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Abstract

The increase in the deployment of IOT networks has improved productiv-
ity of humans and organisations. However, IOT networks are increasingly
becoming platforms for launching DDOS attacks due to inherent weaker
security and resource-constrained nature of IOT devices. This paper focusses
on detecting DDOS attack in IOT networks by classifying incoming network
packets on the transport layer as either “Suspicious” or “Benign” using
unsupervised machine learning algorithms. In this work, two deep learning
algorithms and two clustering algorithms were independently trained for
mitigating DDOS attacks. Emphasis was laid on exploitation based DDOS
attacks which include Transmission Control Protocol SYN-Flood attacks and
UDP-Lag attacks. Mirai, BASHLITE and CICDDOS2019 datasets were used
in training the algorithms during the experimentation phase. The accuracy
score and normalized-mutual-information score are used to quantify the
classification performance of the four algorithms. Our results show that the
autoencoder performed overall best with the highest accuracy across all the
datasets.

Keywords: Distributed denial of service (DDOS), internet of things (IOT),
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1 Introduction

The increment of sensors and computing devices have made life easy and
convenient for us due to the fast and accurate computation of our information.
Nevertheless, the rapid increase in the deployment and combination of con-
nected devices has truly expose essential resources to DDOS threats [1]. In
2016, the Mirai attack that ruined several notable websites actually exposed
the weakness of IOT devices [2]. Over 100,000 inadequately protected player,
cameras, digital video recording and other IOT devices were turned into
botnets. The Mirai source code that was further released resulted in fre-
quent additional IOT attacks. With the magnitude of attacks that have been
launched, securing IOT devices is a problem as host-centric IT security solu-
tions cannot be totally relied upon because most manufacturers appliances
place more priority on functionality and cost over security. Besides, unlike
servers that can undergo software update, IOT software is hardly or never
updated, hence making them more vulnerable to attackers. In view of these
security problems and resource-constrained nature of IOT devices, greater
focus should be placed on packet security within the IOT network.

Traditional network-centered security has relied on predefined signature
or system representations for known threats [3]. Recently, the awareness of
using machine learning to secure network has increased rapidly. However,
many of the machine learning solutions use supervised learning i.e. they
create attack classifiers by training on identified anomalies [4], which makes
them futile towards new threats. The main aim of this work is to determine the
performance of unsupervised learning algorithms in accurately classifying
network packets as either benign or malicious. We achieve this by training the
algorithms on modern DDOS datasets and performing rigorous testing while
benchmarking the performance of the algorithms using standard performance
metrics.

The rest of the paper is organized as follows: Section 2 presents related
works; Section 3 elaborates the data set and describes the methodology fol-
lowed in the research; Section 4 details the experimentation procedures, the
result gotten and the observations from the results while Section 5 discusses
the conclusion of our research as well as highlighting the future work.

2 Related Work

According to [5], detection systems of network intrusion have traditionally
been rule-based. Nevertheless, machine learning and statistical approaches
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have also made major contributions [5]. Machine learning have also proven
to be effective in two main ways of securing network which are: feature
engineering (i.e. ability to extract the most important structures from network
data to assist model learning) [6] and classification. In security environment,
classification tasks usually involve training both suspicious and benign data
to build models that can detect known attacks [7].

The authors in [8] pointed out that steps such as collection of network
information, feature extraction and analysis, and classification detection
provide a means for building efficient software-based tools that can detect
anomalies such as software-defined networking (SDN). Another study [9]
provides a thorough classification of DDOS attacks in terms of detection
technology. The study also emphasizes how the characteristics of the network
security of an SDN defines the possible approaches to setting up a defense
against DDOS attacks. Similarly, [10] have explored this area too. In other
approaches to DDOS defense, [4] propose a scheduling based SDN controller
architecture to effectively limit attacks and protect networks in DoS attacks.

The growth of cloud computing and IOT has inevitably led to the
migration of denial-of-service attacks on cloud computing devices as well.
Thus, cloud computing devices must implement efficient DDOS detection
systems in order to avoid loss of control and breach of security [11]. Studies
such as [12] aimed at tackling this problem by determining the source
of a DDOS attack using PTrace (powerful trace) source control methods.
PTrace controlled such attack sources from two aspects, packet filtering
and malware tracing, to prevent the cloud from becoming a tool for DDOS
attacks. Other studies such as [13] approach the problem of filtering by
using a set of security services called filter trees. In the study, XML and
HTTP based DDOS attacks are filtered out using five filters for detection
and resolution. Detection based on classification has also been proposed and
a classifier system for detection against DDOS TCP flooding attacks was
created [14]. These classifiers work by taking in an incoming packet as input
and then classifying the packet as either suspicious or otherwise. The nature
of an IP network is often susceptible to changes such as the flow rate on
the network and in order to deal with such changes, self-learning systems
have been proposed that learn to detect and adapt to such changes in the
network [15].

