
Critical Traffic Analysis on the Tor Network

Florian Platzer1,∗, Marcel Schäfer2 and Martin Steinebach1

1Fraunhofer SIT, Germany
2Fraunhofer USA CMA, USA
E-mail: florian.platzer@sit.fraunhofer.de; mschaefer@fraunhofer.org;
martin.steinebach@sit.fraunhofer.de
∗Corresponding Author

Received 01 December 2020; Accepted 02 December 2020;
Publication 10 March 2021

Abstract

Tor is a widely-used anonymity network with more than two million daily
users. A prominent feature of Tor is the hidden service architecture. Hidden
services are a popular method for communicating anonymously or sharing
web contents anonymously. For security reasons, in Tor all data packets to be
send over the network are structured completely identical. They are encrypted
using the TLS protocol and its size is fixed to exactly 512 bytes. In this work
we describe a method to deanonymize any hidden service on Tor based on
traffic analysis. This method allows an attacker with modest resources to
deanonymize any hidden services in less than 12.5 days. This poses a threat
to anonymity online.

Keywords: Tor, traffic analysis, hidden services, deanonymization.

1 Introduction

Every communication in the Internet leaves traces. To minimize these traces,
there exist networks that intend to provide anonymity and prevent censorship

Journal of Cyber Security and Mobility, Vol. 10_1, 133–160.
doi: 10.13052/jcsm2245-1439.1015
© 2021 River Publishers



134 F. Platzer et al.

for its users, such as the Tor network [22]. Tor is the most popular and well-
known low-latency anonymity network insisting to provide anonymity and
prevent censorship not only to its users but also to services being offered. It
has more than two million daily users, over six thousand volunteer-operated
relay servers, called nodes, around the world and it provides about 170,000
services, so called hidden services, at the time of writing [21]. Anonymity is
achieved by routing all traffic through so called circuits of a certain number
of nodes connected via so called onion routing technique [10]. All packets
are encrypted in such a way that each node only knows from which node
the current packets were sent and to which node the packets have to be
sent next. They don’t know what the packets actually contain or what they
are about. In addition, all Tor packets look exactly the same because they
have a uniform size. Ideally, this means, both sender and receiver remain
anonymous and don’t have to fear prosecution for what they do. Not having
to fear any consequences notoriously leads to the offering of many sensitive
services. Examples are sharing of illegal content such as child pornography
or illegal trading of drugs on black markets [2]. But also human rights
and whistleblowing organizations such as Wikileaks and Goldballeaks make
use of the Tor network. Its tools for anonymous messaging like TorChat
and Bitmessage [13] are especially important to journalists in unstable and
repressive regimes around the globe. Consequently, there is a large number
of users who have trust in the technical implementation of Tor to protect their
anonymity. Vulnerabilities in the Tor network will have a major influence to
endanger users’ anonymity and – in some cases – lives.

The release of Tor version 0.4.1.5 in august 2019 was a major improve-
ment in the security of Tor. This version incorporated padding cells within
introduction circuits [20]. Padding cells are a kind of traffic noise within a
circuit. This was done to prevent deanonymization via traffic analysis. In this
work we demonstrate the importance of this implementation for operators
of Tor hidden services: We use the prior Tor version 0.3.3.7. for which
no padding cells were implemented to demonstrate that a simple traffic
analysis can have a big impact on the anonymity of networks that provide
identical traffic packets without padding cells. While Tor serves us as use
case example, this is not limited to Tor alone. The following analysis holds
true for all networks with identical traffic packets but not providing padding
cells.

In this work we focus on traffic analysis of a data channel, namely
introduction point circuit in order to design attacks against the anonymity
of Tor hidden services. This dose not allow an attacker to deanonymize a



Critical Traffic Analysis on the Tor Network 135

specific hidden service, but to deanonymize any hidden service. However, this
is a threat to the entire ecosystem of hidden services on Tor. We will propose
three independent methods each dealing with a different finding regarding
the Tor network. Combining these three enables us to deanonymize hidden
services:

• We will present a method to detect whether the Tor node under our
control is part of an introduction point circuit.

