
Data Tamper Detection from NoSQL
Database in Forensic Environment

Rupali Chopade∗ and Vinod Pachghare

Department of Computer Engineering and IT, College of Engineering Pune,
Savitribai Phule Pune University, India
E-mail: rmc18.comp@coep.ac.in; vkp.comp@coep.ac.in
∗Corresponding Author

Received 29 September 2020; Accepted 16 December 2020;
Publication 29 March 2021

Abstract

The growth of service sector is increasing the usage of digital applications
worldwide. These digital applications are making use of database to store
the sensitive and secret information. As the database has distributed over
the internet, cybercrime attackers may tamper the database to attack on
such sensitive and confidential information. In such scenario, maintaining
the integrity of database is a big challenge. Database tampering will change
the database state by any data manipulation operation like insert, update or
delete. Tamper detection techniques are useful for the detection of such data
tampering which play an important role in database forensic investigation
process. Use of NoSQL database has been attracted by big data requirements.
Previous research work has limited to tamper detection in relational database
and very less work has been found in NoSQL database. So there is a need
to propose a mechanism to detect the tampering of NoSQL database sys-
tems. Whereas this article proposes an idea of tamper detection in NoSQL
database such as MongoDB and Cassandra, which are widely used document-
oriented and column-based NoSQL database respectively. This research
work has proposed tamper detection technique which works in forensic

Journal of Cyber Security and Mobility, Vol. 10 2, 421–450.
doi: 10.13052/jcsm2245-1439.1025
© 2021 River Publishers

422 R. Chopade and V. Pachghare

environment to give more relevant outcome on data tampering with hun-
dred percent accurate result and distinguish between suspicious and genuine
tampering.

Keywords: Database, database forensics, MongoDB, cassandra, NoSQL,
tamper detection.

1 Introduction

Now a days because of automation in every sector, organizations are storing
their data in electronic format. This electronic data has stored in the form of
a database. Database is an easy way of managing and accessing the data [1].
Security of database is always a big concern for every organization. Database
security bounds for Confidentiality, Integrity & Availability (CIA) and these
trio plays an important role in information security. Database crimes are
mainly affecting on CIA. Integrity is one of the major pillars of the database.
Database integrity is useful to identify any change in the database. Any alter-
ation in the database is called as database tampering. Database tampering,
addresses the problem of determining who, when and what data has been
tampered [2]. This article addresses for when and what data has tampered,
which may be useful for database forensic studies. Database forensic is one of
the sub-areas of digital forensics. Database forensics involves a detailed study
of database and their associated artifacts [3]. In database forensics, there is a
need to identify and trace the evidence against such crimes and divulge the
affected database. This article presents a technique to detect the tamper in
MongoDB and Cassandra, which are one of the popular NoSQL databases.
Researchers have already worked for tamper detection in relational databases
like Oracle, MySQL, and SQL Server, etc. Different tools are available for
forensics purpose but each tool has its own limitations [4]. These tools are
designed for specific database, considering its internal architecture and most
of these tools are available for relational databases. NoSQL databases are get-
ting widely adopted due to huge data storage requirements and unstructured
data formats. NoSQL database falls in four categories namely document-
based, key-value based, column-based, and graph-based. MongoDB is a
document-oriented, while Cassandra is a column-based NoSQL database.
The reason behind selecting these two databases, is their top ranking in the
NoSQL database [5]. As every NoSQL database has its own storage engine
and internal data storage format, hence this work has limited to these two
databases. Before designing and proposing this tamper detection technique

Data Tamper Detection from NoSQL Database in Forensic Environment 423

for these databases, a survey was performed on NoSQL databases by focus-
ing on their working and internal data storage formats. The observations
presented in Table 1 gives the limitations on implementing the generalized
tamper detection technique for NoSQL database. As several number of
NoSQL database are available, hence the most preferred five databases (other
than MongoDB and Cassandra) are selected from NoSQL category and their
details are presented through Table 1.

The hashing is a most commonly used technique for tamper detec-
tion [10]. Hashing is useful to identify the tampering in database [11, 12], but
it won’t help to identify, what has tampered? and that’s the major limitation.
In this view, we have developed a new tamper detection technique, which

Table 1 NoSQL database details
#DB Ranking

NoSQL (Among Data Format and
Database Category NoSQL) [5] Specification Working

Redis [6] Key-value 2 In-memory
database

Snapshot of RDB file
memory data is stored on
disk. Log of write
operations has stored in
AOF file. RDB data set
consists of string, list, set
and hash. While AOF data
set contains string, ziplist,
linkedlist, intset, skiplist
and hash table.

Amazon
DynamoDB [7]

Document
Store,
Key-Value store

4 Amazon web
services
database

Data has managed using
hashing and B-trees and it
has stored in the form of
tables with dynamic
attributes set.

Neo4j [8] Graph 5 ACID
compliant
transactional
database

Data is modelled in the
form of graph with two
elements, nodes (vertices)
and relationships (edges).

HBase [9] Wide Column 6 Hadoop
database

This database is based on
Hadoop distributed file
system (HDFS). Data is
written to HBase file called
as HFile and is organized
in sorted map order.

424 R. Chopade and V. Pachghare

will identify the actual tampering in these databases and this will be useful
in database forensics. The tamper detection result consist of Timestamp of
tampering, actual operation involved in data tampering, namespace/keyspace
on which tampering has happened and actual data involved in it.

1.1 Objectives

The main objectives of this article are:

• Develop a technique to identify, when and what data has tampered in
MongoDB and Cassandra database in forensic environment

• Classify tampered operations as genuine or suspicious for e-commerce
dataset

• Performance evaluation of data tampering in standalone, replication and
sharding mode of MongoDB database & in standalone mode and high
availability with local storage mode of Cassandra database

1.2 Paper Layout

The rest of this article is organized as follows. Section 2 reviews the internal
working of MongoDB and Cassandra database along with attacks and secu-
rity issues in these databases. The related work has mentioned in Section 3
and threat model for tamper detection is given in Section 4. A proposed
technique for tamper detection in forensic environment along with its process
flow and algorithms are explained in Section 5. The implementation and
performance evaluation has shown in Section 6. Finally, we conclude this
article in Section 7.

