
User Privacy and Data Flow Control for
Android Apps: Systematic Literature Review

Zainab Rashid Alkindi1,∗, Mohamed Sarrab2 and Nasser Alzeidi1

1Department of Computer Science, College of Science, Sultan Qaboos University,
Muscat, Oman
2Communication & Information Research Center, Sultan Qaboos University,
Muscat, Oman
E-mail: s109871@student.squ.edu.om; sarrb@squ.edu.om; alzidi@squ.edu.om
∗Corresponding Author

Received 21 November 2020; Accepted 01 February 2021;
Publication 15 March 2021

Abstract

Android mobile apps gain access to numerous users’ private data. Users of
different Android mobile apps have less control over their sensitive data dur-
ing installation and run-time processes. Too often, these apps consider data
privacy less serious than users’ expectations. Many mobile apps misbehave
and upload users’ data without permission which confirmed the possibility
of privacy leakage through different network channels. The literature has
proposed various approaches to protect user’s data and avoid privacy viola-
tions. This paper, provides a comprehensive overview of state-of-art research
on Android user privacy, and data flow control. The aim is to highlight
the main trends, pinpoint the main methodologies applied, and enumerate
the privacy violations faced by Android users. We also shed some light on
the directions where the researcher’s community effort is still needed. To
this end, we conduct a Systematic Literature Review (SLR) during which
we surveyed 109 relevant research papers published in leading conferences
and journals. Our thorough examination of the relevant literature has led to
a critical analysis of the proposed solutions with a focus on user privacy

Journal of Cyber Security and Mobility, Vol. 10_1, 261–304.
doi: 10.13052/jcsm2245-1439.1019
© 2021 River Publishers

262 Z. R. Alkindi et al.

extensions and mechanisms for the Android mobile platform. Furthermore,
possible solutions and research directions have been discussed.

Keywords: User privacy, data flow control, Android apps, mobile
application.

1 Introduction

Android mobile apps have capabilities to provide high demand services for
customers and store a high level of user’s data, i.e., geographical data, per-
sonal contacts, multimedia exchanges, commercial transactions, and social
networking. Thus, users’ private data required by several apps have violently
and led to greater security and privacy concerns. Between December 2009
and August 2020, the number of available apps in the Google Play Store
was most recently placed at 2.96 million apps. The Invisible Digital Threat:
Mobile Ad Fraud 2019 Report published by Malkiel and Stoke [1], over
29,000 malicious apps on the Google platform were discovered during Q1 of
2020, in comparison to 14,500 during the same quarter of last year. The report
stated that the top 100 most active malicious apps in 2019 that Secure-D
blocked, under a third (32%) of them are still currently available to download
on Google Play.

The Android platform adopts different privacy and security practices to
protect sensitive properties from violation apps. Currently, the numbers of
attackers and malicious have raised rapidly [2, 3]. Privacy concerns in the
Android OS are growing, whereas many research studies and reports have
been published, efforts have been carried out to detect and analyses privacy
leakage either statically, or dynamically, or using hybrid techniques [4–8].
Furthermore, privacy infiltration is an information flow security problem
where the user’s confidential data leakage via social networks without users’
prior knowledge or permission. Nevertheless, after permissions are approved
by users at installation time, apps could use these authorizations to access
sensitive data without any control or restrictions [3]. Therefore, securing such
data privacy is observed as the most valuable and considerable discussion
regarding issues, trustees, consistencies, and accuracy.

Many studies focused on solutions to construct effective behavior repre-
sentations that are based on Android OS [2, 9–13]. The research was focused
on providing users with a technique to check apps permissions. Besides, the
Android market (Google Play) allows developers to publish their applications
with normal review and delicate approval process. Currently, Google play

User Privacy and Data Flow Control for Android Apps 263

refers to mobile users’ feedbacks to identify policy violations [14, 15].
Besides, [14] stated that around 49% of the Google play apps are violating
ad policies by pushing notifications, adding home screen icons, and altering
browser settings. Only 8% acting as malicious behavior, such as down-
loading evil files to users’ mobile phones [14]. Hence, the users’ data can
be downloaded, uploaded, and shared over different mobile cloud services.
The user privacy data have numerous performance-related impediments, e.g.,
bandwidth, storage size, and battery lifetime, as well as environment-related
problems, e.g., availability, scalability, and heterogeneity [16]. Since most of
the services accessed by users are from cloud and external hosts, it is worth
addressing the security properties that must be included in a different mobile
platform environment. There are several mobile attacks i.e. application-based
attacks, web-based attacks, network-based attacks, collusion attacks, and
physical-based attacks [17–19]. These incidents impact security properties
including i.e., including confidentiality, integrity, availability. Also, these
attacks can influence privacy attributes i.e. privacy identity, privacy access,
and privacy disclosure [20]. From a security perspective, confidentiality is
one of the security attributes associated with securing and privately controlled
the users’ data. This sensitive data can be only authorized to those who have
the right to access, interact, and to be manipulated [19, 20]. Another security
property is data integrity which responsible to afford the maintenance of user
data during user transactions and communication, e.g., transfer, receive or
store data from/to the cloud servers. Moreover, any violations related to the
user data should be detected, e.g., data is missing, reformed, or cooperated
during the intercommunication between mobile user services and real-time
services in the cloud [16, 19, 20]. Since more user data will be hosted over the
cloud and get a real-time exaction from mobile and other handheld devices,
there are two challenges in data integrity have been mentioned by [21]:

Huge user data capacity makes predictable hashing structure not viable;
thus, leads to losing data.

Integrity checking can only be applied when there are further require-
ments, for instance, no integrity guarantees and distributed setting for data
unless there are dynamic operations.

Additional to data integrity, availability is a crucial security factor that
supports access to different services, data, and real-time tools. The service
provider should make sure that the service’s tools used by users are a variable.
However, when a certain service cannot be accessible, or the quality of
service cannot meet the user’s specifications, that may fix out the issues
and maintain possible solutions or replace them with perfect [16, 19–21].

264 Z. R. Alkindi et al.

Object reusability and data remanence are a subcategory of data availability.
From the privacy perspective, privacy is a critical concern while using mobile
devices, user sensitive data exist and shared among different distrusted data
servers, which are hosted and maintained by the service providers. Therefore,
there are possible hazards that the confidential data, e.g., financial data, user
photos, emails, and other secret contents are released to the public, business
competitors, or even have insider user threats, external attacker threats, and
data leakage. One of the offensives that target mobile devices is the Wan-
naCrypt virus, which has attacked many devices around the world. Where
more than 200,000 systems have been contaminated in over 150 countries.
The virus force victims to pay a ransom to regain access to their file or
systems [22, 23].

This research reviews the studies that have been analyzed in different
perspectives based on Android security fields, investigate the Android per-
missions system that mobile users grant to install Apps, and during the usage
of the Apps. It is worth to mention that in this article, security in mobile
platforms has been discussed in which users can check out what are those
apps could teach their data and take actions based on logs.

The rest of the article is organized as follows; Section 2 presents an
overview of the Android system and its security mechanism. Section 3 pro-
vides the research methodology and Section 4 provided a general overview
of the Android platform and application availability. Section 5 Android Date
and Information Flow Control. Section 6 presents Android’s existing security,
privacy approach, and related works that aim to help users to protect their
data using different data and information flow analysis methods. Section 7
discusses existing approaches in respect of analysis mechanisms. Finally,
Section 8 provides the research discussion, recommendation, and conclusion.

2 Android Software Stack and Security Mechanism

Android Open-Source Project has provided Android as a modern operat-
ing system for mobile phones and tablets supported by the Open Handset
Alliance (OHA). Due to Android process management, efficient memory,
robust driver model, and core services networking support, it has been
developed on top of the Linux Kernel. The Linux Kernel has been modified
specially for the embedded environment. Android has two runtime environ-
ments Android Runtime (ART) and Dalvik Virtual Machine (DVM). Android
Runtime environment uses ahead of time (AOT) compilation, e.g., apps
compiled at the installation time to ready to state. This improves the overall

User Privacy and Data Flow Control for Android Apps 265

Figure 1 Android software stack layers.

performance and device battery life. However, Dalvik Virtual Machine uses
just on time compiler as Android apps dex file that translated to their native
representation on demand. Java programming language is used for Android
apps development, and its shared libraries and native code are developed in
C/C++ [19, 24]. Figure 1 illustrates the Android Software Stack Layers.
At the core of the Android architecture, the security model provided by
Google to protect apps and user data is a permission-based structure. This
mechanism by default rejects any external access to features or functionality
that could negatively impact the user experience, the overall system, or
other applications installed on the device. However, google force android
developers to declare these permissions during their development phase.
These permissions allow users and apps to interact with different features,
e.g., access to internet connections and GPS functions, personal information,
system hardware and settings, and many other device features. Moreover,
permissions are imposed by android at runtime but must be authorized by

266 Z. R. Alkindi et al.

Figure 2 (Twitter and Facebook) used the concept of Android permission system at runtime.

the user at installation time. When users install a new application, the system
prompted a set of permissions to be accepted or denied [25, 26]. The Android
permission mechanism is fundamentally a mandatory access control system
based on permission labels, which verifies whether an app has the required
permissions when attempting to access protected resources [26]. Thus, the
permissions approved for each application are well-defined in its required
manifest file. The manifest file holds all significant values that are bound
to the application at compile time cannot be altered afterward unless the
application is recompiled, e.g., the name of the android app package, version
of Android API, minimum and maximum Software Development Kit (SDK)
that the app runs on. In Android 6.0 upward, users are prompted about the
apps permissions at runtime, where the system allows users to grant and
block the apps permissions groups individually and not as a set [27]. Figure 2
demonstrates two various mobile applications (Twitter and Facebook) that
used the concept of the Android permission system at runtime.

Android permissions are classified into three security levels based on
the sensitivities: Normal, Dangerous, and Signature. Normal permissions
secure the API calls that do not damage the user data, e.g., set wallpaper;
these do not involve user approval. This type of permissions is granted
it by default in all apps without the user interactions [28]. On the other
hand, dangerous permissions let an application perform harmful actions, e.g.,

User Privacy and Data Flow Control for Android Apps 267

record audio/video and get the storage contacts. Also, dangerous permissions
are grouped according to the related functionality, i.e., the SEND_SMS,
WRITE_SMS, RECEIVE_SMS, READ_SMS, and BROADCAST_SMS
permissions comprise the “SMS” group. Moreover, signature permissions
control access to very dangerous privileges, e.g., clear user data [26, 29–31].
Furthermore, Google provides another security model which can be realized
by imposing each application to perform its functions within its secure
sandbox. This technique designed Android as apart from other operating
systems present in the market. Therefore, an instance of an application is
isolated from other applications in memory [19, 32]. Android sandbox and
Android permission system consider as the prominent security mechanisms.
Besides, other security methods are used to increase the security and privacy
of Android apps such as application signing which allows identifying the
developer of an app. Application signing is a unique step used to ensure that
the developed app is signed with certificates. This certificate is associated
with a unique UID in the Android application sandbox. Each app installed on
Android OS runs in a different UID and the system verifies that the app has
been properly certified. Figure 3 shows a sample of the Android app Keystore
that was used to create the app signing certificate.