• We will present a method to find out in which position of a circuit our
Tor node is located.

• We will present a method that allows the recognition and association of
traffic at nodes under our control by means of sent patterns.

Combining these three methods allows us to associate the corresponding
onion address. As a result, we get the hidden service to an observed IP address
of a hidden server.

This paper is structured as follows: In Section 2, we review previous
work. In Section 3, we introduce the basics of circuits and hidden services in
Tor. In Section 4, we present our approach to deanonymize hidden services.
We evaluate our results in Section 5. In Section 6, we discuss limitations of
our attack and its nevertheless significant relevance. The paper is concluded
in Section 7.

2 Related Work

This section provides an overview over the past research about deanonymiz-
ing attacks against Tor hidden services. Several studies have demonstrated
that hidden services could be deanonymized by locating Tor hidden servers.
More precisely, that it is possible to get a hidden server’s network address.
Most of the following studies focused on one specific type of data chan-
nel, namely the rendezvous point circuit, in order to explore methods to
deanonymize Tor hidden services. Another work [13] starts an attack using
the data channel named introduction point circuit but considers only circuits
of length 3.

Lasse Øverlier and Paul Syverson [16] described the first attacks that
locate hidden servers in Tor. In order to carry out the attack, the attacker
needs to control the first node in the server’s rendezvous point circuit. The
attacker establishes many rendezvous point circuits to the hidden service and
sends a specific traffic pattern along the circuit. For identification of their
own pattern, they used a timing analysis. Besides the counting of cells, they



136 F. Platzer et al.

used information of the time the cells are sent or received and the direction of
each individual cell in order to determine a circuit match. Finally, they used
an attack as described in [27] to calculate statistics of the IP addresses that
contacted the server. Øverlier and Syverson used a previous version of Tor in
which no guard nodes were used. As a consequence to the attack published in
that paper, entry guard nodes were added to the Tor design. The basic idea of
guard nodes was presented in [26]. The entry guard nodes prevent this kind
of attacks, especially predecessor attacks.

Zehn Ling et al. [14] described a method to discover hidden services
based on the protocol level. For this it is necessary to control several entry
nodes, a Tor client, a rendezvous point and a central server. The central
server is used to record information of related cells forwarded from all of
their controlled entities. Whenever their client establishes a circuit to an intro-
duction point, the client sends a copy of the introduction cell to the central
server. Also the rendezvous point controlled by the attacker and the server’s
entry node send cells to the central server. After the connection is established
between the client and the hidden server, the client manipulates a cell and
sends it via the rendezvous point to the server. The server cannot decrypt
the cell correctly and immediately responds with a destroy cell to truncate
the established circuit. All cells are registered at the central server and can
be evaluated there. From that evaluation the attacker knows if all needed
instances for this attack are in the same rendezvous point circuit to locate
the hidden server. Ling et al. showed that this approach gives a probability of
100% that the hidden server is detected if the hidden server uses their entry
nodes. They reached a probability of 24.42% to locate a hidden service in
general. However, at the time of publishing their paper, it required at least 30
entry nodes within the Tor network, each with a bandwidth of 10 MB/s.

Alex Biryukov et al. [3] demonstrated an attack to deanonymize a hidden
service using the rendezvous point circuit: As a client, an attacker requests
a hidden service with a unique cookie. This request is forwarded from the
server’s introduction point and the hidden server establishes a circuit to the
client’s chosen rendezvous point. If the rendezvous point receives this cookie,
it sends 50 padding cells back along the rendezvous point circuit. If the guard
node of the server’s rendezvous point circuit is controlled by the attacker, he
can recognize this traffic signature (number of forwarded cells to establish
the circuit and the 50 padding cells). Using this data the attacker is able to
determine whether or not the node is selected as the server’s guard node.
That means, the attacker’s node is directly connected to the hidden server and
knows its IP address.