2 Database Internals

2.1 MongoDB

MongoDB is becoming popular [13] due to its great performance, flexibility
to quickly accommodate the changes, versatility, scalability, and ease of
use [14]. MongoDB is an unstructured database in which data is stored
in the form of documents, which are part of the collection. The supported
storage engines by MongoDB are MMAPv1, WiredTiger and In-Memory.
The storage engine is a component that manages storage of data in memory
and on the disk. MongoDB Enterprise supports In-Memory storage engine.
MMAPv1 is not available in the current versions of MongoDB. The default
storage engine is WiredTiger; hence the further details specified are allied

Data Tamper Detection from NoSQL Database in Forensic Environment 425

with this storage engine. The current storage engine can be checked by
issuing the command db.serverStatus().storageEngine. The data is stored in
terms of page units [15]. Actual data is stored in cell units and which is
presented in B-tree structure format. Data is present in the Binary Script
Object Notation (BSON) format. Data is stored in compressed form using
snappy as the default algorithm. From the forensic perspective, the impor-
tant files of WiredTiger storage engine are mdb catalog.wt, Collection.wt,
WiredTiger.turtle and WiredTiger.wt. These files are generally available
under the data folder of MongoDB. The wiredTiger.turtle is a text file that
contains the root page offset address of WiredTiger.wt file in the form of
configuration string [15]. The collection -#-####∼.wt is the file in which
actual data is stored and whenever the collection is created, this file gets
generated for every new collection. The # is the number associated with the
file name and the number behind the first hyphen gets incremented by one, as
the file gets created. The number behind the second hyphen is the file name
represented with 19 digits randomly generated numbers. This can be checked
from WiredTiger.wt and mdb catalog.wt files. The file mdb catalog.wt
consists of namespace and filename pair [16]. Through this storage engine,
multiple clients can update different documents of the collection at the same
time. Document-level concurrency control is used by this storage engine for
a write operation.

2.2 Cassandra

Apache Cassandra is a column-based NoSQL database. It is highly scalable
and distributed database [17], which handles very huge amount of data.
Cassandra consist of peer to peer architecture, supporting no single point of
failure. Whenever write operation is executed the data is written to memtable
which is available in memory and simultaneously data is also written to
commit log [18], which is located on disk. This duplicate write policy make
sure that there is no data loss. When the storage area of memtable is full,
the entire data is flushed to ssTable, which is located on disk. During read
operation, the request is given to memtable to extract the requested data, if
data is not available in memtable then read request is forwarded to ssTable.

2.3 Security Issues

Whenever any application is proposed, security of that application is a major
concern. Though care is taken while designing such applications, but still
attackers will try to break the security. The security features available in

426 R. Chopade and V. Pachghare

Table 2 Security features in MongoDB and cassandra [19, 20]

MongoDB Cassandra

Security Feature Stature Security Feature Stature

Data at rest Not encrypted Data at rest Not encrypted

Authentication Available with
unshared
configuration

Authentication Available solution
is not feasible

Authorization Available with
unshared
configuration

Authorization It is done at the
granularity level.
Available solution
is not feasible

Auditing Not available Auditing Not available

Injection Attacks Possible Injection Attacks Possible in
Cassandra Query
Language

Database
communication

Encryption not
available

Client
communication

Encryption not
available

AAA (Authentication,
authorization,
auditing) for RESTful
connections

Permissions and
users are maintained
externally

Intercluster
network
communication

Encryption is
available

Fast Password Hashing The MD5 hashing
algorithm used

– –

Salt Reuse Mongo is used as salt
for password hash
calculation

– –

MongoDB and Cassandra are explained in Table 2 along with the stature,
which may hamper the security.

The major attacks happened earlier on MongoDB database are the main
reasons in developing this tamper detection technique (as mentioned here). In
the year 2012, South Korea’s National Intelligence Service (NIS) employee
has been found dead in his car with a suicide note. According to police
investigation [21], in his note, he confessed that, he deleted the data related
to counter-terrorism and North Korean surveillance. NIS purchased Italian
Remote control system software (RCS). As per the news, they had pur-
chased it for research purpose. RCS is hacking software, capable of hacking
computers and mobile phones. MongoDB was used as back end database.

Data Tamper Detection from NoSQL Database in Forensic Environment 427

Three groups hijacked around 26000 servers and attacked on MongoDB
Database with a ransom attack. This has started in December 2016 and
continued till January 2017. During this attack [22], hackers scanned internet
port for MongoDB database and wiped database contents replacing it with a
ransom demand of depositing Bitcoin amount. Victim restored their database
with a backup copy but on the same day hacking group attacked on restored
database. Starting from MongoDB, ransom attacks also spread to other server
technologies like Cassandra, Hadoop, CouchDB, and MySQL [23].

3 Related Work

This article will enlighten on tamper detection in MongoDB and Cassandra
database. Previous research work related to database tampering has discussed
in detail and identified the potential field for this research work. As most of
the researchers have mentioned about the requirement of tamper detection
techniques for huge or high performance databases in their future scope, we
have concentrated on the same in this research work.

Wagner et al. have presented an approach to verify the integrity of a
database log [24]. An audit log is considered to be an important file, as
it records the information about compromised and accessed data. All these
records should be maintained as per the Sarbanes-Oxley Act (SOX) [25] and
the Health Insurance Portability and Accountability Act (HIPAA) [26]. As
far as database log alteration is concerned an attacker can modify write-ahead
logs (WAL) and audit logs. The WAL stores recent modifications performed
on tables whereas audit logs stores user actions executed on the table. As
the file format of WAL is not easily readable to the user, so it is difficult to
modify. This requires special tools to parse such file. The audit log can be
edited in Oracle, MySQL, and PostgreSQL using sys.aud$, general log file,
and pg log directory respectively.