Many of the existing models for DDOS detection have primarily focused
on SYN-flood attacks and haven’t been trained to detect botnet attributes.
More studies are thus needed where models are trained to detect botnet as bot-
net becomes the main technology for DDOS organization and execution [16].
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Botnet DDOS attacks infect multitude of remote systems turning them to
zombie nodes that are then used for distributed attacks. In detecting botnet
DDOS attacks, authors in [17] used a deep learning algorithm to detect
TCP, UDP and ICMP DDOS attacks. They also distinguished real traffic
from DDOS attacks, and conducted an in-depth training on the algorithm by
using real cases generated by existing popular DDOS tools and DDOS attack
modes. Also, [18] proposed a DDOS attack model and demonstrated that by
modelling different allocation strategies, the proposed DDOS attack model
is applicable to game planning strategies and can simulate different botnet
attack characteristics.

According to [19], DDOS detection approaches can operate in one of the
following three modes: supervised, semi-supervised and unsupervised mode.
For the detection approach in supervised mode, it requires a trained model
(or a classifier) to detect the anomalies, where the dataset for training includes
input variables and output classes. The trained model is used to get the hidden
functions and predict the class of input variables (incoming traffic instances).
This is consider as classification under supervised data mining [20]. For the
approaches that work in the semi-supervised mode, they have incomplete
training data i.e. training data is only meant for normal class and some targets
are missing for anomaly class [21]. Unlike supervised and semi-supervised
learning, unsupervised machine learning algorithms do not have any input-
output pairs but the algorithm is trained such that it can accurately determine
the unknown data point. The following subsections further discusses the
unsupervised learning algorithms we used in this work.

3 Methodology

A DDOS attack temporarily or indefinitely constraints the availability of a
network resource to its intended users. The challenge then for the network
administrator is to deploy DDOS detection systems that are capable of
analysing incoming packets to the transport layer. These detection systems
may then determine if these incoming packets are suspicious or benign. In
the following subsections, we present the design methodology for a DDOS
detection system that uses unsupervised machine learning algorithms. The
problem is therefore to design and train four efficient unsupervised machine
learning systems that are capable of detecting a DDOS attack on the transport
layer.
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3.1 Datasets

In order to train the unsupervised machine learning algorithms, the following
DDOS attack datasets were sourced.

1. The first dataset is the DDOS evaluation dataset (CICDDOS2019) [27].
The full dataset consists of both reflection and exploitation based DDOS
attacks in the form of both suspicious and benign network packets. The
dataset is further grouped into TCP and UDP based attacks.

2. The second dataset is the Mirai dataset created by [28]. Mirai is a specific
type of botnet malware that overrides networked Linux devices and
successfully turns them into bots used for distributed attacks such as
DDOS. The Mirai dataset consists of 80,000 SYN-flood instances and
65,000 UDP-lag attacks on security camera IOT devices.

3. Finally, the third dataset is the BASHLITE botnet attack dataset
on a webcam IOT device and is also provided by [28]. Similar to
Mirai, BASHLITE is a botnet malware for distributed attacks on net-
worked devices. The BASHLITE dataset consists of 110,000 SYN-flood
instances and 100,000 UDP-lag attacks. Both Mirai and BASHLITE are
open-source malware that can be used for academic research purposes.

3.2 Data Preprocessing

The dataset largely consists of numerical values, so the preprocessing steps
are minimal. The most important preprocessing action taken was to normalize
the values in the dataset using the standard minmax normalization expressed
below in Equation (1).

x′ =
x−min(x)

max(x)−min(x)
(1)

3.3 Selected Unsupervised Learning Algorithms

The selected unsupervised machine learning algorithms employed in this
work are explained below.

