such as source and destination IP addresses and
port numbers, defragment fragmented packets into network flows, analyse
flow properties, application protocols, etc. These tasks utilize the Spark
Streaming extension of the core Apache Spark API to process DStreams.
In Spark, tasks are scalable, high-throughput, fault-tolerant, so the ability to
process the incoming live data in real-time can be improved, if necessary, by an
appropriate cluster configuration and the application deployment. However,
the primary analysis must perform only basic analytical tasks.

Contrary to the primary analysis which employs real-time steam
processing, the secondary analysis can implement a batch processing of the
previously stored data and the primary analysis results. Therefore, the stored
inputs can be represented as RDDs and processed by means of Spark RDD
API, Spark SQL, and also machine learning algorithms provided by Spark’s
machine learning library (MLlib) can be applied. The secondary analysis
is executed on demand as required by the platform’s client applications,
e.g., to provide data for visualisations, analyse network communications
related to security incidents under investigation, or related to cryptocurrency
transactions or malware activities.

The overall architecture of the PCAPAnalysis tool is depicted in Figure 4.
To feed input PCAP data into the system, several modules were adopted and
adapted from the Apache Metron project [5], namely: metron-sensors, metron-
pcap, and metron-api. In the first module,Apache Metron brings into TARZAN
the integration of Data Plane Development Kit3 (DPDK) probes for high
speed packet capture and Yet Another Flowmeter4 (YAF) to processes packet
data from PCAP dumpfiles (as generated by tcpdump or libpcap). The next

3http://dpdk.org/
4https://tools.netsa.cert.org/yaf/

178 M. Rychlý and O. Ryšavý

Apache Metron

PCAP_data_ file

Kafka_PCAP_buffer
T

PCAP_Ingestor

PCAP_network_tap

TARZAN

Platform_clients

PCAP_Primary_analysis
stream processing

PCAP_Storage
D

Primary_analysis_results
D

Secondary_analysis
batch processing

Secondary_analysis_results
D

Figure 4 Architecture of the PCAP Analysis tool with data-flows (including processes, data
storages, and external data sources and entities).

two Metron modules provide a topology for streaming network packets into
HDFS and low-level analytics/filtering on the PCAP files in HDFS before
they are submitted into a Kafka message queue acting as a buffer for further
processing. Then, a continuous stream processing in the primary analysis and
an on-demand batch processing in the secondary analysis is performed by
utilizing the TARZAN platform components as described above.

In comparison with the Apache Metron [5] or Apache Spot [7] discussed in
Section 2, the current implementation of the PCAP analysis tool in TARZAN
provides the same basic functionality, however, it enables a better integration
with the other TARZAN applications into a seamless security analysis frame-
work where results of the PCAP analyses may contribute to various security
investigations, e.g., to trace cryptocurrency transactions or malware activity.

In comparison with the existing approaches and the related work (see
Section 2), the TARZAN platform is a step further in the design and
development of open forensic platform capable of processing big data. As
we demonstrated in the PCAP analysis case study, our approach is compatible
and easily integrated with other approaches to big data forensic. TARZAN
applications can utilize HDFS as suggested in a conceptual model of big
data forensics by Zawoad and Hasan [26]. Also a framework for the forensic
analysis of big heterogeneous data presented by Mohammed et al. [18] can be

Big Data Security Analysis with TARZAN Platform 179

realized using the TARZAN platform. Their framework has three layers that
follow acquisition, examination, and analysis approach to extract metadata
from acquired data sources and build a semantic web-based model for further
analysis. While they do not specify the particular implementation of such
system, the presented concepts are in accordance with the architecture of the
TARZAN platform. Analogously, Irons and Lallie [15] discussed the short-
comings of the current analysis methods and suggested to use more intelligent
techniques and demonstrated the possible application of artificial intelligence
(AI) to computer forensics. The TARZAN platform can easily integrate the
AI investigative methods because the underlying components provide rich
libraries of various AI algorithms.