Figure 3 Android app keystore that used to create the app signing certificate.

268 Z. R. Alkindi et al.

Moreover, the Android platform provides secure inter-process communi-
cation where processes can communicate with each other through the binder,
intents, services, and content providers [6, 28, 33, 34].

3 Methodology

This research is a systematic review study (SRS) considering all research
done on the area related to privacy in mobile application environments. The
research focuses on mobile applications and particularly on user privacy and
data flow control for Android applications. This systematic review study is
based on the Kitchenham’s guidelines [35] that has already used by other
systematic review studies [36–38]. In order to achieve the study objectives,
the methodology is divided into different steps:

• Defining the research questions.
• Then the search keywords specification.
• Search process.
• Elimination criteria to consider only the relevant articles.
• Approach level classification.

Figure 4 illustrates the Systematic Review Study (SRS) Process.

3.1 Research Questions

The first step is about defining the research question. This systematic review
study aims to address the following research questions:

• What are the state-of-art works done on user privacy and data flow
control in Android apps? The answer to the research question, need to
survey various issues and all approaches related to user privacy and data
flow control in Android apps.

Figure 4 Systematic review study (SRS) process.

User Privacy and Data Flow Control for Android Apps 269

Table 1 Search keywords
No Keywords

1 User Privacy; User-Privacy;

2 Data Flow; Dataflow; Data Flow Control; Data-Flow-Control;

3 Android; Android apps; Android-apps ;

4 Mobile; Mobile apps; Mobile apps ;

5 Smartphones; Smart Phone; Smart-Phone;

• What are the fundamental techniques and approaches used to control
user privacy in Android apps? In this question, the research is focused
on Android-specific characteristics that should be considered to achieve
privacy and data flow control in different approaches level including OS,
application, and user level.

• What challenges and open questions remain need to be addressed? With
this question, the researchers investigate deeply the issues and challenge
those related to data flow control and user privacy in Android apps. The
researchers investigate the remaining open research questions that do not
benefit from different research efforts.

3.2 Search Keywords Specification

Based on the research questions specified in Section 3.1 the search keywords
were summarized. Table 1. Represents the actual selected and used keywords.
The keywords ‘Android apps’, ‘user privacy’, and ‘data flow control ‘were
used as the main broad search strings. The search string S is formed as a
disjunction of the first two lines and conjunction of the disjunction of the last
three lines of the specified keywords:

S =: L1 OR L2 AND (L3 OR L5 OR L5)

Whereas each line represents a disjunction of its selected keywords e.g.,
L1 =: {User Privacy OR User-Privacy}

3.3 Search Process

An electronic database literature search has been conducted using differ-
ent digital resources such as Google search engine, IEEE Xplore, Web of
Science, CiteSeer, ACM Digital Library, and SpringerLink.

270 Z. R. Alkindi et al.

3.4 Elimination Criteria

Research articles were selected based on their relevance as indicated not, only
by the title but also by the abstract and in some cases scan and analysis
of the full paper. Additionally, a manual examination of article references
was conducted to select additional articles that might be missed using dif-
ferent digital resources. Peer-reviewed journal articles and peer-reviewed
conference papers were included. However, only the subject books, book
chapters, journal articles, and conference papers in which user privacy and
data flow control for Android apps were explicitly discussed and described
were considered eligible. Other resources that dealt with data flow control
and privacy issues in mobile applications, in general, were not considered.

3.5 Approach Level Classification

This systematic review resulted in 109 different types of articles. These arti-
cles were analyzed and classified according to their approach level: operating
system, application, or user level. Only articles that considered user privacy
and data flow control explicitly with the respect of different approach levels
were included. Hence, general articles that provide and discuss general ideas,
research proposals, ethical and legal discussions were not considered. The
research finally, resulted in 45 Android security approaches that accounted
for 9 approaches that used a hybrid analysis mechanism to trace the pri-
vacy violation, 20 approaches that used a Dynamic mechanism, and 16
approaches that use a static analysis mechanism. These approaches have been
built to trace the different privacy violations in Android OS and Android
applications.

4 Android Platform and Applications Availability

Modern mobile technologies improve access to private and sensitive data.
Currently, mobile devices present detailed personal contact information, a list
of contacts, e-mail messages, appointments, location data, and much more
personally identifiable information. Android is the superior operating system
for mobile devices; it currently has the largest installed due to:

• It supports an enormous number of different devices including watches,
tablets, TV sets, etc.

• It offers end-users a large variety of applications for completing their
daily requirements through its official market.

User Privacy and Data Flow Control for Android Apps 271

• It supports mobile apps, developers, with different tools to develop an
android application and publish them in the google play store.

In May 2015, the Apple app store had around 1,400,000 Apps, Amazon
Appstore has 360,000 Apps, the Windows Phone store has 340,000, the
BlackBerry world has about 140,000, and the Android google play has around
1,600,000 (Jason Hong, n.d.). The number of available applications in the
Android Market (Google store) surpassed one million applications in July
2013 and was most recently reached two million applications last February
2016. In March 2017, the applications uploaded to Android google play were
2,800,000, comparing to the apple store which consists of around 2,200,000.
In 2020, Google Play had more than 2.96 million available apps in the first
quarter of 2020 [39]. Usually, user-installed apps have access to sensitive data
and consider privacy less serious than users’ expectations. Android Nougat
(Android 7.0) split down on permission sharing between apps to save users’
data. Moreover, android Nougat can no longer prevent users from uninstalling
apps since Android 4.4 KitKat google enables application developers to ask
users for permissions on a case-by-case basis to install these apps. This means
that an application can grant access to storage and deny access to the camera.
With these new updates, after applications are launched, the user is provided
with a pop-up message as access permission to a feature. Hence, there is no
limitations are placed to control the propagation of the user information, e.g.,
App X may have access to the user’s location but no access to the Internet.
App Y may have access to the Internet but no access to the user’s location.
This inoffensive situation may become threatening when App X hands over
the location to App Y which may propagate it to a server on the Internet.
Therefore, this research focuses on surveying how users can control and
observe the app’s traffics utilizing which app is using the users’ services
or data and log to check the types of inter-communication. Furthermore,
investigate the designed monitoring mechanism and user interfaces that may
enable users to understand what the application will do during loading and
runtime.

5 Android Mobile Application Date and Information Flow
Control

Different approaches, models, frameworks, and tools have been proposed
for the Android permission system. These solutions followed various infor-
mation flow approaches including Static Analysis and Dynamic Analysis.

272 Z. R. Alkindi et al.

Besides, some approaches improve the results using dynamic analysis with
a combination of Execution Monitor, Program-Rewrite, and Program Slicing
techniques. Thus, will assist the researchers to come up with more accurate
evaluation results. Before highlighting different flow control approaches,
there is a need to consider the differences between Date Flow Control (DFC)
and Information Flow Control (IFC). DFC is simply a term used to describe
whether an application under IFC protection has misled outside the expected
flow. When the program runs, it is instrumented in some mode to ensure that
each instruction or set of instructions does not violate data flow integrity,
i.e. the values which were expected to be untainted by the operation have
remained so [40].

On the other hand, the flow of data between different entities can be
defined as a process of communication between two nodes where data
transmission should be secure. The DFC is a mechanism for the receiver to
monitor the transmission speed so that the receiving node is not overwhelmed
with data from the transmitting node. Flow control should be recognized
from congestion control, which is used for managing the flow of data when
congestion has occurred. There is security leakage produced by illegal data
flow between entities. For instance, in a healthcare institution, a patient’s
private information can be leaked by the hospital servers and transmitting via
network channels to other medical providers, whereas there is a security leak
caused by the illegal operation on the received data by the entity. The privacy
exposure is caused by illegal operations of the healthcare institution server
performing numerous statistical analyses or modifications of the received
patient’s information [41].

IFC focuses on the flow of confidential user information. User informa-
tion is a transfer, broadcast, and process during the execution of untrusted
programs or software systems to make sure that the method of transmission
will be operated securely [42–46]. Information flow is not restricted to a
single component of an app but occurs frequently between components of
the same context and even various apps [47]. There are two main related
aspects of having secure information flows are (a) information confidentiality
and (b) information integrity. This means, no private information should leak
e.g., over network and cloud services and no untrusted involvement from the
network should leak into a database or related storage. There are various IFC
approaches have been developed [47–50] to protect user information.

The DFC and IFC have been analyzed in Android mobile apps using dif-
ferent mechanisms, including static and dynamic analysis. The next section
focuses on data and information flow analysis techniques.

User Privacy and Data Flow Control for Android Apps 273

6 Android Mobile Application Data and Information Flow
Analysis

Researchers and developers used some analysis methods to trace and monitor
the flow of data and information, detect vulnerabilities and privacy violations,
errors, and bugs before the app become available to users.

The static analysis mechanisms are used to analyze the applications in
an isolated way, use the data and information flow examination of symbolic
execution to determine a priori whether an app will leak privacy information
or not without running the program. Static analysis exam all possible exe-
cution tracks including those paths which already been executed and detect
the malicious behavior in the code segments [6, 18, 26, 38, 44, 51–54].
However, [15, 55] discussed that a static analysis method is a complicated
approach for android mobile applications due to three main reasons: (1)
Android applications consist of different components, i.e. activities, services,
broadcast receivers, and content providers. The communications between
these components involve Intents and Intent Filter which cause a disconti-
nuity in the control-flow of Android applications and lead to pre-processing
of the code to resolve links between components. (2) The issue related to
user behaviors while using the touch screen action and interacting with the
GUI. The management of user involvement can be controlled via handling
specific call-back methods/functions, e.g., an on Click method which is
called when the user clicks on a button. Hence, static analysis requires an
accurate model that can stimulate users’ behavior very obviously. (3) The
lifecycle of Android components, due to there is no main method in Android
programming. Android system uses different components states lifecycle by
calling call-back methods such as onStart or onResume. Nevertheless, these
lifecycle procedures are not directly connected to the code. Thus, modeling
the Android application permits to connect call-back methods to the rest of
the code [15, 55].