Critical Traffic Analysis on the Tor Network 137

Rob Jansen et al. [11] have shown that it is possible to exploit sensitive
information over a middle node instead of monitoring traffic at the edge of the
network such as over the guard or exit node. They used a website fingerprint
attack including a training phase, in which an attacker records as much
sample traffic as possible that is similar to the transmission characteristics for
a number of websites. They determined whether their node is a middle node
and analyzed the traffic to detect onion service usage. This means that they
were able to identify hidden websites services based on their traffic pattern.

Albert Kwon et al. [13] presented the first practical passive attack against
hidden services. They utilized website fingerprinting as described in [5], [25],
[24] and [4]. Traffic patterns of hidden services in Tor can have fingerprints.
With execution of their website fingerprint attack, Kwon et al. were able to
identify hidden service activities. For example they were able to observe
the creation of introduction point circuits and identify the corresponding
rendezvous point circuit that is used to access a hidden service. With this
method they observed the number of incoming and outgoing cells as well
as the duration of activity of a circuit. They were able to distinguish five
different kinds of circuits: Client-IP (a circuit established from the client to
an introduction point), HS-IP (a circuit established from an hidden server to
an introduction point), Client-RP (a circuit established from the client to a
rendezvous point), HS-RP (a circuit established from the hidden server to the
rendezvous point) and general circuits. If an adversary controls a guard node,
he can observe all traffic to and from an observed client or server and analyze
the presence of hidden service activities.

All these methods show possibilities to deanonymize hidden services
over rendezvous circuits making them known for being the vulnerable part
of onion routing. These methods don’t show that other circuits, such as the
introduction point circuits, are prone to deanonymization as well.

3 Background

In this section we briefly describe the technical basics of Tor communication
and the hidden service architecture. We mention key points of the Tor proto-
col which allow us to recognize in which position of a circuit our Tor node is
located.

Tor is a low-latency anonymity network that aims to protect a user’s
privacy and anonymity. Tor is an overlay network that uses the Internet
infrastructure. Clients can surf anonymously by proxying all of their traf-
fic through the Tor network. It contains several thousands relay nodes



138 F. Platzer et al.

world-wide connected via so called onion routing technique [10]. A public
key infrastructure is used to encrypt traffic and support anonymous com-
munication with each server. All traffic is routed through so called circuits
that are frequently re-established. Whenever a client wants to send data, the
client will split it in fix-sized packages and will encrypt every package in
multiple layers. Each node of the circuit can decrypt one of these layers of
encryption. As the package is routed through the circuit, at each relay node
in this circuit, one of these layers will be decrypted. The last node within
this circuit decrypts the last layer and receives the original message. The Tor
design of circuits is such that each node in a circuit only knows its immediate
predecessor and successor. It doesn’t know any other nodes along the path.
Thus, no relay node knows the entire network path from source IP to the
destination IP address.

In Tor there are different types of circuits. In general a circuit is a path
through several relays that connects a client to its destination and transfers
user data traffic between them. All data packets, called cells, that are sent
on this path are encrypted using the TLS protocol and have a fixed size of
exactly 512 bytes. Clients and relays exchange cells in order to create circuits
and attach streams to them. Every relay decrypts a layer of the encryption
and forwards it to the next relay in this circuit. Tor uses circuits for different
purposes, e.g. anonymous communication, connections to introduction points
and connections to rendezvous points. Each circuit will be marked with a
purpose tag and will only be used for this specified purpose.

We distinguish between the following types of circuits:

• General Circuits are used for anonymous communication and consist
of at least three relays by default. A general circuit has the purpose
tag GENERAL. In addition to immediately needed general circuits, a
relay builds more general circuits as backup, in order to have further
circuits ready when needed. They can also be used for other purposes,
e.g. as introduction point circuits or rendezvous point circuits. In order
to change the purpose of a circuit, a relay has to extend a further node to
one of the existing general circuits.