3.3.1 Autoencoder (AE)
According to [6], Autoencoders can be defined as a neural network that detect
a similar function that is used to reconstruct the input data with high accuracy
by using back propagation. The Autoencoder has two main fragments (cf.
Figure 1), “an encoder that compresses the input into a dimensional latent
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Figure 1 The Autoencoder architecture.

subspace that is lower and a decoder that recreate the input from this latent
subspace”. The encoder and the decoder, can be defined as transitions φ and
ψ such that:

φ: X→ F

ψ: F→ X

φ, ψ = argminφ, ψ‖X− (ψ ◦ φ)X‖2 (2)

The autoencoder is made up of two feed forward neural networks that
mirror each other in terms of the number of layers and the number of nodes.
The goal of the autoencoder model is to learn the latent space of an encoded
vector that can be used to efficiently reconstruct the input vector. Thus, the
goal of the encoder is to encode the input vector to a lower dimensional vector
space [3]. The goal of the decoder is to reconstruct this input vector from the
lower dimensional encoded vector provided by the encoder. Figure 1 shows
the architecture for our autoencoder model, it can be seen that the input vector
is structured with respect to the 77 features from the CICDDOS2019 dataset.
We simply increase this number to 115 when working with the Mirai and
BASHLITE datasets, all other parameters stay the same.
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Figure 2 Restricted Boltzmann machine showing the visible and hidden units.

Each neuron in the hidden layers of the encoder and decoder make use
of the Rectified Linear Unit (ReLu) activation function. The hyperparameters
selected for the autoencoder model are outlined as follows;

• Batch size: A batch size of 2048 is selected.
• Number of epochs: An epoch number ranging between 10–20 is

initialized.
• Loss: The mean squared error loss function is used.
• Optimizer: Adam, an adaptive algorithm, is selected. It is a state-of-the-

art optimizer for deep neural networks (Schneider et al, 2019).
• Betas: These are Adam optimizer coefficients used for computing

running averages of gradient and its square (0.5, 0.999).
• Learning rate (0.0002).

3.3.2 Restricted Boltzmann machine (RBM)
The restricted Boltzmann machine is a generative model that is used to
sample and generate instances from a learned probability distribution. Given
the training data, the goal of the RBM is to learn the probability distribution
that best fits the training data. The RBM consists of m visible units V =
(V1,V2 . . . ,Vm) and n hidden units H = (H1,H2 . . . ,Hn) arranged in
two layers.

The visible units lie on the first layer and represent the features in the
training data (see Figure 2). Usually, one visible unit will represent one
feature in an example in the training data. The hidden units model and rep-
resent the relationship between the features in the training data. The random
variables (V,H) take on values (v,h) ∈ [0,1]m for continuous variables
and the underlying probability distribution in the training data is given by
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the Gibbs distribution p(v,h) = 1/z−E(v,h) with the energy function in
Equation (3);

E(v,h) = −
n∑
m

n∑
m

wijvihj−
m∑
i=1

bivi −
n∑

j=1

cjhj (3)

In Equation (3), wij are real valued weights associated with vj and
hi, and bj and ci are real valued bias terms associated with units i and
j respectively. The contrastive divergence learning algorithm is one of the
successful training algorithms used to approximate the log-likelihood energy
gradient and perform gradient ascent to maximize the likelihood [24].

The RBM used for this project is a two-layer RBM with an architecture
as described in Figure 2. The dataset consists of continuous variables scaled
between 0 and 1 so therefore we model the RBM as a continuous variable
model with the hidden units and visible units taking on values between
(v,h)∈[0,1]m where m is number of visible units. Similar to the autoen-
coder algorithm, we use the reconstruction error to define the classification
task for the RBM. The parameters selected for the RBM include:

• Number of units: The number of hidden and visible units are set to
be the same value according to the number of features present in the
training data. That is, for instance for the CICDDOS2019, the number
of hidden and visible units for the RBM is 77.

• Training algorithm: The k-step contrastive divergence algorithm with
Gibbs sampling is used for training the algorithm with k = 10.

• Training Epoch: An epoch of 10 is selected, experimental results show
that increasing the epoch beyond 10 does not improve training results.

3.3.3 K-Means
The K-means algorithm takes the full dataset consisting of multiclass data
points, then clusters the datapoints into separate clusters to the best of its
ability; this classification occurs when you feed in the input and the model
assigns the input into one of the computed clusters. Assumed a set of obser-
vations (x1, x2, x3, . . ., xn), where each observation is a d-dimensional real
vector, the k-means objectives is to partition the n observations into k (≤ n)
sets S = {s1, s2, . . . , sk} in order to reduce the within-cluster sum of squares
(WCSS) (i.e. variance).