The second type of analysis is dynamic information flow analysis which
is concerned with monitoring, tracking, and regulating a program execution
during runtime. This type is more precise than static analysis because it
requires the current execution of the program to reach appropriate code
coverage; it does not leak information and can also cover language features,
e.g., pointers, arrays, and exceptions easier than static analysis [44, 56–58].
Also, the researchers may perform a combination of other analysis techniques
such as, program re-write techniques that are considered as one of the run-
time approaches. This approach focuses on satisfying security policy during

274 Z. R. Alkindi et al.

runtime, its expensive process, and suffering a non-negligible overhead on
the applications. The core feature of this method is rewriting instructions that
interrupt by security policy at runtime. Comparing with other approaches,
program-rewrite fail to detect implicit flows of information, which can be
achieved by a static analyzer that considers the whole code, rather than just
the executed instructions [59]. Another important runtime approach is the
execution monitor approach. This technique achieved data labeling and infor-
mation tracking during the execution of the program. It detects, monitors and
follows different events when applications deal with the data coming/going
from/too sensitive information sources, e.g., device location sensor, user
phone contacts, then reporting these applications, data type, and network des-
tination to the user [45]. [44] discussed another mechanism called program
slicing. The technique gets involved especially in re-engineering or debug-
ging the program, and it focuses on specific parts of a given program. There
are different types of program slicing: (1) Static slicing which enhanced the
static analysis by computed symbolic values without considering the program
input. (2) Dynamic slicing, in the technique the slice is calculated for fixed
input or data value. (3) Forward slicing is focused on program statements and
what are those variables value affected the statements. (4) Backward slicing,
this type of slicing is calculated from any point in the program to discover all
statements that can affect specific variables [44]. Therefore, the researchers
have reviewed different tools that used the approaches mentioned above.

Different approaches are proposed to support the user’s privacy and avoid
data violations. Most of these approaches used the concept of static and
dynamic analysis. Table 1 summarized the differences between the two types.
The next section discusses related studies and approaches that support user
privacy protection tools using static and dynamic analysis techniques.

7 Related Work

Android apps use permission systems through pre-defined permission meta-
data in the Android manifest file. Android components can be protected
with a permission system or custom permission to secure the access of apps
to sensitive data and private resources. Developers are required to set the
permission attribute to access apps services APIs and methods i.e., storage
methods, network APIs, camera access. However, some apps can evade
the permission system and gain access to protected resources without user
consent. Thus, can occur through covert and side channels that used the
permission system limitation to attack user’s privacy. Inside channels, apps

User Privacy and Data Flow Control for Android Apps 275

Table 2 Comparison between static and dynamic analysis
Components Statics Analysis Dynamic Analysis

Target code execution Not possible Possible

Type of execution Code investigation – No runtime
operations

Runtime investigation and
operations

Time required More time required to go
through the lines of codes

Less time since using an
automation method

Input Type Binary files, scripting
language files, etc

Memory snapshots, runtime
API data

Advantage Fewer resources and time
Exam all possible execution
tracks through one file: Android
manifest.xml.
Can help to detect many
vulnerabilities i.e. private data
leaks, unauthorized access to
protected or private resources,
and intent injection

Deep examination and higher
discovery rate with obscure
malware spot
More precise due to the
current execution of the
program to reach appropriate
code coverage

Disadvantage Constrained signature database
and can identify only within the
scope of the known malware
types

Power consumption and more
time to perform the process

Accuracy of the results Low rate of accuracy compared
with dynamic analysis

Improved than static analysis

gain access to protected resources and bypass the permission system; whereas
covert channels support the interaction between two communicated apps so
one app can allocate its permission protected data to be used by another app
that lacking those permissions [60, 61]. Furthermore, many studies discussed
the possible solutions and approaches to trace and avoid privacy violations.
The below sections highlighted the approaches introduced using three main
analysis techniques:

7.1 Android Existing Privacy Approaches Using Static Analysis

Static analysis approaches have been recommended for various evaluation
methods, such as assessing the security and privacy violation of Android
apps, tracing app clones, and presenting test case generation. Most studies
have been proposed to attempt a solution for one or more of the numerous
challenges that program analyzers cross when dealing with Android apps. In

276 Z. R. Alkindi et al.

2020, [62] proposed a static data flow approach called DroidRista that is used
to detect the flow of sensitive data in the Android mobile app. DroidRista
evaluates the ICC, reflection, and implicit flow in Android apps [62].
Furthermore, MR-Droid developed for [63] purposes to detect inter-app
communication threats and solved the problems of accurate and scalable of
ICC. Nevertheless, the approach suffers from some limitations, i.e., the tool
can operate intent-based ICC communications only where the security risks
can be handled by other inter-app channels like content providers, shared
preferences location-based, etc [63]. Moreover, [53] proposed a detecting
Permission Over-claim approach which is based on byte code static analysis
and semantic similarity analysis. This approach provides a detection method
for all explicit, implicit, and Ad library permission overclaim problems [53].
In 2016, [64] presented a methodology to obtain privacy profiles for permis-
sion states. The Personalized Privacy Assistant (PPA) can manage the user
profile in a personalized privacy assistant and allow users to configure their
apps’ permission settings. However, the PPA is limited to generate a user-
specific profile thus, does not reflect each application’s access to private data
on a case-by-case basis [65]. In the same year, [9] introduced an Android
security solution targeting the inconsistent security enforcement within the
Android framework. This approach provided a methodology that discovers
the inconsistency in security policy enforcement in Android using a proposed
static analysis tool called Kratos. However, Kratos is only a static analysis
tool for systematically discovering the inconsistencies of security check-
ing. The methodology did not discuss the protected resources in Android’s
application framework [14, 15]. In 2015, [66] implemented a static analyzer
called EDGEMINER that explores the entire Android framework statically
to produce API summaries automatically. These APIs address the issue of
implicit control flow transitions including the well-defined call-backs in the
Android framework. Also, the tool performs inter-procedural backward data
flow investigation to extract a list of Androids OS registration-call-back.
However, most of these mechanisms are based on the analysis of permissions
granted to apps and only discussed the tracing of information flow based on
the Android OS level. This type of analysis is not sufficient for detecting
all levels of malware, because it can detect collision attacks on the OS level
without considering the user control, as well as it may consider only the secu-
rity methods that followed by the OS, i.e., Sandbox and Android configure
permissions [66]. Besides, [67] introduced an IccTA which performs static
analysis to detect privacy leaks between different components in Android
applications. IccTA supports inter-component detection and improves the

User Privacy and Data Flow Control for Android Apps 277

precision of the analysis [67]. In 2014, [68] presented a FlowDroid tool
that performs a static taint analysis for Android applications. FlowDroid
analyses the apps’ bytecode and configuration files to check out the potential
privacy leaks caused by carelessness or produced by malicious [68]. In the
same year, [69] proposed an Amandroid that focuses on providing a precise
and general Inter-component Data Flow analysis approach for the security
selection of android apps. This approach is limited to handle exceptions
including the handle concurrency and reflections issue. In the same con-
text, [70] implemented an android app called ProfileDroid. This tool takes
care of multi-layer monitoring and profiling apps. This approach profiles the
apps at four main layers: (a) static, or app specification, (b) user interaction,
(c) operating system, and (d) network. However, its main obstacle is that
it does not offer any profiling results about consumed time [70]. Besides,
PermissionFlow proposed by [71] aims to provide automatic detection of
inter-application permission infiltration in android applications. This static
analysis tool is used to detect unauthorized access to private information
by capturing the flow of permissions. In contrast, PermissionFlow does not
detect the native code permissions. Also, the tool suffers from redundant
checking of permissions and data-dependent which causes erroneous during
the detection process. Finally, this tool uses implicit intents only which leads
to negatives results for the apps that use the communication between other
Android components [71]. In 2012, [72] developed a static analyser tool
called SCANDAL. Their developed tool detects privacy leaks in Android
applications and determines the flow of data from the source of information
until reaching its target channel. SCANDAL covers limited privacy informa-
tion includes location, phone, SMS, and Eavesdropping [72]. In the same
year, [73] introduced Constroid that provides a data-centric security policy
management framework for Android. Constroid provides partial enforce-
ment of fine-grained and allows users to control the access to policies in
Android. This approach modified the content provider and Inter-component
Communication Channel (ICC). However, Constroid defined the security
policies for each Android components, instead of specifying permissions for
each app. Furthermore, these policies are specified by the user, not by the
developer. Though, this approach can easily confuse users as they are held
responsible for requiring security and privacy policies [73]. Furthermore, [74]
developed TrustDroidTM that supports the static analysis concept to track the
app communication and prevent leakage of sensitive information in a user’s
mobile phone. However, this approach has some limitations including, the
tacking of tainted data that should be written to a file otherwise, the process

278 Z. R. Alkindi et al.

of monitoring will not be done. Also, the tool starts detecting and tacking
the app while they are loading means no monitoring for apps during the
installation and even during the usage [74]. In 2011, [75] developed a Com-
Droid approach that observes the application communication vulnerabilities.
ComDroid can be used by developers to investigate their applications before
its final release. Nevertheless, ComDroid detected android Intent control flow
across functions and did not distinguish between paths that used control flow
statements. Also, it does not track the privilege across pending Intents and
Intents that performs URI read/write permissions [75]. Additionally, [76]
proposed AppInspector which is an automated security validation tool. It
performs a static analysis for apps and generates reports of potential security
and privacy violations. Besides, they proposed a dynamic method that tracks
an app’s use of sensitive information and checks for suspicious behavior such
as excessive resource consumption or deleting user data [76]. However, this
approach has less scalability of the app base which leads to an increase in the
malicious apps in the market.

The tool performs a single party to achieve the entire process in the
android app, e.g., tracing high privacy information flow, detecting security
and privacy hazards, and reporting potential risks of information misuse [77].