DBDetective tool has been developed to detect the tampering from
database log file. Implementation and experimentation of DBDetective have
been performed for deleted, inserted, and updated records. Snapshots of RAM
and disk are captured and processed for above purpose using existing tool
called DICE. In case of a deleted records, the record is not physically deleted
from the database but it will be marked as deleted unless the new record is
overwritten. In case of an insert operation, new record will be appended either
at the end of all records or at the location of deleted record, depending on the
size. This information is useful to find the change in an insert record. Update
operation is executed with deletion of record followed by insert operation.

428 R. Chopade and V. Pachghare

This experimentation is done on three well-known databases namely Oracle,
MySQL, and PostgreSQL.

Tripathi and Meshram have identified the locations of digital evidence in
Oracle database considering the possibilities of tampering [27]. The evidence
locations are namely redo logs, locating dropped objects, live response,
system change number, views and audit trail [3].

Rajguru and Sharma have proposed a model [28] for detecting the tamper
in Oracle database in the form of modified table, deleted table and un-
authorized access table. In the modified table module, evidence can be found
by extracting information from system defined tables. Whereas, implementa-
tion of the deleted table and un-authorized access table module were left for
the future scope.

Database triggers are auto-generated events in the execution of any data
manipulation operation. Many times user write the trigger for created tables
and views in the database. Database like oracle has the trigger functionality
for schema events too. Kataria and Kanwal [29] have used concept of trigger
for tamper detection. Trigger was written for a specific table and when user
performs any alteration, then that information got recorded in the backup
table.

Snodgrass et al. have proposed a mechanism to prevent an attacker from
corrupting the audit log [30]. This mechanism is based on concept of crypto-
graphic hash function and this context of implementation includes Berkeley
DB storage engine, specifying TRANSACTIONTIME and maintaining an
audit log with additional efforts. Timestamp along with hash value will be
recorded for the database tuple. The notarization service will issue an ID for
the recorded hash value and for any tampering in the database this ID will get
altered. There is an opportunity to extend the prototype for tamper detection
in the high-performance database [31].

Azemovic and Music have developed a database tamper detection
model [32]. This model is useful to identify what, when and who has
tampered the data. This model works in three stages, to observe the opera-
tions performed on the database, to filter out operations for identifying the
modifications in database and to use hash function as an advanced security
layer [33]. The hash values will be recorded separately for rows and columns
of a table and detects the data tamper with mismatch of hash values. There is
a scope to develop the tamper detection model, which works for commercial
database system. Table 3 gives the limitations of existing tamper detection
techniques for MongoDB and Cassandra database.

Data Tamper Detection from NoSQL Database in Forensic Environment 429
T
ab

le
3

L
im

ita
tio

ns
of

ex
is

tin
g

ta
m

pe
r

de
te

ct
io

n
te

ch
ni

qu
es

fo
r

M
on

go
D

B
an

d
ca

ss
an

dr
a

Ta
m

pe
r

A
pp

lic
ab

ili
ty

fo
r

D
et

ec
tio

n
M

on
go

D
B

/
R

ef
er

en
ce

Te
ch

ni
qu

e
D

at
ab

as
e

C
as

sa
nd

ra
R

em
ar

k

[2
4]

B
as

ed
on

R
A

M
an

d
di

sk
sn

ap
sh

ot
s

O
ra

cl
e,

M
yS

Q
L

,
Po

st
gr

eS
Q

L

N
o

M
on

go
D

B
co

lle
ct

io
n

fil
es

st
or

es
da

ta
in

co
m

pr
es

se
d

fo
rm

at
.A

se
pa

ra
te

w
tfi

le
w

ill
be

cr
ea

te
d

fo
r

ev
er

y
ne

w
co

lle
ct

io
n

(t
ab

le
).

O
nl

y
st

ri
ng

co
nt

en
ts

w
ill

be
re

tr
ie

ve
d

fr
om

co
lle

ct
io

n
fil

es
af

te
r

an
al

yz
in

g
th

e
di

sk
sn

ap
sh

ot
.I

n
C

as
sa

nd
ra

,s
sT

ab
le

in
fo

ca
n

ca
n

be
ex

tr
ac

te
d

in
th

e
fo

rm
of

to
m

bs
to

ne
,b

ut
it

w
ill

st
or

e
on

ly
pr

im
ar

y
ke

y
id

of
up

da
te

d
an

d
de

le
te

d
re

co
rd

.

[2
7]

E
vi

de
nc

e
lo

ca
tio

ns
sp

ec
ifi

ed
ar

e
re

do
lo

gs
,s

ys
te

m
ch

an
ge

nu
m

be
r,

lo
ca

tin
g

dr
op

pe
d

ob
je

ct
s,

liv
e

re
sp

on
se

et
c.

O
ra

cl
e

N
o

T
he

se
lo

ca
tio

ns
ar

e
no

ta
va

ila
bl

e
in

M
on

go
D

B
an

d
C

as
sa

nd
ra

da
ta

ba
se

,h
ow

ev
er

id
ea

of
lo

g
fil

e
fo

r
ta

m
pe

r
de

te
ct

io
n

is
ap

pr
ec

ia
te

d.

[2
9]

B
as

ed
on

T
ri

gg
er

O
ra

cl
e

N
o

T
ri

gg
er

co
nc

ep
ti

s
no

ta
va

ila
bl

e
w

ith
M

on
go

D
B

co
m

m
an

d
lin

e
m

od
e.

T
ho

ug
h

C
as

sa
nd

ra
su

pp
or

ts
tr

ig
ge

r,
cr

ea
tin

g
tr

ig
ge

r
fo

r
ev

er
y

ta
bl

e
is

no
tf

ea
si

bl
e

an
d

it
w

ill
al

so
ge

ne
ra

te
re

du
nd

an
cy

in
te

rm
s

of
ta

bl
e

to
st

or
e

ba
ck

up
da

ta
.