The K-Means clustering algorithm has relatively fewer parameters to
select. The default “pure” version of the K-means algorithm is used as
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opposed to variants such as Elkan’s K-Means [29] where triangle inequality
is used. The parameters for the algorithm are outlined as follows;

• Number of clusters: This is the number of clusters as well as the
number of centroids to generate. Two (2) clusters are required since
we will be attempting to classify and thus cluster suspicious or benign
samples.

• Number of initializations: This is the number of times the algorithm
will be run with different centroid seeds. We have the option of 20
initializations depending on the performance.

• Precompute distance: Here the algorithm precomputes the distance
between sample points in the feature space. Enabling this parameter
allows the algorithm to train faster.

3.3.4 Expectation-Maximization (EM)
The authors in [25] stated that EM algorithm is used for solving mixture
models that assume the existence of some unobserved data. Mathematically,
the EM algorithm can be described as follows; “given the statistical model
that generates a set of observed data X , latent data Z,” unknown parameters
θ and the likelihood function L(θ;X) = p(X, Z | θ), the maximum
likelihood of the unknown data θ is determined by maximizing the marginal
log-likelihood of the observed data X using Equation (4):

L(θ;X) = p(X | θ) =
∫
p(X, Z | θ)dZ (4)

The expectation and maximization steps are defined as follows:

Q(θ |θ(t)) = EZ|X,θ(t) [logL(θ,X,Z)] (5)

θt+1 = arg maxθ Q(θ|θ(t)) (6)

In the expectation step, the likelihood of the unknown parameters is
computed as the log-likelihood of the known parameter estimates, while
in Equation (5) the maximization step is used to select the new value that
maximizes the log-likelihood given the estimates from Equation (6).

The expectation-maximization algorithm is setup with similar parameters
as the k-means algorithm and in fact the software implementation of the two
algorithms in the sci-kit learn machine learning framework borrow from each
other. However, the core implementations are different from studies such



578 V. Odumuyiwa and R. Alabi

as [22, 26] and the parameters for the expectation maximization algorithm
include:

• Number of components: This is the number of clusters to be estimated
and is set to two because of the binary classification task of suspicious
or benign.

• Number of iterations: The number of iterations is like the epoch of the
autoencoder where they both define the number of training iterations to
run the algorithm. A default value of 300 is used.

• Covariance type: The covariance parameter defines the structure of the
covariance matrix with respect to each component or cluster. The “full”
covariance is chosen where each cluster has its own covariance matrix
and has been shown to achieve the best results.

3.4 Evaluating Model Performance

3.4.1 Accuracy
In machine learning parlance, the task of determining whether or not an
incoming packet is suspicious or benign is known as classification. For the
K-Means and EM algorithm, the clustering of a feature point together with
highly similar feature points is in itself, a form of classification. We can eval-
uate these models by quantifying how accurate their classification of a packet
is with respect to its clusters. A simple net accuracy score of the predicted
class compared to the actual class gives us an empirical quantification of the
model’s performance.

For the autoencoder and Boltzmann model, this classification task is non-
trivial. This is because, these algorithms are not clustering algorithm like
the K-Means model and neither do they output a single value classification
like the feed forward neural network with one output neuron. We approach
the problem from the viewpoint of the properties of the autoencoder and
restricted Boltzmann machine [30] (Bhatia et al., 2019). Since the optimal
performance of the deep learning models is such that the reconstructed output
vector must be very similar to the original input vector (see Figure 3.3), the
autoencoder will have learnt to reconstruct a very specific domain of feature
points. We can define a reconstruction error that describes the difference
between the reconstructed output and original input vector. The reconstruc-
tion error is defined as the mean squared error (MSE) in Equation (7) as
follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (7)
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Where yi is the original input vector and ŷi is the reconstructed output
vector. The mean squared error is computed over all the output of the model.
Ideally, it is preferable to have a mean squared error close to zero. However,
depending on the size of the values in the predicted output, a mean squared
error within the range of 2–5 decimal places is acceptable. Representing the
reconstruction error as the mean squared error allows one to know when the
model is presented with an input that is very far off from what was contained
in the training set. Thus, if for instance the autoencoder is trained on a dataset
comprising only of benign packets, whenever a benign packet is presented
to the autoencoder, we expect that the reconstructed output should be quite
similar and therefore the reconstruction error should be low. However, if this
same model is presented with a suspicious packet that is fairly different from
the features of benign packet then we should expect the reconstruction error
to be quite high. The same logic can be applied to the restricted Boltzmann
machine.