7.2 Android Existing Privacy Approaches Using Dynamic
Analysis

Due to the limitation of static analysis, some approaches have been proposed
with the usage of dynamic analysis. This analysis traces the behavior of
the app by running a specialized benchmark while the code is running. In
2020, [78] proposed a CenterYou framework that utilizes a pseudo data
technique and a cloud-based decision-making approach to examine and
protect Smartphone devices from over-requested permissions by installed
applications and identifies potential privacy leakages. However, CenterYou
requires root access and Zygote to enable the injection of the services [78].
In 2019, [79] proposed Android Flexible Permissions (AFP which provides
a user flexible permissions management approach). This approach aimed at
supporting end-users to control and manage Android permissions. Users who
installed the apps with AFP configuration can identify and customize fine-
grained permission levels on private or confidential resources [79, 80]. In
the same year, [81] introduced a dynamic analysis approach that monitors
the permissions requested by apps during the run-time and recognizes those
requested permissions by the app’s fundamental functionality from those

User Privacy and Data Flow Control for Android Apps 279

demanded by third-party libraries linked with the app [81]. In 2016, [8]
proposed a framework that enforces fine-grained security privacy policies and
enables users to manage access of applications to sensitive elements. This
approach allows users to modify their security restrictions dynamically at
runtime without the need to recompile or to reinstall the apps. The framework
does not have a clear background of the users regarding the information-flow
path which may lead to privacy violation [8, 82]. In the same year, [82] intro-
duced a dynamic analysis tool that generates inputs for the Dynamic Analysis
of Android Malware. IntelliDroid can produce a small set of inputs that allow
the dynamic analysis to decide when it is malicious in android applications.
IntelliDroid does not operate with implicit Intents, Content Providers, and
native code execution. Also, IntelliDroid partially handles reflection as it
cannot recognize the path constraints after the reflected call [24, 82]. More-
over, [83] proposed DroidDisintegrator which tracking the inter-component
information flow and tracing of component resource use in apps. Also, it
validates the feasibility of the component-level of information flow control
while controlling the app behavior [13, 84–86]. However, the tool uses only
dynamic analysis while the tracing of the internal logic of sensitive behaviors
should take place. Hence, the static analysis is needed as well to perform
better tracking for information, decrease falsely reported flows, and detect
decomposable flows. Moreover, [56] described a cross-platform technique
called ReCon which exposes personally identifiable information (PII) leaks
over the network. The system extracts user location as a sample and enables
users to control their information about privacy leaks from the network,
provide feedback about appropriate leaks, and they can as well change the
information sent to third parties [56]. In 2015, [87] proposed a dynamic
tool called Inspeckage that builds under the Xposed Framework. Inspeck-
age provided investigating for mobile apps’ network traffic and information
gathering includes app permissions, third party libraries, debuggable status
of the apps, and export components [87]. In the same year, [88] implemented
COMBdroid (Covert Malware Blocker) approach that discourses Android
security concerns by enforcing fine-grained and allow users to define policies.
COMBdroid adjusts an application before installation instead of modifying
Android OS and permitting it to override security vulnerabilities at runtime.
On the other hand, the approach capability is restricted with only three poli-
cies. Many threats should be considered in the overall security checking [88].
In 2014, introduced the TaintDroid approach that was used to monitor the
flow of user’s private data that have been developed/downloaded from third-
party stores [13]. However, this tool traces only explicit data flow, in which

280 Z. R. Alkindi et al.

a bytecode directly transmits information from its source objects to its des-
tination objects. Moreover, it cannot detect malware in apps that have their
libraries [88]. Also, [89] introduced the VetDroid approach for remolding
sensitive behaviors in Android apps from a novel permission use perspective.
This systematic approach is used to efficiently structure permission use
behaviors, e.g., how applications use permissions to access privacy system
resources, and how the application further utilizes these attained permission-
sensitive resources. VetDroid can be suggested to be used in finding more
information leaks than TaintDroid proposed by [89]. In 2013, [90] introduced
an AppsPlayground approach that supports the dynamic analysis of Android
mobile applications and track privacy leakage. The tool required a modifica-
tion over the Android software stack [90]. In the same year, [91] presented
a new analysis AppIntent framework that provides a sequence of graphical
user interface operations to lead the data transmission. Thus, helping the
specialists to control if the data communication is used intended or not.
AppIntent has two main limitations; firstly, the tool does not support native
codes. As well as, since the Android InstrumentationTestRunner method does
not support the instrumentation of network input, the tool cannot simulate
network inputs generated by symbolic execution [91]. Moreover, [44] intro-
duced a new approach which provided a dynamic and operational information
security solution. This approach supports the interaction between the user and
the security process where users can manage the security of their applications
without defining intricate security policies before running the mobile appli-
cation. However, this approach does not enable the application user to decide
which policies should take place when the information starts sharing with the
cloud. Moreover, there is no grant to users about the flow of this information
and personal data [44]. In 2012, [11] presented a systematic approach for
the detection of malicious applications named DroidRanger. This approach
implemented two main schemes: a permission-based behavioral footprinting
scheme and a heuristics-based filtering scheme. The tool focused on system
calls used by the existing Android kernel or made with the OS privilege.
Therefore, these two heuristics are not sufficient to detect all malware in
android markets, and it’s only limited to detect variants of common malware
types or uncommon malware that dynamically load untrusted code. Also,
DroidRanger performs an offline investigation to detect malware in Android
Markets, thus no runtime detection of apps malware [92]. In 2011, [86]
established a security approach called AppFence. This approach modified
the Android operating system to execute privacy controls on existing Android
applications. AppFence allows users to keep tracking the private information

User Privacy and Data Flow Control for Android Apps 281

and data that transfer from their device to a third-party application. How-
ever, AppFence has numerous limitations: (1) AppFence suffers significant
performance overhead; thus, due to the taint tracking on every single Dalvik
bytecode execution. (2) AppFence required firmware modification, therefore,
deploying the tool on multiple Android devices can be challenging [93].
(3) AppFence has some blocking feature, e.g., does not detect information
leaked through control flow operations [86]. In 2010, [94] proposed an Apex
framework that introduced a policy enforcement mechanism for Android.
It allows the user to selectively grant permissions to applications as well
as enforce constraints on the usage of resources. However, Apex is limited
to some of the available permissions [95]. [96] proposed Android modified
version called MockDroid. This framework is used by users to ‘mock’
applications’ resources access. MockDroid offers an extended permission
technique where the resource access is not blocked but results in empty,
unavailable, or dummy data [96] MockDroid’. In 2009, [97] presented the
CRePE approach that permits context-related strategies to be well-defined
either by the end-users or apps market owners. Context-related policies
are security policies that require the responsiveness of the context of the
phone which can be defined using different statuses, e.g., location, time,
temperature, noise, and light. On the other hand, CRePE only checks the
context of active policies. Nevertheless, other permissions and policies should
be considered as well [97]. In the same year, [98] proposed SCANDROID
that achieve incremental checking of android applications extracted security
specifications from applications which manifest and checks whether data
flows through those applications are consistent with its permissions [99].
This approach is limited because it cannot analyse the full packaged Android
applications and it does not yet apply to real-world applications [98].

7.3 Android Existing Privacy Approaches Using Hybrid Analysis

Because of the limitations of static and dynamic analysis methods, many
approaches prefer to perform both static and dynamic analysis to obtained
accurate results. In 2020, [100] proposed an approach called Alde that
identifies the analytics libraries integrated with Android apps. This approach
uses both static and dynamic analysis to detect the users’ in-app actions
gathered by analytics libraries. However, Alde is not handling the process of
Android inter-component communication and inter-process communication,
which might failure some effects. Also, the approach does not perform
the analysis on a large-scale [100]. In 2019, [54] introduced an automated

282 Z. R. Alkindi et al.

vulnerability detection model that builds both static and dynamic analysis
methods [54]. AndroShield Cannot run different versions of an app under
different profiles [54]. In 2018, Ostorlab [101] is a cloud-based approach
that provides static and dynamic analysis to identify the apps privacy leakage
and vulnerability in mobile apps. The free version of Ostorlab does not offer
any dynamic analysis features. Although it lacks providing the source code,
modules, or architecture [101]. In 2016, [102] proposed a security analysis
model that can make up for their shortcomings with each other, enable the
analysis of malicious behavior more comprehensively and accurately [102].
In the same year, [103] discussed the malware characterization that was
implemented in the Android manifest file. Moreover, researchers gave the
user the ability to improve the efficiency of Android permission which can
inform the user about the risk of Android permission and apps [103]. In
2014, [104] proposed an AppFork which allows users to isolate and secures
two different entities on a single phone single, i.e, work, and active personal
profiles. The researchers address data leakage channels by developing a
ChannelCheck tool that uses to detect the leakage of channels automatically.
AppFork still realizes the security of virtualization-based methods, but with a
smaller overhead [104, 105]. In the same year, [106] developed a Cassandra
app checker tool. The developed tool permits users of mobile devices to check
whether Android apps observe their privacy requirements before installing
these apps. Moreover, Cassandra allows the user to define security policies,
verify that apps follow these policies before installation, and performs the
security analysis of apps on a server. However, Cassandra covers around
211 out of 218 Dalvik instructions. Also, it does not support exception
handling and synchronization methods [106]. In 2012, [107] discussed the
application development of the Android mobile platform and provided an
important layered approach that could be used to secure the information in
Android OS. Their layered method guides them to discuss the details of an
android app called “AASandbox.” This app was developed by [12] and can
achieve both static and dynamic investigations on android programs to reveal
suspicious [107] automatically. On the other hand, AASandbox generates
low detection accuracy because it is very varied [65, 108]. In 2006, [109]
provided an information tracking mechanism based on resource classifica-
tion. They modified the Android kernel of integrated wireless devices so
that processes and files are labelled to regulate access to different system
resources [109].

Most of the previous studies do not put the control of the apps’ behaviors
in the user’s hand, however, all these proposed approaches and tools are

User Privacy and Data Flow Control for Android Apps 283

installed in the user device to detect or monitor the flow of the other app
data or detect the permissions used in these apps.

8 Discussion

Existing solutions have used different control flow approaches to address
privacy in mobile systems. However, they are limited because they do not
have perceptibility into network flows from mobile devices, the ability to
adjust the application permissions, and the deployment model that facilitates
large-scale adoption to ensure broad impact. At first, glance, addressing
all these limitations seems to impose a high barrier to success, due to the
difficulty to address security issues that may occur during the interaction
between the user and different services provides. Moreover, an evaluation
approach that combines static and dynamic analysis to assess any given
application may have low speed especially with static analysis as well as
other different mentioned issues. The user can be offered, the control of the
application permissions, where they can change and modify the permission
rules. Tables 3–5 illustrate Android approaches that used different analysis
concepts including static, dynamic, and hybrid analysis.

Moreover, a user prefers to have a level of security approaches that
support user control over the privacy and the violations that may leakage the
private data. As mentioned in Section 7, many of the proposed approaches
use static or dynamic analysis to control the flow of information and user
privacy. Most of the discussed methodologies do not support native codes
and do not focus on the user’s actions that need to be performed when
flow policies are hacked. Furthermore, some of these approaches start their
detecting process during app loading time, thus no app monitoring during
installation time or usage. Users have no control over sensitive or private data,
in such a way that the user can change or modify the way that data processed
or manipulated. From the previous tools and frameworks, it can be observed
that most of the approaches try to be convenient with securing mobile devices
by producing and implementing tools that monitor installed apps behaviors
in users’ devices, without considering how a user can control these apps.
Besides, these approaches do not invigilator the app after installation time
and during the usage by users. Some of the proposed approaches detected the
malware statically, thus, no real-time usage and it may affect the accuracy
and accuracy of tracking the user’s private data. Moreover, no such approach
provides a clear setting for users to allow them to manage the device resources
with certain permissions. Most of the permissions control is done in the app’s

284 Z. R. Alkindi et al.

Table 3 Android proposed approaches that used static analysis concept
No Year Approach Mechanism Limitations

1 2020 DroidRista: is an Android
approach that provides a
static data flow analysis and
detects sensitive data leakage.

Static Do not analyze apps that
support native code.

2 2017 MR-Droid: a scalable and
prioritized static analysis tool
of inter-app communication
risks

Static Cannot handle other inter-app
channels like content
providers, shared preferences.
Its focus only on intent-based
ICC communication.