6 Experimental Setup and Results

Experiments were conducted demonstrating the performance of the proposed
TARZAN platform for PCAP analysis. The two main resources controlled by
Spark are CPU and memory. Thus the experiments also attempt to provide
results for different parameters that control resource utilization.

The dataset used during experiments consists of 10 GB of PCAP files
containing about 50 million packets captured in Honeypot network during
six months. In the capture, 99,582 unique IP addresses were identified
communicating with the Honeypot devices most often by protocols such as
SSH, HTTPS, SSDP, DNS, SMB, and NTP. The dataset was split into 102
individual files of average size about 100 MB and uploaded to HDFS.

Supermicro SuperTwin2 6026TT-TF server equipped with eight Intel
(R) Xeon E5520 @ 2.26 GHz was the hardware platform utilized in the
experiments. This four systems (nodes) server hosts both HDFS and Spark
cluster. Spark cluster consists of a master node and four workers. Each node
has 16 CPU cores and at least 48 GB RAM.

6.1 Scenarios

Experiments were executed in the spark-shell environment for different
settings of memory and core limits for executors5. The workload spans
from computing the statistics for the entire dataset through enumerating
individual flows to analyse application level information. From many possible

5Limits were set using “executor-memory” and “executor-cores” options.

180 M. Rychlý and O. Ryšavý

v a l f r a m e s = sc . h a d o o p F i l e (" h d f s : / / s t o r a g e / cap / . cap " , . . .)
v a l p a c k e t s = f r a m e s . map (x => P a c k e t . p a r s e P a c k e t (

x . _2 . g e t () . a s I n s t a n c e O f [RawFrame]))
v a l c a p i n f o = p a c k e t s . map (S t a t i s t i c s . f r o mP a c k e t)

. r e d u c e (S t a t i s t i c s . merge)

(a) Capture Info

v a l f r a m e s = sc . h a d o o p F i l e (" h d f s : / / s t o r a g e / cap / . cap " , . . .) ;
v a l p a c k e t s = f r a m e s . map (x => P a c k e t . p a r s e P a c k e t (

x . _2 . g e t () . a s I n s t a n c e O f [RawFrame]))
v a l f l o w s = p a c k e t s . map (x =>(x . g e t F l o w S t r i n g () , x))
v a l s t a t s = f l o w s . map (x => (x . _1 , S t a t i s t i c s . f r omP a c k e t (x . _2)))

. reduceByKey (S t a t i s t i c s . merge)
s t a t s . t a k e O r d e r e d (1 0) (

O r d e r i n g [I n t] . r e v e r s e . on (x=> x . _2 . g e t P a c k e t s ()))
. map (c=> S t a t i s t i c s . f o r m a t (c . _1 , c . _2)) . f o r e a c h (p r i n t l n)

(b) Flow Aggregation

def xf (x : P a c k e t P a y l o a d) = x . g e t P a c k e t () . ex t endWi th (" h t t p " ,
H t t p R e q u e s t . t r y P a r s e R e q u e s t (x . g e t P a y l o a d ()))

v a l p a c k e t s = f r a m e s . map (x => P a c k e t . p a r s e P a c k e t (
x . _2 . g e t () . a s I n s t a n c e O f [RawFrame] , toConsumer (x f)))

v a l h t t p = p a c k e t s . f i l t e r (x => x . c o n t a i n s K e y (" h t t p . r e q u e s t "))
v a l h o s t s = h t t p . map (x => (x . g e t (" h t t p . h o s t ") , 1))

. reduceByKey (_ + _)
h o s t s . t a k e O r d e r e d (2 0) (O r d e r i n g [I n t e g e r] . r e v e r s e . on (x => x . _2))

. f o r e a c h (p r i n t l n)

(c) HTTP Request Analysis

*

*

Figure 5 Scala code snippets for test scenarios.

operations, the following three were selected representing different types of
PCAP processing:

• Capture Info. It computes basic information about the packet capture
collection similarly to capinfo tool from Wireshark distribution. It pro-
vides information such as the number of packets, capture duration, data
byte rate, average packet size, average packet rate, etc. The computation
is done in a simple one stage pipeline that reduces to a single object: The
code is shown in Figure 5(a).