With this formulation established, it is easier to frame the classification
problem using the autoencoder and RBM. Where in our example, a low
reconstruction error means the packet is benign, while a high reconstruction
error means the packet is suspicious. Using these predictions, we can then
compute the accuracy much like we did with the K-Means model. The
accuracy score simply calculates a ratio of the number of correctly classified
packets over the incorrectly classified packets.

3.4.2 Normalized mutual information (NMI)
The NMI provides a means of evaluating the clustering performance of the
algorithm by comparing the correlation between the predicted class and the
target class. If the predicted and target data are represented as two separate
distributions, then we can also apply the NMI to determine performance of
non-clustering algorithms. Therefore, we can apply the NMI metric to the
classification performance of the autoencoder and RBM too. The Normalized
mutual information is scaled between 0 and 1. Where 1 represents perfect
correlation and 0 otherwise. In general, a higher NMI above 0 is preferable.
The exact interpretations of the NMI alone may not be sufficient to quantify
the model’s performance that is why the concept of accuracy is also reviewed.
This is because the NMI is a statistical property that describes correlation
between two distributions [31]. A high NMI does not necessarily translate to
a higher accuracy and vice versa. Thus, the two metrics should be regarded
independently.
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4 Experimental Results

In this session, we present the experimental results for each model across all
datasets. The results are presented in subsections, with each subsection ded-
icated to a model. For the Autoencoder and Restricted Boltzmann Machine,
their subsections consist of plots showing the training and test loss, a table
summarizing the performance across the datasets and a detailed discussion of
the results. For the rest of the models, they do not optimize a loss function
and so only the summary tables and a detailed discussion of the results were
presented. Performance evaluations are also carried out using the accuracy
and Normalized Mutual score. Tables 5 and 6 also show the summary of all
the results of the different models.

4.1 Autoencoder training and test results

Figure 3 shows the desired behaviour of the backpropagation training algo-
rithm where the training and validation loss decrease steadily and in unison as

(a) 

  (b) 
Figure 3 Autoencoder training and validation loss on the CICDDOS2019 SYN-Flood (a)
and UDP-Lag (b).
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(a) 

(b) 
Figure 4 Autoencoder training and validation loss on the Mirai SYN-flood (a) and UDP-Lag
data (b).

the training epoch increases. It is important to point out that the autoencoder
is trained to reconstruct SYN-Flood data, meaning it should be unable to
reconstruct benign data. We chose the SYN-Flood data for training because
there were more instances than the benign data. The same choice is made for
the UDP-Autoencoder model, where we train it on the UDP-Lag data instead
of on benign UDP data.

In Figure 4(a) and 4(b), the training and validation loss of the Autoen-
coder model on the Mirai SYN and UDP-Lag data reduces steadily as the
training epochs increase. It is clear that by epoch 10, the loss starts to
converge quickly to zero. Therefore 20 is the sufficient number of training
epochs in order to avoid overfitting.
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Table 1 Test Accuracy and Normalized Mutual Information score for the autoencoder
models on the SYN-Flood and UDP-Lag across all datasets

Data Accuracy (%) NMI

CICDDOS2019 SYN-Flood 0.8945 0.5363

CICDDOS2019 UDP-Lag 0.8617 0.4216

Mirai SYN-Flood 0.9744 0.6211

Mirai UDP-Lag 0.9621 0.5733

BASHLITE SYN-Flood 0.9933 0.9927

BASHLITE UDP-Lag 0.9921 0.9822

The training and validation loss for the BASHLITE loss shown in Figure 5
is less steep than that of the Mirai loss. Table 1 shows the accuracy of the
autoencoder model across all datasets, here we can see that the model has the
highest accuracy on the BASHLITE dataset hence the reason why the loss is
less steep and flattens out quickly by epoch 10 and 14 respectively.