[2
,3

0,
31

,3
3]

B
as

ed
on

H
as

hi
ng

co
nc

ep
t

M
yS

Q
L

,
B

er
ke

le
y

D
B

Pa
rt

ia
lly

H
as

hi
ng

is
a

ge
ne

ra
lt

ec
hn

iq
ue

us
ed

to
ve

ri
fy

th
e

in
te

gr
ity

of
th

e
da

ta
an

d
it

w
on

’t
de

te
ct

an
y

m
od

ifi
ca

tio
ns

pe
rf

or
m

ed
in

th
e

da
ta

ba
se

.

[3
2]

B
as

ed
on

th
e

ha
sh

ca
lc

ul
at

io
n

fo
r

ro
w

an
d

co
lu

m
n

va
lu

es
.

R
el

at
io

na
l

D
at

ab
as

e
N

o
M

on
go

D
B

st
or

es
da

ta
in

an
un

st
ru

ct
ur

ed
fo

rm
at

.
T

ho
ug

h
C

as
sa

nd
ra

st
or

es
da

ta
in

ta
bu

la
r

fo
rm

,b
ut

ha
sh

w
ill

on
ly

no
tif

y
th

e
ch

an
ge

in
da

ta
ba

se
st

at
e.

430 R. Chopade and V. Pachghare

4 Threat Model

In this research work, we have considered the possibility of database tam-
pering by authorized and unauthorized categories of users and understood
the likely ways of attacks based on available literature. This work has been
progressed with verified database, properly functioning hardware and cor-
rectly installed operating system. As authorized users have direct access to
the database, they can easily tamper the data. Whereas, unauthorized users
have no direct access, but they can access the data by cracking the security.
Data tampering may happen by establishing connections with the database
using programming languages like Python/Java etc. The data tampering is
also possible by penetrating malware into the machine to update the record
value. Ultimately database integrity may get tampered by either authorized
users or unauthorized users through cracking the security. The proposed
tamper detection technique will identify the modifications performed in the
database. By using ecommerce case study the authenticity or doubtfulness
of operations is shown [34, 35]. As the operations performed on database
may be genuine or suspicious but they are application dependent and hence
distinguish between them is shown for ecommerce application.

5 Tamper Detection in Forensic Environment

Tamper detection technique has been developed for MongoDB and Cassan-
dra database within forensic environment. The major steps involved in the
execution of this technique have been in detail as shown in Figure 1.

Process Flow

Step 1: Preparation at database side

Tamper detection from database will be performed with the help of log
file. These log files are oplog.rs and audit.log for MongoDB and Cassandra
database respectively. The Oplog.rs file will be available as collection under
local database of MongoDB, whereas audit.log file will be available as text
file in the log folder of Cassandra. Before accessing the log file in MongoDB,
mongod configuration file must be updated with dbpath and replica set name.
While accessing the audit.log file of Cassandra, system must be configured
with Ecaudit plugin [36].

Data Tamper Detection from NoSQL Database in Forensic Environment 431

Figure 1 The overall process flow of the proposed technique.

Step 2: Analyse log files for evidence collection

To analyse the log files, it is important to understand the log file pattern. The
algorithms used to analyse these log files and tamper detection are explained
here. This technique will be useful with following operations.

• Tampering with basic write (insert/update/delete) operations.
• Data tampering with collection/table deletion.
• Tampering with database/keyspace deletion.

432 R. Chopade and V. Pachghare

Algorithms

MongoDB

The pseudocode in Algorithm 1 gives the methodology for detecting the
tamper with insert, update and delete operations. The operation details have
been retrieved from oplog [37]. The mapping list will be prepared with the
help of collection statistics for database, collection and corresponding wt
file. This is useful to detect data tampering related to collection creation and
deletion. Every collection entry will be compared with the list to detect or
identify the creation and deletion of collection. The missing and added entries
will be detected from mapping list.

Algorithm 1: Tamper detection from MongoDB database

Experiment #1: Sample dataset

The sample dataset contains dataset, mydb & sample database created in
MongoDB and collections were created with student, college, college1, emp

Data Tamper Detection from NoSQL Database in Forensic Environment 433

Figure 2 MongoDB: tampered data.

and test respectively. JSON documents were inserted in each collection and
random write operations (update and delete) including collection creation and
deletion were performed. Figure 2 shows the results for tampered data. When-
ever any collection is created in MongoDB, it will generate a data file named
collection-XXXXX.wt. In the following result namespace name and its corre-
sponding data file name is also printed. If any database/collection is deleted,
that is marked in WT File Name column as “This entire/Database/collection
is dropped”.

Cassandra

The pseudocode shown in Algorithm 2 is used to detect the tamper from
Cassandra. Cassandra’s log file is read to extract the data manipulation
queries like insert, update, delete, truncate, create and drop. The log file logs
failed queries also. So these queries are identified and deleted from log file.
Data manipulation queries are also given in batches, so these queries are also
identified. Identification and association of keyspace & table name is also
a challenging task because queries can be used in different ways as shown
below.

Query 1: Create table sample.employee.
Query 2: use sample;

Create table employee.

434 R. Chopade and V. Pachghare

In query 1, table name is used along with keyspace name and in query 2,
initially keyspace is used and later table name is used.

Algorithm 2: Tamper detection from Cassandra database

Experiment #1: Sample dataset

The sample keyspace “university” with table, emp & college and another
keyspace “test” with table, student were created by inserting random records.
The data manipulation operations including update and delete were per-
formed randomly. The result of tampered records is as given in Figure 3.

Data Tamper Detection from NoSQL Database in Forensic Environment 435

Figure 3 Cassandra: tampered data.

Step 3: Identification of suspicious tampering operations

• Application specific rule preparation:

The results of tampered data from MongoDB database have been distin-
guished into genuine and suspicious tampering with the help of rule based
classification [38] for ecommerce data set. Case study of ecommerce dataset
(India) with following collections has been used. The dataset consists of
around 10000 json documents in each collection.

Customer data (CustomerName, contactFirstName, contactLastName,
Phone, Address, City, State, postalcode, creditLimit)
Products (productName, productLine, productScale, productVendor,
productDescription, quantity, buyPrice, MSRP)
Orders (Order id, orderDate, requiredDate, shippedDate, status, com-
ments, CustomerNumber)
Order details (OrderNumber, Network, Card Details, shippingCity, pro-
ductCode, quantityOrdered, price Each, orderLine, paymentMethod)

Suspicious tampering does not mean a fraudulent activity but it can be
used as an alert for an investigator to verify that order. Depending on type of
tampering operation, rules are specified as shown in Table 4.