• Introduction Point Circuit. Every client is able to provide a hidden
service. In this case the client acts as hidden server. It will establish
three introduction point circuits by default. These three introduction
points are published openly in order to provide the service to users: if
a client wants to access this hidden service, it will contact one of these
introduction points. The contacted introduction point will forward the



Critical Traffic Analysis on the Tor Network 139

received request to the hidden server. That way the identity of the hidden
server remains hidden to the client. The introduction point circuits have
the purpose tag HS_SERVICE_INTRO. If a client contacts one of the
introduction points, it establishes a circuit to them and marks it with the
purpose tag HS_CLIENT_INTRO.

• Rendezvous Point Circuit. If a client contacts an introduction point
for the purpose of using a hidden service, it creates a further circuit
to a rendezvous point of his choice. The client sends information of
the chosen rendezvous point to the server’s introduction point. This
introduction point forwards the received information to the hidden
server. With this information the hidden server likewise creates a cir-
cuit to this rendezvous point. After establishing the rendezvous point
circuits, the whole traffic between server and client will flow through
this rendezvous point. A rendezvous point circuit has the purpose tag
HS_CLIENT_REND if the circuits are established by the client to
the rendezvous point. If a circuit is established by the server to the
rendezvous point, the circuit has the purpose tag HS_SERVICE_REND.

Hidden Services, also known as Onion Services, are services provided
by so-called hidden servers. These servers will only accept incoming con-
nections for hidden services via the hidden service protocol. Connection
initiators will not be able to identify the IP address of the hidden server.

Hidden services are Internet services like web pages, ssh services, email
accounts, login services etc. offered in the Tor network [16] [3]. In general, a
hidden service could be any service that uses TCP.

The design of hidden services is based on Goldberg’s rendezvous design
[9]. It connects two circuits created by client and server on a rendezvous
point.

If someone wants to offer a hidden service, he has to create a document
called descriptor. A descriptor contains information such as the offered
service, the public key of its server and the information which introduction
points are used for that service [14]. This descriptor is published on a
directory server. A directory server is a Tor relay and contains information
about the Tor network nodes. Clients can ask the directory server for the
descriptor to obtain the addresses of the hidden server’s introduction points.

Figure 1 shows the communication channel of hidden services. We will
describe the process below with an example:

If Bob wants to offer a hidden service, he has to establish at least one
introduction point circuit, as shown in step (1) of figure 1. Bob asks (by



140 F. Platzer et al.

Figure 1 Hidden service architecture.

default three) chosen relays to act as his introduction points. If they accept,
he will wait for requests. If one of these relays rejects Bob’s request, he asks
another one. Afterwards, he creates a descriptor and publishes it to a directory
server (step 2).

If Alice wants to use Bob’s service, she asks the directory server for the
introduction points (step 3). She establishes a rendezvous point circuit to a
relay of her choice (step 4). This is Alice’s rendezvous point. Afterwards, she
sends a request including rendezvous point information, a randomly chosen
’rendezvous cookie’ to recognize Bob and the start of a Diffie-Hellman
handshake to one of the introduction points (step 5). The introduction point
will forward the request to Bob (step 6). Either Bob creates a circuit to the
rendezvous point or he rejects Alice’s request. If he creates a circuit to Alice’s
rendezvous point, he will send the rendezvous cookie, the second half of
Diffie-Hellman handshake and the session key they now share (step 7). The
rendezvous point forwards Bob’s answer to Alice (step 8). Alice and Bob
can communicate without knowing anything about each other through the
rendezvous point (step 9). Alice does not know the IP address of Bob’s server,
and Bob does not know who has requested his service. Both Alice and Bob
only know the IP address of the rendezvous point [16]. But the rendezvous
point can recognize neither Alice nor Bob nor the data they transmit [22] or
the hidden service itself [16].