3 2017 Detecting Permission
Over-claim: a novel approach
based on byte code static
analysis

Static high memory usages which
may cause false results. The
approach considers only the
java codes.

4 2016 Privacy Profiles and
Preference Modeling (PPA):
methodology to allow users
to configure the installed
application permission.

Static Limited to generate a
user-specific profile.
Do not reflect each
application’s access to private
data on a case-by-case basis.

5 2016 Kratos: Determining
Inconsistent Security Policy
Enforcement in the Android
Framework.

Static Only a static analysis tool for
systematic tracing
inconsistencies in security
enforcement.
Did not make the effort to
classify protected
components in Android’s
application framework.

6 2015 EDGEMINER: explore
statically the entire Android
framework to automatically
produce API summaries

Static Detection of collision attacks
in OS level without
considering the user control

7 2015 IccTA: Detect privacy leaks
between different android
components.

Static Cannot detect a leak through
multi-threading. Can miss
leaks through native calls that
their rules model incorrectly.

8 2014 FlowDroid: Precise context,
flow, field, object-sensitive,
and lifecycle-aware static
examination for Android
apps.

Static Misses different private and
sensitive data leaks from
benign off-the-shelf Android
applications

(Continued)

User Privacy and Data Flow Control for Android Apps 285

Table 3 Continued
No Year Approach Mechanism Limitations

9 2014 Amandroid: A Precise and
General Inter-component
Data Flow Analysis
Approach.

Static Limited ability to handle
exceptions including the
handle concurrency and
reflections issue.

10 2014 ProfileDroid: multi-layer
monitoring and profiling app.

Static High overhead. No details
about operations
consumed time

11 2013 PermissionFlow: Automatic
detection of inter-application
permission leaks in Android
applications.

Static Does not support the
security detection for
native code permissions.
The use of implicit intents
only leads to negatives
results for the apps that
use the communication
between other android
components.

12 2012 SCANDAL: detects privacy
leaks in Android applications
and determines the flow of
data from the source of
information till reaching its
target channel.

Static Does not support
reflection-related APIs.
Detect only three main
APIs including Location
Information, Phone
Identifiers, and
Eavesdropping (track both
audio and video).

13 2012 Constroid: a data-centric
security rule management
schema for Android

Static Confuse users as they are
thought that the
responsibility of
specifying security policy
and privacy rules depend
on them.

14 2012 TrustDroid: tracking the app
communication and prevent
leakage of sensitive
information.

Static Tacking of tainted data
that should be written to a
file. Detecting and tacking
the app while they are
loading, means no
monitoring for apps
during the installation and
even during the usage.

(Continued)

286 Z. R. Alkindi et al.

Table 3 Continued
No Year Approach Mechanism Limitations

15 2011 ComDroid: A detection tool
used by developers to
monitor their application
communication
vulnerabilities before the app
release to the app market.

Static ComDroid detected android
Intent control flow across
functions and did not
distinguish between paths
that used control flow
statements. Does not track the
privilege across pending
Intents and Intents that
performs URI read/write
permissions.

16 2011 AppInspector: an automated
security validation tool that
used to examines apps and
generates reports of potential
security and confidentiality
violations

Static Less scalability of the app
base. A single party to
achieve the entire process in
android.

development stage by android developers. Therefore, this research provides
a recommendation to develop a technique that offers users of the apps the
priority to change the apps’ behaviors once it starts accessing the user data.
The permissions provided by apps can be modified by the user, as well as
the user can lock or even prevent them from accessing any private data. Also,
researchers recommend that enables the user to control mobile application
actions based on configurable privacy and data flow policy during runtime.
The technique should consider any behaviors done by installed apps and
notify the user about the tracks, thus help the user to detect which app access
private data or any other information. To ensure that users know what they
are doing? They should explicitly approve any data access or manipulation
rather than leaving it to the platforms.

Assume the following scenario, that DS1, DS2, DS3 are data sources
that will be processed using the mobile app. The monitoring mechanism that
regulates and controls the flow of processed data during mobile app runtime
has a user privacy policy stated that DS2 (Data source 2) must not flow to
DT1 (Data Target 2) as shown in Figure 5.

Then possible data flow scenarios are:

• Data source (DS2) flowed to data target (DT2 or DT3) allowed based on
policy rules.

User Privacy and Data Flow Control for Android Apps 287

Table 4 Android proposed approaches that used dynamic analysis concept
No Year Approach Mechanism Limitations

1 2020 CenterYou: is a framework that
applies the pseudo data
technique.

Dynamic Requires root access and
Zygote to enable the
injection of the services.

2 2019 Android Flexible Permissions
(AFP): a user-centric approach
to flexible permissions
management

Dynamic Works with apps that
configure the AFP setting

3 2019 REAPER: Dynamic Analysis
for Augmenting the Android
Permission System

Dynamic Used to prevent a
third-party privacy violation
only.

3 2016 The framework that enforces
fine-grained security privacy
policies and enables users to
control access of applications to
sensitive.

Dynamic Unclear to users the
information-flow path that
may lead to privacy
violation.

4 2016 IntelliDroid: A Targeted Input
tool for the Dynamic
Investigation of Android
Malware.

Dynamic IntelliDroid does not
operate with implicit Intent,
Content Providers, and
native code execution. The
tool is not capable of
generating inputs for
encrypted and hashed
functions.

5 2016 DroidDisintegrator: tracking of
inter-component information
flow and observing of resources
use in apps

Dynamic Performed only dynamic
analysis while the tracing of
the internal logic of
sensitive behaviors should
take place.

6 2016 ReCon: A cross-platform
technique that exposes
personally identifiable
information (PII) leaks over the
network.

Dynamic Require network connection
to detect and extract PII
leaks.

7 2015 Inspeckage: is a dynamic
Android application analysis
tool that builds under Xposed
Framework which makes
dynamic analysis very easy.

Dynamic Offers dynamic analysis
only and requires root
access using Xposed
Framework

(Continued)

288 Z. R. Alkindi et al.

Table 4 Continued
No Year Approach Mechanism Limitations

8 2015 COMBdroid: Discourses
Android security concerns by
enforcing fine-grained and
allow users to define policies,
maintain a list of trusted and
untrusted behaviors.

Dynamic Users’ preference list is
recalled within the scope of
one application.

9 2014 TaintDroid: Evaluate the flow
of user’s private data that
goes through the third-party
stores.

Dynamic Traces only explicit data flow,
in which a bytecode directly
transmits information from its
source objects to its
destination objects.

10 2014 VetDroid: remolding sensitive
behaviors in Android apps
from a novel permission use
perspective.

Dynamic Needs a quite intrusive
change in Dalvik VM,
Binder, and Linux kernel in
the Android system that
restricts the simplicity to port
to different Android system
versions. It inherited the
drawbacks of TaintDroid as it
built on top of it.

11 2013 AppsPlayground: is an
Android framework that
automates the analysis of
smartphone applications and
tracks privacy leakage.

Dynamic The tool modified the
Android software stack to run
the analysis.

12 2013 AppIntent: Analyzing critical
data transmission
in android for privacy leakage
recognition.

Dynamic Does not support native
codes. Does not support the
instrumentation of network
input.

13 2013 A dynamic and operational
information security solution.

Dynamic Does not support the
procedures of involving users
in the monitoring process. No
user involvement in deciding
which policies that should
take place when the
information starts sharing
with the cloud.
No grant to users about the
flow of this information and
personal data.

(Continued)

User Privacy and Data Flow Control for Android Apps 289

Table 4 Continued
No Year Approach Mechanism Limitations

14 2012 DroidRanger: a systematic
approach for the detection
of malicious applications
using a permission-based
interactive foot printing
scheme and a
heuristics-based filtering
structure.

Dynamic Limited to detect variants
of common malware types
or uncommon malware
that dynamically load
untrusted code.
DroidRanger performs
offline analysis to detect
malware in Android
Markets.

15 2011 AppFence: keep tracking
the private information
and data that transfer from
their device through a
third-party application.

Dynamic significant performance
overhead. Required
firmware modification.
Does not track
information leaked
through control flow
operations.

16 2010 Apex: extending frame-
work for the
android permission model
and enforcement with
user-defined runtime
constraints.

Dynamic Limited to some of the
available permissions.

17 2010 MockDroid: extended
permission technique
where the resources
access can be controlled
by users.

Dynamic Not available for end-user.

18 2009 CRePE: interrupt critical
API calls and filter against
predefined policies.

Dynamic Checks only the context of
the active policies.

19 2009 SCANDROID: extracts
security specifications
from application
manifests.

Dynamic Cannot analyze the full
packaged Android
applications

• Data source (DS2) flowed to the data target (DT1) was denied according
to policy.

• Data source (DS1 and DS2) processed in parallel and DS2 copied to
DS1 then DS1 flow to DT1 denied as stated in the policy.

290 Z. R. Alkindi et al.

Table 5 Android proposed approaches that used static analysis concept
No Year Approach Mechanism Limitations

1 2020 Alde: detect the users’
in-app actions collected by
analytics libraries

Static and
Dynamic

Android inter-component
communication and
inter-process communication
are not handled in the ‘Alde’
analysis process, which might
failure some consequences.
Also, the approach does not
perform the analysis of
large-scale.

2 2019 AndroShield: Automated
Android Applications
Vulnerability Detection[54].

Static and
Dynamic

Cannot run different versions
of an app under different
profiles.

3 2017 Ostorlab: a cloud-based
security and privacy scanner
framework for Android or
iOS[101].

Static and
Dynamic

Do not provide a full
dynamic analysis for free.

4 2016 Malicious behavior analysis
for android applications

Static and
Dynamic

Consider more sensitive APIs
and provide the Android
market real App for fans to
use. An integration of other
malware detection technique,
e.g., dynamic taint analysis

5 2016 Investigation of Malicious
Behaviour of Android Apps

Static and
Dynamic

Monitoring Android sensitive
API and explore the app’s
vulnerability.

6 2014 AppFork: Data leakage tool
that isolates and secures
partitions belonging to work
and personal profiles.

Static and
Dynamic

Cannot run different versions
of an app under different
profiles.

7 2014 Cassandra:
Information-Flow Analysis

Static and
Dynamic

Does not support exception
handling and synchronization
methods

8 2012 AASandbox: a layered
approach to secure private
information in Android OS.

Static and
Dynamic

AASandbox generates low
detection accuracy

9 2006 Using Labelling to Avoid
Cross-Service Attacks
Against Smart Phones

Tracking and
Monitoring

Extend policy language to
enable users to describe more
labels for complex policies.

User Privacy and Data Flow Control for Android Apps 291

Figure 5 The flow of Apps while accessing the user information.