In Table 1, we present the accuracy and NMI scores for the autoencoder
model. These scores were determined based on the formulation described in
Section 3.4. The result show that the autoencoder model performs best on
the BASHLITE SYN-Flood data with a higher accuracy of 99%. In general,
the autoencoder performs better on the Mirai and BASHLITE datasets than
that of the CICDDOS2019 dataset. Does this mean the model is better
suited to detect botnet attacks? We suspect that this is due to the feature
selection process for the datasets, the Mirai and BASHLITE datasets show
less variance across the features when compared to the CICDDOS2019
dataset. The NMI scores show higher correlations where the accuracy is
higher, indicating a correlation between the target predictions and predicted
value.

4.2 Restricted Boltzmann Machine

The restricted Boltzmann machine performed poorly on the CICDDOS2019
dataset but the training process evolved smoothly with the loss dropping as
the epoch increased (Figure 6). The RBM loss did not drop as low as that of
the autoencoder loss for the CICDDOS2019.

Also, the training procedure and implementation of the RBM did not
enable us to run a training and validation set simultaneously as we did with
the autoencoder. Thus, the training loss is presented only.

Oscillations in the training loss were observed during the training of the
RBM on the Mirai dataset. Such oscillations are quite common in training of
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(a) 

(b) 
Figure 5 Autoencoder training and validation loss on the BASHLITE SYN-flood (a) and
UDP-Lag data (b).

generative models using batch sampling because the batch sampling prevents
the loss function from settling in a local optimum. The oscillations in the loss
indicate that the training algorithm continues to explore the search space not
settling for a local optimum. The test set results of the RBM on the Mirai
dataset show improvement over the CICDDOS2019 dataset with its highest
accuracy score being recorded against the Mirai UDP-Lag (Table 2).

The RBMs performance on the BASHLITE dataset is similar to its
performance on the Mirai data, still, the overall performance is much lower



584 V. Odumuyiwa and R. Alabi

(a) 

(b) 
Figure 6 Restricted Boltzmann machine training loss on the CICDDOS2019 SYN-flood (a)
and UDP-Lag data (b).

than that of the Autoencoder. The results indicate that the RBM is less suited
for the kind of precise reconstruction of the continuous input value that is
easily achieved by the autoencoder. The stochastic property of the RBMs
hidden units makes it difficult to accurately reconstruct the continuous input
from a large unknown latent space. The autoencoder solves this problem by
first encoding the input vector into a lower dimensional space thus reducing
the dimensionality of the latent space, making the resampling process more
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Table 2 Test Accuracy and Normalized Mutual Information score for the Restricted Boltz-
mann machine model on the SYN-Flood and UDP-Lag across all datasets

Data Accuracy (%) NMI

CICDDOS2019 SYN-Flood 0.5651 0.1919

CICDDOS2019 UDP-Lag 0.5089 0.1103

Mirai SYN-Flood 0.6067 0.1639

Mirai UDP-Lag 0.7797 0.3895

BASHLITE SYN-Flood 0.6709 0.2506

BASHLITE UDP-Lag 0.6210 0.1007

Table 3 Test Accuracy and Normalized Mutual Information score for the K-Means model
on the SYN-Flood and UDP-Lag training and validation data

Data Accuracy (%) NMI

CICDDOS2019 SYN-Flood 0.7538 0.1949

CICDDOS2019 UDP-Lag 0.7139 0.1427

Mirai SYN-Flood 0.7636 0.0912

Mirai UDP-Lag 0.7478 0.1387

BASHLITE SYN-Flood 0.6451 0.1059

BASHLITE UDP-Lag 0.6823 0.1306

accurate and less computationally intensive. The NMI across the RBMs per-
formance is low, showing poor correlation between the target and predicted
value.

4.3 K-Means Training and Test Results

The K-Means algorithm is not a gradient based learner so we cannot bother
ourselves with iterative plots such as those presented for the autoencoder
and RBM models. Also, the K-Means algorithm is trained on a distribution
that contains a mixture of both suspicious and benign features. The model’s
accuracy and NMI are shown in Table 3.

From the results, we observe that the K-Means model performs relatively
poorer as compared to the autoencoder model but it performs better on
average when compared to RBM. However, and once again, one can see some
slight disparity in performance on the SYN-Flood data compared to UDP-Lag
data owing to the variance amongst the features in these datasets.
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(a) 

(b) 
Figure 7 Restricted Boltzmann machine training loss on the Mirai SYN-flood (a) and UDP-
Lag data (b).

The NMI scores for the K-Means model are relatively low too with well
below average correlations. Although one should interpret the accuracy and
NMI scores independently, the low NMI scores for the K-Means discourages
one from being too optimistic about the model’s performance.