Creating a circuit requires multiple cells. A cell consists of a header
and a payload. The header includes a command to describe what to do
with the cell’s payload. Note, that two formats exist in Tor. The older



Critical Traffic Analysis on the Tor Network 141

“create/created” format and the newer “create2/created2” format. The same
applies to “extend/extended” commands.1 Cells are named after their com-
mands. For example, a cell with a relay command is called relay cell. A cell
with a create2 command is called create cell.

Certain cell commands are utilized to create a general circuit:

• create2: A request to create a circuit to the sender of this cell.
• created2: ACK for the create2 cell.
• extend2: An instruction to extend the current circuit by one further node.

For that, the receiver of this cell sends a create2 cell to the next relay.
The next relay is determined within the extend2 cell.

• extended2: ACK for the extend2 cell.
• relay: In case a cell includes a relay command, this cell is not interpreted

by the node which received this cell. This node relays the cell to the next
node within the circuit.

• relay_early: In order to extend a circuit by one more node the extend2
cell must be received within a relay_early cell. Relays reject any extend2
cells not received in a relay_early cell. Furthermore, if a node receives
more than eight relay_early cells on a given circuit, it closes the circuit
immediately. This way, the length of any circuit is limited to eight nodes.
However, clients should send the first eight relay cells as relay_early
cells too, in order to hide the circuit length.

In Figure 2, step 1 through step 3 show the establishment of a general
circuit with three relays, called 3-hop circuit.

Additional commands are utilized to create an introduction point circuit:

• establish_intro: A request for being an introduction point.
• intro_established: An acknowledgment for the establish_intro cell.

Figure 2 shows all steps needed to create a 4-hop introduction point circuit
(step 1 through step 5). This is the default number of nodes in introduction
point circuits. Only if a node creates introduction point circuits for the first
time, it will establish a 3-hop introduction point circuit. In all other cases an
introduction point circuit consists of four relays.

4 Traffic Analysis to Deanonymize Hidden Services

In this section, we present our approach for deanonymizing hidden services
trough traffic analysis. We figure out if a node under our control is a guard

1See https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt. Accessed April 03, 2020.

https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt


142 F. Platzer et al.

Figure 2 Creation of a Circuit. For a 3-Hop Circuit Step 1 through Step 3 is needed. For a
4-Hop IP-Circuit, Step 1 through Step 5 is needed.

Figure 3 Illustration of sending traffic pattern.

node within an introduction point circuit of a hidden server. As mentioned
in Section 2, a guard node is directly connected to the hidden server and
thus knows its IP address. Therefore we show how we can determine the
position of our relay node within the introduction point circuit (Section 4.1).
Afterwards (Section 4.2), we demonstrate a method to send cells along a
circuit in a time-based pattern. This we can send from any client and our
relay node is able to track this sending pattern. Lastly, we present our method
to deanonymize hidden services (Section 4.3). Figure 3 shows an illustration
of our method for sending traffic patterns in order to determining a hidden
service for a given IP address. Our client sends a traffic pattern by requesting
several times a hidden service provided by a hidden server. For that, the
requests are sent to the introduction point. The introduction point forwards



Critical Traffic Analysis on the Tor Network 143

all cells through the server’s introduction point circuit and thus through the
guard node under our control. Our guard node tracks the sent pattern.

4.1 Ascertain the Position Within an Introduction Point Circuit

In order to recognize the position within an introduction point circuit, we first
identify the position within a circuit. Afterwards, we also identify whether the
controlled node is part of an introduction point circuit.

4.1.1 Circuit position
We discovered characteristics in the traffic that are consistent for the different
types of circuits and the different positions within a circuit. As every cell
is encrypted and has a fixed size, observing the traffic at a relay won’t tell
you about its content, but it gives you information about whether a cell has
been received or sent and from or in which direction it was relayed. Hence,
we observed all cells flowing through our Tor node and recorded its time-
stamp, direction of travel and whether the cell has been sent or received. This
information suffices to obtain characteristics that identify the position of the
observed relay within a circuit. This means, the order of a series of operations,
i.e. sent, received, direction to or from the originator relay, can be used as a
clear indicator for the position in a circuit.