• Identify suspicious tampering

The result of this classification is shown as snapshots, by highlighting suspi-
cious tampering in Figure 4 for insert operation and in Figure 5 for update
operation.

436 R. Chopade and V. Pachghare

Table 4 Rules for tampering status classification
Tampering Type of
Operation Rule Description Attack
Insert IF CustoNo = A AND

orderNo = N AND
Network = X AND
CardNo = C
THEN Tampering
Status = Genuine

IF CustoNo = A AND
orderNo = N AND
Network = X, Y, Z AND
CardNo = C THEN
Tampering
Status = Suspicious

If a customer performs online
purchase from different network
addresses (IPs) using same card
details and if geographical
locations of IPs are found far
away (geographical locations can
be verified using network details)
then that purchase might have
been done by misuse of credit
card details.

Identity
Theft [39]

Update IF CustoNo = A AND
orderNo = N AND
status = “Placed” or
status = “shipped” THEN
Tampering
Status = Genuine

IF CustoNo = A AND
orderNo = N AND
status = “Cancelled”
AND
comments=”Return due to
damage”
AND count>=70%
THEN Tampering
Status = Suspicious

If customer purchases online
products and returns used
products by claiming issue of
damage etc. if this happens
multiple time (>= 70%) from
the same customer. Here online
service provider may consider
product return count and
accordingly that customer may
be considered in the list of
suspicious.

Friendly
Fraud [39]

Delete As delete operation is restricted hence not considered for this case study.
Tampering with delete operations may be useful for data recovery
purpose.

The coverage and accuracy are the parameters associated with the spec-
ified rule. When the given transactional operations are satisfied by this rule
then that rule covers those tuples. Coverage is the percentage of number of
tuples covered by rule and the total number of tuples present in the transac-
tion. Accuracy is the percentage of number of tuples correctly classified by
rule and the number of tuples covered by rule. The coverage for given rule R,

Data Tamper Detection from NoSQL Database in Forensic Environment 437

Figure 4 Insert: classification of tampered data.

Figure 5 Update: classification of tampered data.

is given by Equation (1) and accuracy is given by (2).

coverage(R) =
ncovers

|D|
(1) [38]

accuracy(R) =
ncorrect

ncovers
(2) [38]

Where,
ncovers = The number of tuples covered by rule
|D| = Total number of tuples present in transaction
ncorrect = The number of tuples correctly classified by rule

The coverage and accuracy for insert and update tampering are given in
Table 5. For insert operation there are 9 tuples which satisfies the rule and for
update operation, the rule is covered by 21 tuples among 10000 transactional
tuples.

438 R. Chopade and V. Pachghare

Table 5 Coverage and accuracy for insert and update operation

Insert coverage(R) =
9

10000
= 0.09%

accuracy(R) =
9

9
= 100%

Update coverage(R) =
21

10000
= 0.21%

accuracy(R) =
21

21
= 100%

Step 4: Verification and examination of tampered data

The tampering operations classified as suspicious in previous step are verified
and examined to fetch the customer details. In examination step investigator
may come up with the following three possibilities by verifying tampered
details.

1. The suspicious transaction seems to be fraudulent
2. The suspicious transaction looks like a valid transaction
3. The suspicious transaction may be valid or fraudulent. Due to lack of

supporting information final decision is delayed and it needs further
investigation.

Step 5: Report generation and evidence preservation

• Report generation:

Based on identification of fraudulent tampering, the report can be
prepared with supporting evidence details.

• Evidence Preservation:

The forensic investigation process starts by creating image of source. The
evidences are analyzed from image copy. For evidence preservation following
methods are useful [40].

i. Drive imaging – The entire drive image is created for analysis purpose.
Write-blocker may be useful to create image.

ii. Hashing – Integrity of image can be verified by calculating hash value
(MD5, SH-1).

iii. Chain of Custody – This document maintains the evidence collected in
chronological order.

Data Tamper Detection from NoSQL Database in Forensic Environment 439

6 Implementation and Performance Evaluation

6.1 Implementation

A system with specifications: windows 10 64-bit OS, 3 GB RAM with Intel
Core 2.40 GHz i3 processor has been used for implementation. Algorithms
are designed with python 3.7, MongoDB version 4.0 and Cassandra 3.11.6.
The operations are performed on sample collections/tables to verify the result.
To analyse the performance of proposed technique, large datasets are used.
Data tampering results for large datasets can be exported to either excel or
CSV file.

6.2 Performance Evaluation

Experiment #2: Large dataset

The data sets for experimentation were downloaded from GitHub for Mon-
goDB [41]. The actual data size for experimentation was large, but MongoDB
WiredTiger storage engine stores data in compressed form. Hence experi-
ments were carried for compressed database size; varying from 610KB to
423MB. For Cassandra, the dataset was created manually by inserting, delet-
ing and updating records randomly. Table 6 shows the number of tampered
documents correctly identified and execution time for the same. Figure 6
shows the graphical analysis of tamper detection technique in standalone
setup for MongoDB and Cassandra database.

For MongoDB more than one million tampered records were detected in
one minute [42] and Cassandra shows more time requirement when dataset
size is increased [43]. The reasons for the same are explained through Table 7.

The MongoDB log file consists of fields timestamp(ts), unique id for
each operation(h), any operation executed(t), version number(v), operation
type(op), namespace(ns), wallclock (wall), actual operation executed(o) and
for update related operation(o2). The snapshot of MongoDB log file is as
shown in Figure 7. The sample snapshot consists of insert operation executed
on ecommerce.orders collection.

The Cassandra log file consists of timestamp, client connection port
(client), username used for Cassandra connection, status of executed query
and actual query executed. The snapshot of Cassandra log file is as shown in
Figure 8. The log file can be configured through Cassandra’s audit.yaml file
to change the parameters depending on requirement.