• Flow aggregation. The packets are aggregated into flows, and for each
flow, the usual statistical information is computed. For instance, the top

Big Data Security Analysis with TARZAN Platform 181

10 flows with the most packets are computed as follows: The code is
shown in Figure 5(b).

• HTTP Request Analysis. This scenario is similar to CloudShark’s HTTP
analysis tool6. For instance, HTTP requests by hosts can be enumerated
by the following sequence: The code is shown in Figure 5(c).

The presented cases represent the different computations performed by the
TARZAN platform during processing and querying packet capture data source.
Computation time was measured to estimate the performance. All three cases
were tested with different parameters limiting the number of CPU cores and
memory for executors. Spark adjusts the number of executors to available
resources. For our hardware configuration, Spark allocates executors as shown
in Figure 6(f) for different combinations of executor’s memory size and cores.

6.2 Results

Performance measured for the first case is shown in Figure 6(a). The worst time
is for a configuration that instantiates only four executors each allocated 16 GB
memory and assigned 16 cores. The best computation time was achieved by
the configuration creating 32 executors each assigned only two cores and 4 GB
of memory. Configurations that allocates 4 CPU cores per executor and more
are not better – they have almost equal running time.

A possible explanation may be that HDFS I/O is the limiting factor in this
situation.

Figure 6(b) shows measured performance for the second case. Also, in
this case, the worst performance is achieved for large memory allocation and
a small number of executors. Contrary to the previous situation, using 8 CPUs
per executor leads to the best performance. Using more CPUs or more memory
does not improve the performance.

The results for the third cases are given in Figure 6(c). Results for HTTP
Request Analysis are close to Flow Aggregation case except for tiny executors
that exhibit poor performance. The best computation time is about 20 seconds.

For comparison, Figure 6(d) shows computation time for the program that
reads all frames from packet capture files and performs count operation on the
RDD. The best computation time (12 seconds) was achieved for 17 executors
each with only 1CPU and 8 GB.

Figure 6(e) provides results on the impact of the total number of executors
on the job completion time. An executor runs tasks both sequentially and
in parallel. The general advice is to have at least as many executors as data

6see https://supports.cloudshark.org/user-guide/analyze-http-requests.html

182 M. Rychlý and O. Ryšavý

Memoryrr (GB)
Cores

Ti
m

e
(s

)

(a) Computation time for Capture Info

Memoryrr (GB)
Cores

Ti
m

e
(s

)

(b) Computation time for Flow
Aggregation

Memoryrr (GB)
Cores

Ti
m

e
(s

)

(c) Computation time for Http
Request Analysis

Memoryrr (GB)
Cores

Ti
m

e
(s

)

(d) Computation time for count()
operation

Executors

Ti
m

e
(s

)

1CPU
2CPUs
4CPUs

(e) Capture Info : Computation
time for different size

of executors

Mem vCPU
(GiB) 1 2 4 8 16

1 64 32 16 8 4
2 59 32 16 8 4
4 38 29 16 8 4
8 17 17 14 7 4
16 7 7 7 7 4

(f) Number of executors created
by Spark for different configuration

of memory and CPU
Figure 6 Computation time for experimental scenarios.

Big Data Security Analysis with TARZAN Platform 183

nodes. It is possible to create as many executors as there are cores in the cluster.
However, executors with a single core and small amount of memory will not
be able to run tasks in parallel that may lead to additional communication
and data duplication overhead. Also, executors with too much memory often
result in excessive garbage collection delays. In this scenario, each executor
has allocated 2GB of memory. The best computation time was achieved by
32 executors each having assigned two CPUs. Using 4CPUs per executor
instead of two did not improve the performance.The configuration that consists
of 4 executors each with 4CPUs had the worst performance.