A number of 18 cells is required to establish a 4-hop introduction point
circuit, hence for a distinction it is sufficient to examine the first 18 cells of
each circuit.

Table 1 Characters of circuit position-fingerprints

Description Character

Cell sent −
Cell received +

Cell relayed to the origin node <

Cell relayed away from the origin node >

We encoded the operations with characters according to −, +, < and
> for sent, received, relayed to origin and relayed from origin respectively.
We encoded each cell as a two character sequence. As shown in Figure 2,
the first create cell was sent from the origin R0. Thus, the create cell was
relayed from the origin node to the first relay R1, which received this create
cell. Consequently, obtained at the first relay R1, the character sequence
+> is associated to this first create cell. The sequence for the response cell



144 F. Platzer et al.

(created2) to this first cell is -<. Therefore, the sequence of both cells is
+>-<. For simplification, in the following these sequences are denoted as
position-fingerprints or simply fingerprints. Note though that these are not
uniquely identifying.

Step 1 through step 3 in Figure 2 show a 3-hop general circuit. For a 3-hop
introduction point circuit, two more cells are needed: The establish_intro cell
and the intro_established cell. The overall position-fingerprint of the 3-hop
introduction point circuit and obtained at the first relay (R1) is:

+>−<+>−>+<−<+>−>+<−<+>−>+<−< (1)

The position-fingerprint of the observed circuit from the second and the
third relay is shown in Table 2.

With the same process the position-fingerprint of a 4-hop circuit can be
calculated. For example, the overall fingerprint of the first relay (R1) in the
4-hop IP-circuit displayed in Figure 2 (step 1 through step 5) is:

+>−<+>−>+<−<+>−>+<−<+>−>+<−<
+>−>+<−<

(4)

The position-fingerprints of the observed 4-hop introduction point circuit
from all relays are shown in Table 2.

We can be sure that our node is the first node in a 4-hop circuit if a
fingerprint shown in (4) is registered.

If the obtained fingerprints were alike those in (3) or (7), we know that
our node is the last node in a given circuit.

The fingerprints (2) and (6) show that our node is a middle node of the
observed circuit.

Table 2 Position-fingerprint of Introduction Point Circuits for the different relays
Circuit
Type

Relay
No.

Position-fingerprint

R1 +>−<+>−>+<−<+>−>+<−<+>−>+<−< (1)
3-hop R2 +>−<+>−>+<−<+>−>+<−< (2)

R3 +>−<+>−< (3)

R1
+>−<+>−>+<−<+>−>+<−<+>−>+<−<

�

+>−>+<−< (4)
4-hop R2 +>−<+>−>+<−<+>−>+<−<+>−>+<−< (5)

R3 +>−<+>−>+<−<+>−>+<−< (6)
R4 +>−<+>−< (7)



Critical Traffic Analysis on the Tor Network 145

Figure 4 Comparison of Position-fingerprints of 3-hop and 4-hop Introduction Point Cir-
cuits.

In case we obtain fingerprint (1) or (5), we can not distinguish whether
our node is the first one in a 3-hop circuit or the second node in a 4-hop
circuit. Figure 4 illustrates such a case. For differentiation, we analyzed the
time difference between receiving and sending cells of these circuits. As
described in Section 3, hidden servers use 3-hop circuits whenever they create
introduction point circuits for the first time. Afterwards, they utilize already
established unused 3-hop circuits by extending one more node to change the
purpose from GENERAL to HS_SERVICE_INTRO or HS_CLIENT_INTRO.