9 Conclusion

Mobile devices store personal information, e.g., user location accounts detail
and sensitive data; thus, privacy and security of user device is a major
concern. Android as an open-source OS secures apps by sandboxing app
execution and enforces the apps developers to maintain a set of provided
permissions. Moreover, different studies have been conducted to provide
solutions that protect user’s devices, most of these proposed approaches
can monitor the behaviors of installed apps but not permit the user to con-
trol or prevent any insecure behavior. Thus, this article discussed exciting
approaches designed to provide security approaches (tools and frameworks)
that track the actions of installed apps. To summarize the state-of-the-art of
user privacy and data flow control in Android apps, this article systemati-
cally reviewed published approaches. In this systematic review process, 109
articles were collected. The article discusses general concepts, proposals,
ethical and legal discussions that were not considered. We have found that
no such mechanism allows users to control mobile application behavior
based on configurable privacy and data flow policy during runtime. Finally,
these significant features of the framework can help users to determine the
behaviors of any installed apps and start responding to actions to secure
personal data. Despite the huge potential and many benefits that could be

292 Z. R. Alkindi et al.

gained from such research study, there are still many challenges and issues
that need to be addressed mainly:

• Data flow control,
• Design a suitable user interface,
• Dynamic user privacy and data flow control policy,
• Novel lightweight privacy algorithms in the mobile technology side,
• User ability to modify the flow policy during runtime in response to

incidents, and
• Modify application behavior that attempts to leak private data according

to user decision.

To the best of our knowledge, the mobile Android community needs a
solution that maintains the user controlling of permissions list, modifying
them, monitor the data transmission, and change an App behavior based
on configurable privacy and data flow policy.The authors would consider
different discussed issues and challenges in their future work to design and
implement a new approach to user privacy and data flow control for Android
Apps.

References

[1] B. B. G. Malkiel and M. E. Stucke, “The Invisible Digital Threat:
Mobile Ad Fraud 2019 Report,” 2019. [Online]. Available: https:
//www.secure-d.io/mobileadfraud2019report/.

[2] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android Permissions: User Attention, Comprehension, and Behav-
ior,” in Proceedings of the eighth symposium on usable privacy and
security, 2012, pp. 1–14, doi: 10.1145/2335356.2335360.

[3] I. I. Conference, C. Security, and C. Computing, “CUPA: A Con-
figurable User Privacy Approach For Android Mobile Application,”
2020.

[4] J. Seo, D. Kim, D. Cho, T. Kim, and I. Shin, “FLEXDROID: Enforcing
In-App Privilege Separation in Android,” in NDSS, 2017, no. February,
pp. 21–24, doi: 10.14722/ndss.2016.23485.

[5] M. Hammad, H. Bagheri, and S. Malek, “The Journal of Systems
and Software DelDroid: An automated approach for determination and
enforcement of least-privilege architecture in android,” J. Syst. Softw.,
vol. 149, pp. 83–100, 2019, doi: 10.1016/j.jss.2018.11.049.

https://www.secure-d.io/mobileadfraud2019report/
https://www.secure-d.io/mobileadfraud2019report/

User Privacy and Data Flow Control for Android Apps 293

[6] G. Shrivastava and P. Kumar, “Privacy analysis of android applications:
State-of-art and literary assessment,” Scalable Comput., vol. 18, no. 3,
pp. 243–252, 2017, doi: 10.12694/scpe.v18i3.1304.

[7] Z. Alkindi, M. Sarrab, and N. Alzeidi, “Android Application Permis-
sion Model Issues and Privacy Violation,” in Free and Open Source
Software Conference (FOSSC’2019-OMAN), 2019, no. April, pp. 47–
51, [Online]. Available: https://www.researchgate.net/profile/Zainab
_Alkindi/publication/332401070_Android_Application_Permissio
n_Model_Issues_and_Privacy_Violation/links/5cb1d9cb92851c8d22e
809b7/Android-Application-Permission-Model-Issues-and-Privacy-
Violation.pdf.

[8] R. Neisse, G. Steri, D. Geneiatakis, and I. Nai Fovino, “A pri-
vacy enforcing framework for Android applications,” Comput. Secur.,
vol. 62, pp. 257–277, 2016, doi: 10.1016/j.cose.2016.07.005.

[9] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao, “Kratos:
Discovering Inconsistent Security Policy Enforcement in the Android
Framework,” no. February, pp. 21–24, 2016.

[10] L. I. Jian, W. Zheng, W. Tao, T. Jinghao, Y. Yuguang, and Z. Yihua,
“An Android Malware Detection System Based on Feature Fusion ∗,”
vol. 27, no. 6, 2018, doi: 10.1049/cje.2018.09.008.

[11] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” in Proceedings of the 19th Annual Network and Distributed
System Security Symposium, 2012, no. 2, pp. 5–8, doi: http://www.inte
rnetsociety.org/hey-you-get-my-market-detecting-malicious-apps-o
fficial-and-alternative-android-markets.

[12] T. Bläsing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An android application sandbox system for suspicious software detec-
tion,” Proc. 5th IEEE Int. Conf. Malicious Unwanted Software, Mal-
ware 2010, pp. 55–62, 2010, doi: 10.1109/MALWARE.2010.5665792.

[13] W. Enck et al., “TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones,” Commun. ACM,
vol. 57, no. 3, pp. 99–106, 2014, doi: 10.1145/2494522.

[14] S. M. Kywe, Y. Li, J. Hong, and C. Yao, “Dissecting developer policy-
violating apps: Characterization and detection,” in 11th International
Conference on Malicious and Unwanted Software, MALWARE 2016,
2017, pp. 10–19, doi: 10.1109/MALWARE.2016.7888725.

https://www.researchgate.net/profile/Zainab_Alkindi/publication/332401070_Android_Application_Permission_Model_Issues_and_Privacy_Violation/links/5cb1d9cb92851c8d22e809b7/Android-Application-Permission-Model-Issues-and-Privacy-Violation.pdf
https://www.researchgate.net/profile/Zainab_Alkindi/publication/332401070_Android_Application_Permission_Model_Issues_and_Privacy_Violation/links/5cb1d9cb92851c8d22e809b7/Android-Application-Permission-Model-Issues-and-Privacy-Violation.pdf
https://www.researchgate.net/profile/Zainab_Alkindi/publication/332401070_Android_Application_Permission_Model_Issues_and_Privacy_Violation/links/5cb1d9cb92851c8d22e809b7/Android-Application-Permission-Model-Issues-and-Privacy-Violation.pdf
https://www.researchgate.net/profile/Zainab_Alkindi/publication/332401070_Android_Application_Permission_Model_Issues_and_Privacy_Violation/links/5cb1d9cb92851c8d22e809b7/Android-Application-Permission-Model-Issues-and-Privacy-Violation.pdf
https://www.researchgate.net/profile/Zainab_Alkindi/publication/332401070_Android_Application_Permission_Model_Issues_and_Privacy_Violation/links/5cb1d9cb92851c8d22e809b7/Android-Application-Permission-Model-Issues-and-Privacy-Violation.pdf
http://www.internetsociety.org/hey-you-get-my-market-detecting-malicious-apps-official-and-alternative-android-markets
http://www.internetsociety.org/hey-you-get-my-market-detecting-malicious-apps-official-and-alternative-android-markets
http://www.internetsociety.org/hey-you-get-my-market-detecting-malicious-apps-official-and-alternative-android-markets

294 Z. R. Alkindi et al.

[15] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short Text, Large
Effect: Measuring the Impact of User Reviews on Android App Secu-
rity & Privacy,” 2019 IEEE Symp. Secur. Priv., pp. 555–569, doi:
10.1109/SP.2019.00012.

[16] D. S. Yadav and P. K. Doke, “Mobile Cloud Computing Issues and
Solution Framework,” Int. Res. J. Eng. Technol., vol. 3, no. 11,
pp. 1115–1118, 2016.

[17] Z. Xu and S. Zhu, “SemaDroid: A privacy-aware sensor management
framework for smartphones,” in CODASPY 2015 - Proceedings of the
5th ACM Conference on Data and Application Security and Privacy,
2015, pp. 61–72, doi: 10.1145/2699026.2699114.

[18] G. Shrivastava, P. Kumar, D. Gupta, and J. J. P. C. Rodrigues, “Privacy
issues of android application permissions: A literature review,” Trans.
Emerg. Telecommun. Technol., no. September, pp. 1–17, 2019, doi:
10.1002/ett.3773.

[19] M. Hussain et al., “Conceptual framework for the security of
mobile health applications on Android platform,” Telemat. Informatics,
vol. 35, no. 5, pp. 1335–1354, 2018, doi: 10.1016/j.tele.2018.03.005.

[20] N. Asaddok and M. Ghazali, “Exploring the usability, security and pri-
vacy taxonomy for mobile health applications,” in International Con-
ference on Research and Innovation in Information Systems, ICRIIS,
2017, pp. 1–6, doi: 10.1109/ICRIIS.2017.8002472.

[21] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: A
User-Oriented Behavior-Based Malware Variants Detection System for
Android,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 5, pp. 1103–
1112, 2017, doi: 10.1109/TIFS.2016.2646641.

[22] Z. Epstein, “WannaCry_ Everything you need to know about the global
ransomware attack – BGR,” http://bgr.com/tag/wannacry/, 2017.

[23] J. Patterson, “‘Wanna Cry’ virus infecting computers around the world,
Tampa Bay area bracing for impact _ WFLA,” 2017. http://wfla.com/2
017/05/15/wanna-cry-virus-infecting-computers-around-the-world-t
ampa-bay-area-bracing-for-impact/.

[24] S. Bhandari, W. Ben, V. Jain, and V. Laxmi, “Android inter-app com-
munication threats and detection techniques,” Comput. Secur., vol. 70,
pp. 392–421, 2017, doi: 10.1016/j.cose.2017.07.002.

[25] D. Barrera, P. C. Van Oorschot, and A. Somayaji, “A Methodology
for Empirical Analysis of Permission-Based Security Models and
its Application to Android,” in In Proceedings of the 17th ACM

http://bgr.com/tag/wannacry/
http://wfla.com/2017/05/15/wanna-cry-virus-infecting-computers-around-the-world-tampa-bay-area-bracing-for-impact/
http://wfla.com/2017/05/15/wanna-cry-virus-infecting-computers-around-the-world-tampa-bay-area-bracing-for-impact/
http://wfla.com/2017/05/15/wanna-cry-virus-infecting-computers-around-the-world-tampa-bay-area-bracing-for-impact/

User Privacy and Data Flow Control for Android Apps 295

conference on Computer and communications security, 2010, no. 1,
pp. 73–84, doi: 10.1145/1866307.1866317.

[26] Y. Xu, G. Wang, J. Ren, and Y. Zhang, “An adaptive and con-
figurable protection framework against android privilege escalation
threats,” Futur. Gener. Comput. Syst., vol. 92, pp. 210–224, 2019, doi:
10.1016/j.future.2018.09.042.