4.4 Expectation-Maximization Training and Test Results

The Expectation-Maximization algorithm performs better than the k-means
algorithm on average with its highest accuracy being 80% on the Mirai UDP-
lag data (Table 4).
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(a) 

(b) 
Figure 8 Restricted Boltzmann machine training loss on the BASHLITE SYN-flood and
UDP-Lag data.

Table 4 Test Accuracy and Normalized Mutual Information score for the EM model on the
SYN-Flood and UDP-Lag training and validation data

Data Accuracy (%) NMI

CICDDOS2019 SYN-Flood 0.7096 0.1144

CICDDOS2019 UDP-Lag 0.6759 0.1446

Mirai SYN-Flood 0.7030 0.2771

Mirai UDP-Lag 0.8051 0.2901

BASHLITE SYN-Flood 0.7636 0.3074

BASHLITE UDP-Lag 0.7575 0.2678
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Table 5 Summary of the Accuracies across all datasets and all models

Dataset/ Restricted Expectation-
Model Autoencoder Boltzmann Machine Maximization

CICDDOS2019 SYN-Flood 0.8945 0.5651 0.7538 0.7096

CICDDOS2019 UDP-Lag 0.8617 0.5089 0.7139 0.6759

Mirai SYN-Flood 0.9744 0.6067 0.7636 0.7030

Mirai UDP-Lag 0.9621 0.7797 0.7478 0.8051

BASHLITE SYN-Flood 0.9933 0.6709 0.6451 0.7636

BASHLITE UDP-Lag 0.9921 0.6210 0.6823 0.7575

Table 6 Summary of the Normalized Mutual Information score across all datasets and all
models

Dataset/ Restricted Expectation-
Model Autoencoder Boltzmann Machine Maximization

CICDDOS2019 SYN-Flood 0.5363 0.1919 0.1949 0.1144

CICDDOS2019 UDP-Lag 0.4216 0.1103 0.1427 0.1446

Mirai SYN-Flood 0.6211 0.1639 0.0912 0.2771

Mirai UDP-Lag 0.5733 0.3895 0.1387 0.2901

BASHLITE SYN-Flood 0.9927 0.2506 0.1059 0.3074

BASHLITE UDP-Lag 0.9822 0.1007 0.1306 0.2678

Although, the EM algorithm performs better than the k-means algorithm
the performance is still poor compared to the autoencoder. The clustering
algorithms struggle with large high-dimensional and continuous data. The
maximization step in the EM algorithm gives it an edge over the k-means
algorithm in this aspect. Where the k-means algorithm struggles to compute
a centroid from high dimensional continuous data, with low variance as is
the case with Mirai and BASHLITE, the EM algorithm models the prob-
lem probabilistically instead, optimizing for the log-likelihood of the latent
variables.

Tables 5 and 6 above summarize the accuracy and NMI scores across
all datasets for all models, highlighting the autoencoder’s superiority for
machine learning task.

5 Conclusion

The unsupervised machine learning models were trained on both SYN-Flood
and UDP-Lag DDOS datasets. The training and test results both show that
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the deep learning autoencoder model performs better in the classification of
incoming packets as suspicious or benign. Over the past decade, deep learn-
ing algorithms have established themselves as the state-of-the-art machine
learning algorithms. Our results show that in the unsupervised machine learn-
ing space, the deep learning algorithm also outperforms traditional clustering
algorithms such as the K-Means and Expectation-Maximization algorithm as
well as other generative deep learning models such as the Restricted Boltz-
mann machine. However, when comparing unsupervised machine learning
algorithms, one must be careful to formalize the performance evaluation
problem properly. This work shows that it is possible to frame the autoen-
coder model as a classification algorithm using the value of the reconstruction
error and that it is possible to apply this formulation efficiently to difficult
problem domains such as network packet analysis. Once proper formulations
are established, the accuracy score can then be used to evaluate both models
fairly. Although the autoencoder model is clearly the superior model, the
DDOS-Detection tool we developed provides methods that allow one to
perform network packet classification using either the autoencoder model or
the Expectation-Maximization model. The simulation results show that the
DDOS-Detection tool built around these models can achieve a net accuracy
of as high as 99%. Future studies should aim to replicate results in a larger
system to detect compromised end-points and carry out possible retraining of
the models with recent data to handle abnormalities in network performance.
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