6.3 Discussion

The presented performance results necessarily reflect the hardware platform
utilized and the cluster organization. However, some useful observations can
be made:

• Tiny executors perform better for simple workloads. Moreover, many
small executors beat heavy executors for the same available hardware
resources.

• Allocating more memory for executors usually does not lead to better
performance.

• Four to eight cores per executor is a good option for the considered
workload.

• In all scenarios, there is a configuration space that provides reasonable
performance, which simplifies system parameter tuning.

As seen, the performance is adequate for real scenarios. For comparison,
obtaining capture information with capinfo tool form Wireshark distribution
takes about 3 minutes for the considered dataset. The presented results are for
proof of concept implementation that does not involve any optimization. The
amount of parallelism can be further tuned for instance by creating smaller
capture files or modifying InputFormat to create more splits. Another option
is to optimize data structures used for representing packets, flows and other
data structures and their serialization format.

7 Conclusion

In this paper, we have introduced a TRAZAN platform, an integrated plat-
form for analysis of digital data from security incidents. The architectural
design has been presented to explain which core component are available in

184 M. Rychlý and O. Ryšavý

the platform and which services are provided to TARZAN applications. The
platform allows to gather, store, and process digital forensic data as big data
to perform various security-oriented analyses.

As a sample case study, a PCAP analysis tool has been implemented on the
platform utilizing the platform bus component to integrate individual modules,
the platform storage component to store input data and analyses results, and the
platform computation component to perform both stream and batch processing
of big data.

It has been concluded that the TARZAN platform constitutes an open
forensic platform capable of processing big data and provides a sufficient
framework for further integration of various existing approaches. The inte-
gration of various existing approaches and existing tools for forensic analyses
as external TARZAN components and applications is a part of ongoing work.

Acknowledgements

This work was supported by Ministry of Education, Youth and Sports of the
Czech Republic from the National Programme of Sustainability (NPU II)
project “IT4Innovations excellence in science” LQ1602; Ministry of Interior
of the Czech Republic project “Integrated platform for analysis of digital data
from security incidents” VI20172020062; and by BUT internal project “ICT
tools, methods and technologies for smart cities” FIT-S-17-3964.

References

[1] Apache ZooKeeper, 2010.
[2] Welcome to Apache Hadoop! 2014.
[3] Apache Cassandra, 2016.
[4] Apache Kafka: A high-throughput distributed messaging system, 2016.
[5] Apache Metron: Real-time big data security, 2016.
[6] Apache Spark: Lightning-fast cluster computing, 2016.
[7] Apache Spot (incubating). (2016). A community approach to fighting

cyber threats.
[8] Aupetit, M., Zhauniarovich, Y., Vasiliadis, G., Dacier, M., and

Boshmaf, Y. (2016). Visualization of actionable knowledge to mitigate
DRDoS attacks. In 2016 IEEE Symposium on Visualization for Cyber
Security (VizSec), (pp. 1–8). IEEE.

Big Data Security Analysis with TARZAN Platform 185

[9] Cardenas, A. A., Manadhata, P. K., and Rajan, S. P. (2013). Big data
analytics for security. IEEE Security and Privacy, 11(6), 74–76.

[10] Cohen, M. I. (2008). Pyfiag:An advanced network forensic framework. In
Proceedings of the 2008 Digital Forensics Research Workshop. DFRWS.

[11] Casey, E. (2004). Network traffic as a source of evidence: tool strengths,
weaknesses, and future needs. Digital Investigation, 1(1), 28–43.

[12] Gantz, J., and Reinsel, D. (2011). Extracting value from chaos. IDC iview,
1142(2011), 1–12.

[13] Guarino,A. (2013). Digital forensics as a big data challenge. In ISSE 2013
securing electronic business processes (pp. 197–203). Springer Vieweg,
Wiesbaden.

[14] He, L., Tang, B., Zhu, M., Lu, B., and Huang, W. (2016). NetflowVis: A
Temporal Visualization System for Netflow Logs Analysis. In Interna-
tional Conference on Cooperative Design, Visualization and Engineering
(pp. 202–209). Springer, Cham.