In order to identify our node as the first node in a 3-hop circuit, two facts
need to be given. First, a circuit with the corresponding fingerprint (1) or (5)
needs to be obtained. And secondly, all cells have to be received immediately
one after another. In this case, the time delay between each cell is less than
one second. However, 3-hop circuits can be extended by further cells in order
to extend a fourth node. If those cells are received after a time delay of several
seconds or minutes, we can associate our node as second node in a 4-hop
circuit.

4.1.2 Recognizing introduction point circuits
A client decides the lifetime of a self-established circuit. However, the default
setting is that circuits do not live longer than 24 hours. Circuits may be alive
for different times depending on their activities. However, a circuit in Tor
has a median lifetime of 10 minutes [13]. An introduction point circuit is
the longest living circuit in Tor (between 18 and 24 hours2). After 24 hours,
existing introduction point circuits are closed and new ones are established.
Those are long-living connections in order to ensure a continuous availability
of the hidden service through its introduction point circuit. If a circuit has a

2Tor 0.3.3.7 source code: or.c line 5293



146 F. Platzer et al.

Figure 5 Comparison of Position-fingerprints of 3-hop and 4-hop Introduction Point Cir-
cuits.

long lifetime, the likelihood that this circuit is an introduction point circuit is
comparably high. Another feature of introduction point circuits is, that once
the introduction point circuit is established, all traffic flows in the direction
of the original node, i.e. the node that initiated the communication. As a
consequence, no cells will be relayed away from the hidden server. Figure 5
illustrates such a case. This is special for introduction point circuits, no other
circuit in Tor exhibits this traffic pattern. Once we recognize traffic flowing
from the original node back along the circuit, we can exclude this being an
introduction point circuit.

4.2 Sending and Recognizing Our Own Traffic

In this section, we describe a way to send cells along an introduction point
circuit, i.e. to send a traffic pattern. If our own guard node is located within
this circuit, this guard node detects our sent traffic pattern.

Depending on the popularity of the hidden service, the introduction point
might receive a high number of requests. A single request will be indistin-
guishable from the rest of the received cells. In order to recognize our sent
cells, it is necessary to create a specific traffic pattern and route it through the
introduction point circuit.

For the purpose of creating such a pattern, an ordinary request is sent
to the hidden service that is being observed. A circuit is established to the
associated hidden server’s introduction point. The introduction point relays
the request cells through our guard node to the hidden server. Our client estab-
lishes a rendezvous point circuit to a self-chosen relay node automatically.
The established rendezvous point circuit between the hidden server and our
client needs to be cut off before sending the next request. This avoids traffic



Critical Traffic Analysis on the Tor Network 147

Figure 6 Example of a Traffic Pattern. Requests were sent at second 2, 4, 12, 14, 16 and 22.
This results in a pattern (2,1,7,1,1,5).

flowing through the rendezvous point circuit instead of the introduction point
circuit. As a consequence, our guard node will not receive cells from our
client anymore. After the rendezvous point circuit has been closed, the next
request for the hidden service is sent and the established rendezvous point
circuit is cut again. This way, multiple cells are sent through the introduction
point circuit and with that through our own guard node. After each request
a certain delay is implemented before sending the next request. This delay
can be modified individually over all requests and is used to implemented a
traffic pattern. In other words, the pattern is the sequence of delays between
each sent request. An example of a pattern of length six is shown in Figure 6.

In order to find the sent traffic pattern, our guard node observes all cells
that are received from every circuit. For each received cell we calculate the
difference between the timestamp of a cell with every other cell within the
same circuit. As already mentioned, the traffic pattern is the delay between
each sent request. Therefore, it is necessary to investigate all the calculated
time differences of received cells for the sent traffic pattern.

4.3 Deanonymizing Hidden Services

In this section, a method to deanonymize hidden services is described. The
prerequisites for a successful implementation of the method are:

1. We control a node within an introduction point circuit.
2. This node is a guard node.

In order to analyze whether or not these prerequisites are fulfilled the
following process is used:

1. Log all incoming and outgoing cells for every circuit.
2. Obtain the lifetime of each circuit. In Section 4.1.2 it is mentioned that

the median lifetime of a circuit is 10 minutes. Introduction point circuits



148 F. Platzer et al.

are alive between 18 and 24 hours. Therefore, viable candidates are
circuits with a lifetime much longer than 10 minutes.