[27] “App permissions best practices |Android Developers,” Google Devel-
oper, 2020. https://developer.android.com/training/permissions/usage
-notes (accessed Aug. 25, 2020).

[28] G. Shrivastava and P. Kumar, “SensDroid: Analysis for Malicious
Activity Risk of Android Application,” Multimed. Tools Appl., vol. 78,
no. 24, pp. 35713–35731, 2019, doi: 10.1007/s11042-019-07899-1.

[29] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” 2011.

[30] J. Song, C. Han, K. Wang, J. Zhao, and R. Ranjan, “An integrated
static detection and analysis framework for android,” Pervasive Mob.
Comput., vol. 32, pp. 15–25, 2016, doi: 10.1016/j.pmcj.2016.03.003.

[31] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission Re-Delegation: Attacks and Defenses,” 2011.

[32] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A Whitebox Approach for Automated Security Testing
of Android Applications on the Cloud,” in Proceedings of the 7th
International Workshop on Automation of Software Test, 2012, pp. 1–7.

[33] H. M. A. Maqsood, K. N. Qureshi, F. Bashir, and N. U. Islam,
“Privacy Leakage through Exploitation of Vulnerable Inter-App
Communication on Android,” 2019 13th Int. Conf. Open Source
Syst. Technol. ICOSST 2019 – Proc., pp. 31–36, 2019, doi:
10.1109/ICOSST48232.2019.9043935.

[34] A. H. Lashkari, A. F. Akadir, H. Gonzalez, K. F. Mbah, and A. A.
Ghorbani, “Towards a network-based framework for android mal-
ware detection and characterization,” Proc. – 2017 15th Annu. Conf.
Privacy, Secur. Trust. PST 2017, no. Cic, pp. 233–242, 2018, doi:
10.1109/PST.2017.00035.

[35] B. Kitchenham, “Procedures for Performing Systematic Reviews,”
2004. doi: 1353–7776.

[36] Y. L. Phu H.Nguyen, Max Kramer, Jacques Klein, “An extensive sys-
tematic review on the model-driven development of secure systems,”
Inf. Softw. Technol., vol. 68, pp. 62–81, 2015.

https://developer.android.com/training/permissions/usage-notes
https://developer.android.com/training/permissions/usage-notes

296 Z. R. Alkindi et al.

[37] V. S. Zlatko Stapiæ, Eva García López, Antonio García Cabot, Luis de
Marcos Ortega, “Performing systematic literature review in software
engineering,” 2012.

[38] L. Li et al., “Static analysis of android apps: A systematic literature
review,” vol. 88, pp. 67–95, 2017, doi: 10.1016/j.infsof.2017.04.001.

[39] Statista, “Number of available applications in the Google Play Store
from December 2009 to March 2017,” 2017. https://www.statista.com
/statistics/266210/number-of-available-applications-in-the-google-pl
ay-store/ (accessed Dec. 22, 2017).

[40] Polynomial, “Difference between information flow control, data flow
integrity, and tainting – Information Security Stack Exchange,” 2016.
https://security.stackexchange.com/questions/125033/difference-be
tween-information-flow-control-data-flow-integrity-and-tainting
(accessed Aug. 31, 2020).

[41] X. Rong-na, L. Hui, S. Guo-zhen, G. Yun-chuan, N. Ben, and S.
Mang, “Provenance-based data flow control mechanism for Internet of
things,” Trans. Emerg. Telecommun. Technol., no. January, pp. 1–23,
2020, doi: 10.1002/ett.3934.

[42] D. Hedin and A. Sabelfeld, “A Perspective on Information-Flow
Control,” 2011.

[43] J. Bacon, D. Eyers, T. F. J. Pasquier, J. Singh, I. Papagiannis, and P.
Pietzuch, “Information Flow Control for Secure Cloud Computing,”
EEE Trans. Netw. Serv. Manag., vol. 11, no. 1, pp. 76–89, 2014.

[44] M. Sarrab, “Runtime Monitoring Using Policy Based Approach to
Control Information Flow for Mobile Apps,” Int. J. Secur. Networks,
vol. 8, no. 4, pp. 212–230, 2013.

[45] S. M. Moura, “Floodgate: An Information Flow Control Platform for
Distributed Mobile Applications Telecommunications and Informatics
Engineering,” 2015.

[46] C. Bae and S. Shin, “A collaborative approach on host and network
level android malware detection,” Secur. Commun. Networks, vol. 9,
no. 18, pp. 5639–5650, 2016, doi: 10.1002/sec.1723.

[47] A. Tiwari, S. GroSS, and C. Hammer, “IIFA: Modular Inter-app Intent
Information Flow Analysis of Android Applications,” Lect. Notes
Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 305 LNICST,
pp. 335–349, 2019, doi: 10.1007/978-3-030-37231-6_19.

[48] A. Bedford, “Enforcing Information-Flow Policies by Combining
Static and Dynamic Analyses Enforcing Information-Flow Policies
by,” LAVAL, Canada, 2019.

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://security.stackexchange.com/questions/125033/difference-between-information-flow-control-data-flow-integrity-and-tainting
https://security.stackexchange.com/questions/125033/difference-between-information-flow-control-data-flow-integrity-and-tainting

User Privacy and Data Flow Control for Android Apps 297

[49] C. Hammer and S. Bugiel, “Secure Multi-Execution in Android,”
in In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, 2019, pp. 1934–1943.

[50] M. Backes, S. Bugiel, E. Derr, S. Gerling, and C. Hammer, “R-Droid:
Leveraging Android App Analysis with Static Slice Optimization
Invited Paper,” pp. 129–140, 2016.

[51] R. Liu, J. Cao, K. Zhang, W. Gao, J. Liang, and L. Yang, “When
Privacy Meets Usability: Unobtrusive Privacy Permission Recommen-
dation System for Mobile Apps Based on Crowdsourcing,” IEEE
Trans. Serv. Comput., vol. 11, no. 5, pp. 864–878, 2018, doi:
10.1109/TSC.2016.2605089.

[52] D. Geneiatakis, I. Nai, I. Kounelis, and P. Stirparo, “A Permission
Verification Approach for Android Mobile Applications,” Comput.
Secur., vol. 49, pp. 192–205, 2015.

[53] J. Tang, R. Li, H. Han, H. Zhang, and X. Gu, “Detecting per-
mission over-claim of android applications with static and semantic
analysis approach,” in Proceedings – 16th IEEE International Con-
ference on Trust, Security, and Privacy in Computing and Commu-
nications, 11th IEEE International Conference on Big Data Science
and Engineering and 14th IEEE International Conference on Embed-
ded Software and Systems, 2017, pp. 706–713, doi: 10.1109/Trust-
com/BigDataSE/ICESS.2017.303.

[54] A. Amin, A. Eldessouki, M. T. Magdy, N. Abdeen, H. Hindy, and
I. Hegazy, “AndroShield: Automated Android Applications Vulnera-
bility Detection, a Hybrid Static and Dynamic Analysis Approach,”
Information, vol. 10, no. 10, p. 326, 2019, doi: 10.3390/info10100326.

[55] L. Li, A. Bartel, F. Bissyand, J. Klein, and Y. Le Traon, “ApkCom-
biner: Combining Multiple Android Apps to Support Inter-App Anal-
ysis,” in IFIP International Information Security Conference, no. Icc,
pp. 513–527.

[56] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “ReCon:
Revealing and Controlling PII Leaks in Mobile Network Traffic,”
Proc. 14th Annu. Int. Conf. Mob. Syst. Appl. Serv. (MobiSys’16),
pp. 361–374, 2016, doi: 10.1145/2906388.2906392.

[57] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps.”

[58] S. Zimmeck et al., “Automated Analysis of Privacy Requirements for
Mobile Apps,” in 2016 AAAI Fall Symposium Series, 2016, vol. 3078,
no. 132, doi: 10.14722/ndss.2017.23034.

298 Z. R. Alkindi et al.

[59] B. P. S. Rocha, M. Conti, S. Etalle, and B. Crispo, “Hybrid Static-
Runtime Information Flow and Declassi fi cation Enforcement,” IEEE
Trans. Inf. forensics Secur., vol. 8, no. 8, pp. 1294–1305, 2013.

[60] J. Reardon, U. C. Berkeley, S. Egelman, and U. C. B. Icsi, “50
Ways to Leak Your Data: An Exploration of Apps ’ Circumvention
of the Android Permissions System,” in In 28th Security Symposium
(USENIX Security 19), 2019, pp. 603–620.

[61] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek,
“A temporal permission analysis and enforcement framework for
Android,” in Proceedings – International Conference on Software
Engineering, 2018, pp. 846–857, doi: 10.1145/3180155.3180172.

[62] A. Alzaidi, S. Alshehri, and S. M. Buhari, “DroidRista: a highly precise
static data flow analysis framework for Android applications,” pp. 523–
536, 2020.

[63] F. Liu, H. Cai, G. Wang, D. D. Yao, K. O. Elish, and B. G. Ryder,
“MR-Droid: A Scalable and Prioritized Analysis of Inter-App Com-
munication Risks,” 2017.

[64] B. Liu et al., “Follow My Recommendations: A Personalized Privacy
Assistant for Mobile App Permissions This paper is included in the
Proceedings of the Follow My Recommendations: A Personalized
Privacy Assistant for Mobile App Permissions,” no. Soups, 2016.

[65] P. Wijesekera, A. Baokar, L. Tsai, and J. Reardon, “The Feasibility of
Dynamically Granted Permissions: Aligning Mobile Privacy with User
Preferences,” in In 2017 IEEE Symposium on Security and Privacy
(SP), 2017, pp. 1077–1093.

[66] Y. Cao, Y. Fratantonio, A. Bianchi, and M. Egele, “EdgeMiner: Auto-
matically Detecting Implicit Control Flow Transitions through the
Android Framework,” no. February, pp. 8–11, 2015.

[67] L. Li et al., “IccTA: Detecting Inter-Component Privacy Leaks in
Android Apps.”

[68] A. B. Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden
and and P. M. Jacques Klein, Yves Le Traon, Damien Octeau, “Flow-
droid: Precise context, ow, eld, object-sensitive and lifecycle-aware
taint analysis for android apps.,” Program. Lang. Des. Implement.,
vol. 46, no. 6, pp. 259–269, 2014.

[69] F. Wei, S. Roy, and X. Ou, “Amandroid: A Precise and General Inter-
component Data Flow Analysis Framework for Security Vetting of
Android Apps Categories and Subject Descriptors,” in Proceedings of

User Privacy and Data Flow Control for Android Apps 299

the 2014 ACM SIGSAC Conference on Computer and Communications
Security, 2014, pp. 1329–1341.

[70] X. Wei, “ProfileDroid: Multi-layer Profiling of Android Applications
Categories and Subject Descriptors.”