440 R. Chopade and V. Pachghare

Table 6 Execution Time Analysis of MongoDB and Cassandra Tamper detection
Number of
Tampered
Documents Operation Number of Execution Time (Seconds)
Identified Type Operations MongoDB (Algorithm 1) Cassandra (Algorithm 2)

500 Insert 200 0.19 0.53

Update 200

Delete 100

2500 Insert 1000 0.45 1.86

Update 800

Delete 700

12500 Insert 5000 0.64 10.23

Update 4000

Delete 3500

62500 Insert 22000 3.06 91.51

Update 20000

Delete 20500

312500 Insert 115000 28.32 1508.9

Update 100000

Delete 97500

1562500 Insert 600000 76.34 –

Update 500000

Delete 462500

3000000 Insert 1000000 184.24 –

Update 1000000

Delete 1000000

Experiment #3: Tamper detection in different deployment mode

The performance of tamper detection from MongoDB and Cassandra in
standalone mode is already shown through experiment #1 and #2. In this
section performance analysis is discussed for other deployment modes of
these two databases.

Data Tamper Detection from NoSQL Database in Forensic Environment 441

Figure 6 Performance: MongoDB and Cassandra tamper detection.

Table 7 Reasons for variation in execution time analysis of MongoDB and cassandra
Parameter MongoDB Cassandra

Log File It is available in the form of
database collection.

It is available in the form of text
file.

Query Execution
and Logging

Only successful queries are
logged.

All executed queries are logged
to log file. Separate code is
written to remove failed queries.

Bulk Query
Execution

For bulk query execution only
actual write operation queries
will be logged to log file.

It will log all queries including
BEGIN BATCH and APPLY
BATCH. Separate code is written
to remove unwanted queries and
other details.

Namespace Log file contains all queries with
combination of database and
collection name.

Log file may not contain all
queries with combination of
keyspace and table name.
Separate code is written to form
this combination.

MongoDB

MongoDB supports replication and sharding as deployment modes along
with standalone. The performance of proposed tamper detection technique
in replication and sharding mode is as mentioned below.

442 R. Chopade and V. Pachghare

Figure 7 MongoDB: snapshot of log file.

Figure 8 Cassandra: snapshot of log file.

Figure 9 Primary replica set.

Replication:

Availability of data has confirmed through replication and data is synchro-
nized across several servers through replica set. The single server data loss
has protected by other nodes in replication. The primary and secondary
replica was set for experimentation purpose as shown in Figures 9 and
10. Employee database containing employee data collection was created in
primary replica set and same collection was accessed through secondary
replica for setup verification.

Sharding:

In sharding, data will be distributed among several servers. Horizontal
data scaling will be performed through sharding. This mode gives better

Data Tamper Detection from NoSQL Database in Forensic Environment 443

Figure 10 Secondary replica set.

Figure 11 Sharding setup.

performance and scalability for index and range based queries. As shown
in Figure 11 shards and chunks were created for experimentation purpose.
Mongo shard termed as mongos is useful to execute write operations. Shard
S1 and S2 are the MongoDB instances, which holds the actual data and will
partition the data in the form of chunk. With the help of shard key, minimum
and maximum range is specified for chunk. Config server stores the details
about MongoDB instances. As documents were varied for tamper detection,
the minimum and maximum values for documents are not mentioned in the
chunks.

In replication and sharding modes, performance evaluation of proposed
tamper detection technique has been executed with the dataset used in exper-
iment #2. Table 8 shows the execution time required for tamper detection
in both these modes and Figure 12 shows the graphical analysis for the
same. The tampered documents are combinations of insert, update and delete
operations as shown in Table 6. Up to 3 lac documents, it takes almost
same time for execution in both the modes. However, after 3 lac documents
sharding mode requires more execution time for detection of tampered data.
This is because, sharding gives high performance for fetching the records
based on range or index queries and here all tampered records are retrieved,
which does not include any index.

444 R. Chopade and V. Pachghare

Table 8 Execution time analysis of tamper detection in replication and Sharding mode of
MongoDB

Number of Tampered Execution Time (Seconds)
Documents Identified MongoDB (Replica Mode) MongoDB (Sharding Mode)

500 0.15 0.04

2500 0.25 0.56

12500 0.75 0.38

62500 2.18 1.99

312500 21.58 10.76

1562500 95.87 172.69

Figure 12 Performance: tamper detection in replication and sharding mode.

Cassandra

Cassandra database can be deployed in three modes namely standalone, high
availability with local storage and high availability with remote storage [44].

High availability with local storage

In high availability with local storage, Cassandra node and API gateway
instance runs on the same host. The multi node cluster has setup on single
machine and generation of log file is verified. Here two Cassandra instance
nodes were created to form the cluster. The setup is using configuration
files of Cassandra. The generated log file snapshot is shown in Figure 13.

Data Tamper Detection from NoSQL Database in Forensic Environment 445

Figure 13 Cassandra: Snapshot of Log File with Multimode Cluster.

In this snapshot additional parameters are port and coordinator as compared
to standalone mode log file.

From the snapshot, the different coordinators can be observed, which
shows that who have initiated the operations. The performance of tamper
detection depends on the number of operations generated in log file (as
Cassandra’s log file is generated in text file format) and it is already analysed
in standalone mode (Table 6).

High availability with remote storage

In this mode, Cassandra node and API gateway instance runs on the different
host and it requires open ports in firewall. Here log file will be generated in
the same way as like high availability with local storage.

7 Conclusion and Future Work

Now a days considering the necessity of digitization in every business sector,
security of database is at prime importance. Because of the increased number
of cybercrimes, it is highly essential to secure and maintain the integrity
of important data stored in database. Tamper detection techniques are more
useful for maintaining the integrity of database. The establishments; where
huge data handling is involved, it attracts for implementation of tamper
detection techniques with high performance database management systems
such as MongoDB and Cassandra. Most of the earlier research work in tamper
detection has inclined towards relational database. Hence in this research
work, the aspect of tamper detection in MongoDB and Cassandra database
has been concentrated. A unique tamper detection technique has been devel-
oped to detect the data tampering more effectively, in standalone, replication
and sharding deployment modes of MongoDB as well as standalone, high
availability with local storage mode of Cassandra. As this technique detects
the data tampering with its classification into suspicious and genuine, it will
be very useful for database forensics. Detection of data tamper in NoSQL

446 R. Chopade and V. Pachghare

database like Redis, CouchDB and HBase etc. using their respective log file,
remains in the future scope.