[15] Irons, A., and Lallie, H. S. (2014). Digital forensics to intelligent
forensics. Future Internet, 6(3), 584–596.

[16] Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.
M., Ramakrishnan, R., and Shahabi, C. (2014). Big data and its technical
challenges. Communications of the ACM, 57(7), 86–94.

[17] Lukashin, A., Laboshin, L., Zaborovsky, V., and Mulukha, V. (2014).
Distributed packet trace processing method for information security
analysis. In International Conference on Next Generation Wired/Wireless
Networking (pp. 535–543). Springer, Cham.

[18] Mohammed, H., Clarke, N., and Li, F. (2016). An automated approach
for digital forensic analysis of heterogeneous big data. JDFSL, 11(2),
137–152.

[19] Pilli, E. S., Joshi, R. C., and Niyogi, R. (2010). Network forensic frame-
works: Survey and research challenges. Digital Investigation, 7(1–2),
14–27.

[20] Promrit, N., and Mingkhwan, A. (2015). Traffic flow classification
and visualization for network forensic analysis. In 2015 IEEE 29th
International Conference on Advanced Information Networking and
Applications (AINA), (pp. 358–364). IEEE.

[21] Quick, D., and Choo, K. K. R. (2016). Big forensic data reduction: digital
forensic images and electronic evidence. Cluster Computing, 19(2),
723–740.

[22] Schales, D. L., Hu, X., Jang, J., Sailer, R., Stoecklin, M. P., and
Wang, T. (2015). FCCE: highly scalable distributed feature collection

186 M. Rychlý and O. Ryšavý

and correlation engine for low latency big data analytics. In 2015
IEEE 31st International Conference on Data Engineering (ICDE),
(pp. 1316–1327). IEEE.

[23] Van der Veen, J. S., Van der Waaij, B., and Meijer, R. J. (2012). Sensor
data storage performance: SQL or NoSQL, physical or virtual. In 2012
IEEE 5th International Conference on Cloud Computing (CLOUD),
(pp. 431–438). IEEE.

[24] Wullink, M., Moura, G. C., Müller, M., and Hesselman, C. (2016).
ENTRADA: A high-performance network traffic data streaming ware-
house. In 2016 IEEE/IFIP Network Operations and Management
Symposium (NOMS), (pp. 913–918). IEEE.

[25] Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012). Discretized
Streams: An Efficient and Fault-Tolerant Model for Stream Processing
on Large Clusters. In Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’12, Berkeley, CA, USA, 2012.
USENIX Association.

[26] Zawoad, S., and Hasan, R. (2015). Digital forensics in the age of
big data: Challenges, approaches, and opportunities. In 2015 IEEE
17th International Conference on High Performance Computing and
Communications (HPCC), 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security (CSS), 2015 IEEE 12th Interna-
tional Conference on Embedded Software and Systems (ICESS), (pp.
1320–1325). IEEE.

Biographies

Marek Rychlý is an assistant professor at Brno University of Technology,
Faculty of Information Technology (BUT FIT). He received PhD in Computer
Science and Engineering in 2010 from BUT FIT. His research interests are in
the area of software architecture and focus on dynamic reconfiguration and

Big Data Security Analysis with TARZAN Platform 187

component mobility in component-based and service-oriented architectures,
formal description of software architectures and their evolution, functional
and quality-driven automatic Web services composition and testing, and on
distributed software systems. He authored over 20 scholarly journal articles
and conference papers on varied topics related to software engineering and
software architectures.

Ondřej Ryšavý is an associate professor at Brno University of Technology
(Czech Republic). He has a PhD in Information Technology. His research
projects include Programmability in Rina for European Supremacy of vir-
tualised Networks, Modern Tools for Detection and Mitigation of Cyber
Criminality on the New Generation Internet, SCADA system for control and
monitoring RT processes and Dependable Systems International Research and
Educational Experience.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