[71] S. V. Sbirlea D, Burke MG, Guarnieri S, Pistoia M, “Automatic detec-
tion of inter-application permission leaks in android applications,” IBM
J Res Dev, vol. 57, no. 6, pp. 1–12, 2013.

[72] J. Kim, Y. Yoon, and K. Yi, “S CAN D AL: Automated Security
Certification of Android Applications.”

[73] D. Schreckling, D.- Passau, J. Posegga, D.- Passau, and D. Hausknecht,
“Constroid: Data-Centric Access Control for Android,” in In Proceed-
ings of the 27th ACM Symposium on Applied Computing (SAC), 2012,
pp. 1478–1485.

[74] “TrustDroid TM”: Preventing the use of SmartPhones for information
leaking in corporate networks through the use of static analysis taint
tracking Zhibo Zhao and Fernando C. Colon Osorio 2. Overview of
the Android environment,” no. March 1999, pp. 1–9, 2007.

[75] E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in In Proceedings of the
9th international conference on Mobile systems, applications, and
services, 2011, pp. 239–252, doi: 10.1145/1999995.2000018.

[76] P. Gilbert and L. P. Cox, “Vision: Automated Security Validation of
Mobile Apps at App Markets.”

[77] B. Rashidi, C. Fung, and T. Vu, “Android fine-grained permission con-
trol system with real-time expert recommendations,” Pervasive Mob.
Comput., vol. 32, pp. 62–77, 2016, doi: 10.1016/j.pmcj.2016.04.013.

[78] Z. Safavi, S., and Shukur, “CenterYou: A cloud-based Approach to
Simplify Android Privacy Management,” 2020.

[79] G. L. Scoccia, M. Autili, and P. Inverardi, “A self-configuring and
adaptive privacy-aware permission system for Android apps,” in Pro-
ceedings – 2020 IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems, ACSOS 2020, 2020, pp. 38–47,
doi: 10.1109/ACSOS49614.2020.00024.

[80] G. L. Scoccia, I. Malavolta, M. Autili, A. Di Salle, and P. Inverardi,
“Enhancing Trustability of Android Applications via User-Centric
Flexible Permissions,” IEEE Trans. Softw. Eng., vol. PP, no. X, pp. 1–1,
2019, doi: 10.1109/the.2019.2941936.

[81] M. Diamantaris, E. P. Papadopoulos, and J. Polakis, “REAPER: Real-
time App Analysis for Augmenting the Android Permission System,”

300 Z. R. Alkindi et al.

in In Proceedings of the Ninth ACM Conference on Data and Applica-
tion Security and Privacy, 2019, pp. 37–48.

[82] M. Y. Wong and D. Lie, “IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware,” in Proceedings of
the annual symposium on the network and distributed system security
(NDSS), 2016, no. February, pp. 21–24.

[83] R. Schuster and E. Tromer, “DroidDisintegrator: Intra-Application
Information Flow Control in Android Apps,” ASIA CCS ’16 Proc. 11th
ACM Asia Conf. Comput. Commun. Secur., pp. 401–412, 2016, doi:
10.1145/2897845.2897888.

[84] J. Gu, Y. Calvin, H. Xu, C. Zhang, and H. Ling, “Privacy con-
cerns for mobile app download: An elaboration likelihood model
perspective,” Decis. Support Syst., vol. 94, pp. 19–28, 2017, doi:
10.1016/j.dss.2016.10.002.

[85] G. Suarez-tangil, J. E. Tapiador, P. Peris-lopez, and A. Ribagorda,
“Evolution, Detection, and Analysis of Malware for Smart Devices,”
IEEE Commun. Surv. Tutorials, vol. 16, no. 2, pp. 961–987, 2013.

[86] P. Hornyack and S. Schechter, “These aren’t the droids you’re looking
for: retrofitting android to protect data from imperious applications,” in
Proceedings of CCS, 2011, pp. 639–651.

[87] Acpm, “Inspeckage: Android Package Inspector - dynamic analysis
with API hooks, start unexported activities and more,” acpm, 2017.
https://github.com/ac-pm/Inspeckage (accessed Sep. 17, 2020).

[88] K. Cotterell, I. Welch, and A. Chen, “An Android Security Policy
Enforcement Tool,” in INTL journal of electronics and telecommuni-
cations, 2015, vol. 61, no. 4, pp. 311–320, doi: 10.1515/delete-2015-
0040.

[89] Y. Zhang, M. Yang, Z. Yang, G. Gu, P. Ning, and B. Zang, “Permission
use analysis for vetting undesirable behaviors in android apps,” IEEE
Trans. Inf. Forensics Secur., vol. 9, no. 11, pp. 1828–1842, 2014, doi:
10.1109/TIFS.2014.2347206.

[90] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic secu-
rity analysis of smartphone applications,” in CODASPY 2013 – Pro-
ceedings of the 3rd ACM Conference on Data and Application Security
and Privacy, 2013, pp. 209–220, doi: 10.1145/2435349.2435379.

[91] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: analyzing sensitive data transmission in android for pri-
vacy leakage detection,” in Proceedings of the 2013 ACM SIGSAC

https://github.com/ac-pm/Inspeckage

User Privacy and Data Flow Control for Android Apps 301

conference on Computer & communications security - CCS ’13, 2013,
pp. 1043–1054, doi: 10.1145/2508859.2516676.

[92] H. Lee, D. Kim, M. Park, and S. Cho, “Protecting data on the
Android platform against privilege escalation attack,” Int. J. Comput.
Math., vol. 93, no. 2, pp. 401–414, 2016, doi: 10.1080/00207160.
2014.986113.

[93] M. Zhang, H. Yin, and A. App, “Transforming and Taming Privacy-
Breaching Android Applications,” no. February, pp. 7–8, 2012.

[94] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Con-
straints.”

[95] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing Smartphone Applications (on Android),” in International
Conference on Trust and trustworthy computing, 2011, pp. 93–107.

[96] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid:
Trading privacy for application functionality on smartphones,” in
Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications – HotMobile’11, 2011, no. February, p. 49, doi:
10.1145/2184489.2184500.

[97] A. Fuchs, A. Chaudhuri, and J. Foster, “CRePE:context-related policy
enforcement for android,” in Proceedings of the 13th international
conference on Information security, ser. ISC10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 331–345, doi: 10.1.1.164.6899.

[98] A. P. Fuchs, A. Chaudhuri, and J. Foster, “SCanDroid: Auto-
mated Security Certification of Android Applications,” Read, vol. 10,
no. November, p. 328, 2010, doi: 10.1.1.164.6899.

[99] Y. J. Park, D. Chung, K. Kim, and J. Kim, “An Enhanced Security
Policy Framework for Android Made Harta Dwijaksara,” 2011.

[100] X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, “Privacy Risk
Analysis and Mitigation of Analytics Libraries in the Android Ecosys-
tem,” IEEE Trans. Mob. Comput., vol. PP, no. c, p. 1, 2019, doi:
10.1109/TMC.2019.2903186.

[101] A. Security, “Mobile App Security and Privacy Analysis,” Ostorlab,
2017. Ostorlab,.co.

[102] Q. Qian, J. Cai, M. Xie, and R. Zhang, “Malicious behavior analysis for
android applications,” Int. J. Netw. Secur., vol. 18, no. 1, pp. 182–192,
2016.

302 Z. R. Alkindi et al.

[103] P. Singh, P. Tiwari, and S. Singh, “Analysis of Malicious Behav-
ior of Android Apps,” Procedia - Procedia Comput. Sci., vol. 79,
pp. 215–220, 2016, doi: 10.1016/j.procs.2016.03.028.

[104] T. Oluwafemi and O. Riva, “Per-App Profiles with AppFork: The
Security of Two Phones with the Convenience of One,” Microsoft,
2014.

[105] T. Oluwafemi, “Using Component Isolation to Increase Trust in Mobile
Devices,” 2015.

[106] S. Lortz, D. Schneider, and A. Weber, “Cassandra: Towards a Cer-
tifying App Store for Android,” in In Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices,
2014, pp. 93–104.

[107] S. Holla and M. M. Katti, “Android Based Mobile Application Devel-
opment and its Security,” Int. J. Comput. Trends Technol., vol. 3, no. 3,
pp. 486–490, 2012.

[108] T. Mohini, S. A. Kumar, and G. Nitesh, “Review on Android and
Smartphone Security,” Int. J. Eng. Sci., vol. 1, no. 6, pp. 12–19, 2013.

[109] C. Mulliner, G. Vigna, D. Dagon, and W. Lee, “Using Labeling to
Prevent Cross-Service Attacks Against Smart Phones,” pp. 91–108,
2006.

Biographies

Zainab Rashid Alkindi is a Ph.D. student at Sultan Qaboos University.
Zainab has accomplished many achievements throughout her academic life.
She has conducted many types of research in IoT, Network, and Security
& user privacy, and she has been participating in different conferences.
She worked as a research assistant in the Communication and Information
Research Center (CIRC) for two years, which shaped her research skills.

User Privacy and Data Flow Control for Android Apps 303

She obtained her MSc in the Networking area in 2017 from Sultan Qaboos
University.

Mohamed Sarrab is currently working as a researcher and deputy director of
the Communication and Information Research Center (CIRC), Sultan Qaboos
University (Muscat, Sultanate of Oman). He obtained his Ph.D. in Computer
Science from De Montfort University (UK). His research interests are in the
areas of, Software Engineering, Mobile learning (M-learning), and Mobile
Cloud Computing. He is also interested in mobile application security, in
particular, Access Control and Policy-Based System Management, Runtime
Verification and Information Flow Control, and viz. Software Systems, where
security requirements are managed using loosely coupled components that
enforce high-level security requirements.. He is a senior member of the IEEE,
the IEEE Computer Society, and IEEE Communications Society.

Nasser Alzeidi received his Ph.D. degree in Computer Science from the
University of Glasgow (UK) in 2007. He is currently an Associate Professor

304 Z. R. Alkindi et al.

of computer science and the director of the Center for Information Systems at
Sultan Qaboos University, Oman. His research interests include performance
evaluation of communication systems, wireless networks, interconnection
networks, System on Chip architectures, and parallel and distributed com-
puting. He is a member of the IEEE and the Chair of the IEEE Computer
Society Chapter in Oman.

	Introduction
	Android Software Stack and Security Mechanism
	Methodology
	Research Questions
	Search Keywords Specification
	Search Process
	Elimination Criteria
	Approach Level Classification

	Android Platform and Applications Availability
	Android Mobile Application Date and Information Flow Control
	Android Mobile Application Data and Information Flow Analysis
	Related Work
	Android Existing Privacy Approaches Using Static Analysis
	Android Existing Privacy Approaches Using Dynamic Analysis
	Android Existing Privacy Approaches Using Hybrid Analysis

	Discussion
	Conclusion