Declaration of Interests

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Acknowledgment

The authors wish to acknowledge the Information Security Education and
Awareness Project, Department of Electronics and Information Technology,
Ministry of Communications and Information Technology, Government of
India which has made it possible to undertake this research.

This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

References

[1] Guo J. 2011. Fragile watermarking scheme for tamper detection of
relational database. In: 2011 Int. Conf. Comput. Manag. pp 1–4.

[2] Pavlou KE, Snodgrass RT. 2008. Forensic analysis of database tamper-
ing. ACM Trans Database Syst 33(4):30.

[3] Chopade R, Pachghare VK. 2019. Ten years of critical review on
database forensics research. Digit. Investig.

[4] Cankaya EC, Kupka B. 2016. A survey of digital forensics tools for
database extraction. In: Futur. Technol. Conf. pp 1014–1019.

[5] DB-Engines Ranking – popularity ranking of database management
systems. Available from: https://db-engines.com/en/ranking.

[6] Xu M, Xu X, Xu J, Ren Y, Zhang H, Zheng N. 2014. A forensic analysis
method for Redis database based on RDB and AOF file. J Comput
9(11):2538–2544.

[7] What Is Amazon DynamoDB? – Amazon DynamoDB. Available from:
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide
/Introduction.html.

[8] Neo4j – Overview – Tutorialspoint. Available from: https://www.tutori
alspoint.com/neo4j/neo4j overview.htm.

https://db-engines.com/en/ranking
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://www.tutorialspoint.com/neo4j/neo4j_overview.htm
https://www.tutorialspoint.com/neo4j/neo4j_overview.htm

Data Tamper Detection from NoSQL Database in Forensic Environment 447

[9] Apache HBase – Apache HBaseTM Home. Available from: https://hbas
e.apache.org/.

[10] Kataria C, Kanwal G. 2015. Database tamper detection. Int. J. 5.
[11] Kumbhare R, Nimbalkar S, Chopade R, Pachghare VK. 2020. Tamper

Detection in MongoDB and CouchDB Database. In: Proceeding Int.
Conf. Comput. Sci. Appl. pp 109–117.

[12] Golhar A, Janvir S, Chopade R, Pachghare VK. 2020. Tamper Detection
in Cassandra and Redis Database—A Comparative. In: Proceeding Int.
Conf. Comput. Sci. Appl. ICCSA 2019. p 99.

[13] The MongoDB 4.2 Manual – MongoDB Manual. Available from: https:
//docs.mongodb.com/manual/.

[14] Mango DB. Top 5 considerations when evaluating NoSQL Databases.
White Pap.

[15] Yoon J, Lee S. 2018. A method and tool to recover data deleted from a
MongoDB. Digit Investig 24:106–120.

[16] Yoon J, Jeong D, Kang C, Lee S. 2016. Forensic investigation frame-
work for the document store NoSQL DBMS: MongoDB as a case study.
Digit Investig 17:53–65.

[17] What is Cassandra? | Datastax. Available from: https://www.datastax.c
om/cassandra.

[18] How is data written? | Apache Cassandra 3.0. Available from: https:
//docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDat
aWritten.html.

[19] Okman L, Gal-Oz N, Gonen Y, Gudes E, Abramov J. 2011. Security
issues in nosql databases. In: 2011 IEEE 10th Int. Conf. Trust. Secur.
Priv. Comput. Commun. pp 541–547.

[20] Aggarwal P, Rani R. 2014. Security issues and user authentication in
MongoDB.

[21] South Korean intelligence employee found dead – CNN. Available from:
https://edition.cnn.com/2015/07/20/asia/south-korea-nis-suicide/index.
html.

[22] Other 26,000 MongoDB servers hit in a new wave of ransom attacks
Security Affairs. Available from: https://securityaffairs.co/wordpress/6
2717/cyber-crime/mongodb-ransom-attacks.html.

[23] Almost 4,000 databases wiped in ‘Meow’ attacks | WeLiveSecurity.
Available from: https://www.welivesecurity.com/2020/07/27/almo
st-4000-databases-wiped-meow-attacks/.

https://hbase.apache.org/
https://hbase.apache.org/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://www.datastax.com/cassandra
https://www.datastax.com/cassandra
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataWritten.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataWritten.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataWritten.html
https://edition.cnn.com/2015/07/20/asia/south-korea-nis-suicide/index.html
https://edition.cnn.com/2015/07/20/asia/south-korea-nis-suicide/index.html
https://securityaffairs.co/wordpress/62717/cyber-crime/mongodb-ransom-attacks.html
https://securityaffairs.co/wordpress/62717/cyber-crime/mongodb-ransom-attacks.html
https://www.welivesecurity.com/2020/07/27/almost-4000-databases-wiped-meow-attacks/
https://www.welivesecurity.com/2020/07/27/almost-4000-databases-wiped-meow-attacks/

448 R. Chopade and V. Pachghare

[24] Wagner J, Rasin A, Glavic B, Heart K, Furst J, Bressan L, Grier J. 2017.
Carving database storage to detect and trace security breaches. Digit
Investig 22:S127–S136.

[25] The Sarbanes-Oxley Act 2002. Available from: http://www.soxlaw.
com/.

[26] Summary of the HIPAA Privacy Rule | HHS.gov. Available from: https:
//www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index
.html.

[27] Tripathi S, Meshram BB. 2012. Digital evidence for database tamper
detection. J Inf Secur 3(02):113.

[28] Rajguru S, Sharma D. 2014. Database Tamper Detection and Analysis.
Int. J. Comput. Appl. 105.

[29] Kataria C, Kanwal G. 2015. To detect who and when tamper data in
database. Int J Eng Res Technol 4(06):181–2278.

[30] Snodgrass RT, Yao SS, Collberg C. 2004. Tamper detection in audit
logs. In: Proc. Thirtieth Int. Conf. Very large data bases-Volume 30.
pp 504–515.

[31] Khanuja HK, Adane DS. 2011. Database security threats and challenges
in database forensic: A survey. Proc. 2011 Int. Conf. Adv. Inf. Technol.
(AIT 2011), available http//www.ipcsit.com/vol20/33-ICAIT2011-A4
072.pdf.

[32] Azemović J, Mušić D. 2009. Efficient model for detection data and data
scheme tempering with purpose of valid forensic analysis. 2009 Int.
Conf. Comput. Eng. Appl. (ICCEA 2009).

[33] Kambire MK, Gaikwad PH, Gadilkar SY, Funde YA. 2015. An improved
framework for tamper detection in databases. Int J Comput Sci Inf
Technol 6:57–60.

[34] Camino RD, State R, Montero L, Valtchev P. 2017. Finding Suspicious
Activities in Financial Transactions and Distributed Ledgers. In: 2017
IEEE Int. Conf. Data Min. Work. pp 787–796.

[35] Khanuja HK, Adane D. 2018. Detection of Suspicious Transactions
with Database Forensics and Theory of Evidence. In: Int. Symp. Secur.
Comput. Commun. pp 419–430.

[36] Ericsson/ecaudit: Ericsson Audit plug-in for Apache Cassandra. Avail-
able from: https://github.com/Ericsson/ecaudit.

[37] MongoDB: Understanding Oplog: Available from: http://dbversity.com/
mongodb-understanding-oplog/.

[38] Han J, Pei J, Kamber M. 2011. Data mining: concepts and techniques.
Elsevier.

http://www.soxlaw.com/
http://www.soxlaw.com/
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
http//www.ipcsit.com/vol20/33-ICAIT2011-A4072.pdf
http//www.ipcsit.com/vol20/33-ICAIT2011-A4072.pdf
https://github.com/Ericsson/ecaudit
http://dbversity.com/mongodb-understanding-oplog/
http://dbversity.com/mongodb-understanding-oplog/

Data Tamper Detection from NoSQL Database in Forensic Environment 449

[39] The seven types of e-commerce fraud explained – Information Age.
Available from: https://www.information-age.com/seven-types-e-
commerce-fraud-explained-123461276/.

[40] 3 Methods to Preserve Digital Evidence for Computer Forensics | CI
Security. Available from: https://ci.security/resources/news/article/3-m
ethods-to-preserve-digital-evidence-for-computer-forensics.

[41] GitHub – ozlerhakan/mongodb-json-files: A curated list of JSON/BSON
datasets from the web in order to practice/use in MongoDB. Available
from: https://github.com/ozlerhakan/mongodb-json-files.

[42] Scaling for the Future of Finance With Coinbase |MongoDB. Available
from: https://www.mongodb.com/customers/coinbase.

[43] Shanthi E, others. A MongoDB based Performance Optimization
Framework for Big Data in Cloud Environments.

[44] Cassandra deployment architectures. Available from: https://docs.axw
ay.com/bundle/APIGateway 753 InstallationGuide allOS en HTML5
/page/Content/InstallGuideTopics/cassandra architecture.htm.

Biographies

Rupali Chopade is a full time Research Scholar under AICTE-QIP scheme,
at Department of Computer Engineering and IT, College of Engineering
Pune, India. She is working as Assistant Professor at Department of Informa-
tion Technology, Marathwada Mitra Mandal’s College of Engineering Pune,
India. She has 17 years of teaching experience. Her research interest includes
database forensics and database security. She has received “Distinguished
HOD “Award by Computer Society of India (CSI) in 2017.

https://www.information-age.com/seven-types-e-commerce-fraud-explained-123461276/
https://www.information-age.com/seven-types-e-commerce-fraud-explained-123461276/
https://ci.security/resources/news/article/3-methods-to-preserve-digital-evidence-for-computer-forensics
https://ci.security/resources/news/article/3-methods-to-preserve-digital-evidence-for-computer-forensics
https://github.com/ozlerhakan/mongodb-json-files
https://www.mongodb.com/customers/coinbase
https://docs.axway.com/bundle/APIGateway_753_InstallationGuide_allOS_en_HTML5/page/Content/InstallGuideTopics/cassandra_architecture.htm
https://docs.axway.com/bundle/APIGateway_753_InstallationGuide_allOS_en_HTML5/page/Content/InstallGuideTopics/cassandra_architecture.htm
https://docs.axway.com/bundle/APIGateway_753_InstallationGuide_allOS_en_HTML5/page/Content/InstallGuideTopics/cassandra_architecture.htm

450 R. Chopade and V. Pachghare

Vinod Pachghare is Associate Professor in the Department of Computer
Engineering and Information Technology, College of Engineering, Pune (An
autonomous institute of Government of Maharashtra), India. He has 29 years
of teaching experience and has published the books on Cloud Computing
and Computer Graphics. Dr. Pachghare has over 37 research publications
in various international journals and conferences. His area of research is
network security. Also he is a member of Board of studies in Computer
Engineering / Information Technology of a number of Autonomous Institutes.
He is an Investigator for the Information Security Education and Awareness
[ISEA] Project, Ministry of Information Technology, Govt. of India. He was
a Principal Investigator for a research project “Wireless IDS”, sponsored by
AICTE, New Delhi. He delivered lectures on recent and state of the art topics
in Computer Engineering and Information Technology as an invited speaker.
He has received “Best Faculty Award” 2018 by CSI, Mumbai Chapter.

	Introduction
	Objectives
	Paper Layout

	Database Internals
	MongoDB
	Cassandra
	Security Issues

	Related Work
	Threat Model
	Tamper Detection in Forensic Environment
	Implementation and Performance Evaluation
	Implementation
	Performance Evaluation

	Conclusion and Future Work