3. For all these circuits, calculate the position fingerprint as described in
Section 4.1.1 based on the logged cells and identify guard nodes.

4. Evaluate the direction of received and sent cells, after finishing the
establishment of each of those circuits. Viable candidates are circuits
in which cells are flowing only towards the hidden server.

In addition, analyzing the IP address that our node is directly connected
with could give a further hint. The IP address of each relay is publicly known
within a list, also known as consensus [17]. If this IP address is such a publicly
known Tor IP address, it will be an IP address of a Tor relay and thus not of
a hidden server. In this case, our node is probably not connected to a hidden
server.

Afterwards, the associated onion address of the hidden service needs to
be found. This hidden service is provided by the hidden server to which a
guard node is directly connected within an introduction point circuit.

1. Setup a Tor client.
2. Start a correlation attack by sending a traffic based pattern as described

in Section 4.2. Use any onion address that is to be investigated.
3. On the guard node, observe all cells that belong to the selected circuits.

Analyze those circuits for the sent traffic pattern.

By recognizing such a traffic pattern, it is possible to figure out that our
node is the first node within an introduction point circuit of the hidden server
associated with the selected onion address. Hence, the corresponding onion
address of an IP address of the hidden server can be determined. As a result,
a hidden service has been deanonymized.

5 Evaluation

We have implemented the proposed hidden service deanonymization
approach in Section 4. In this section, we first describe the setup of our
experiment and then we present our experimental results.

5.1 Experiment Setup

In order to evaluate our methods, we set up our own Tor client and a hidden
service on the live Tor network. Additionally, we set up a Tor node that our



Critical Traffic Analysis on the Tor Network 149

Figure 7 Experiment setup on the live Tor network.

hidden server used as guard node. On this node we monitored each incoming
and outgoing cell.

With our method, we intended to recognize traffic patterns sent by us
within circuits that are also used by other Tor users. To mimic this more real-
istic scenario that contains more “noise”, we let another client continuously
send requests in order to simulate other Tor users.

With the aim of simplifying the analysis of our results, we modified the
source code3 of our client in a way that when requesting a hidden service, all
cells were routed through the first introduction point only.

At the time of our experiment the most common Tor versions was 0.3.3
and 0.3.4. Neither version had implemented padding cells. The version of Tor
in our experiment was version 0.3.3.7. Our setup is shown in Figure 7.

5.2 Experiment Results

Guard node detection.
In order to evaluate the detection of our guard node we calculated the
position-fingerprints as described in 4.1.1. For this test case no noise client
was used. We repeated the setup process 330 times. In all 330 test cases we
were able to successfully confirm that our node was a guard node.

3Tor 0.3.3.7 source code: hs_client.c line 814, rendclient.c line 1048



150 F. Platzer et al.

IP address correlation.
For associating a hidden service to the IP address we obtained due to our
guard node, we started a correlation attack against our hidden service by
sending a traffic pattern.

We sent 310 traffic patterns of length eight as described in Section 4.2.
Since our hidden service is unknown to other users, there is no noise on the
observed introduction point circuit. No noise client was used. This means
that all recognized traffic within this circuit are cells sent by us. Due to time
delays in the network, it makes sense to specify a tolerance for the recognition
of patterns. This tolerance could be just a few seconds. For a tolerance of two
seconds we could identify 299 of our sent patterns through our guard node.
This corresponds to a success rate of 96,45%.

Simulation of User Traffic.
In order to simulate other Tor users we used our noise client. With this
method, we can verify whether a recognized pattern actually comes from
traffic generated by ourselves or from the noise of other Tor users.

As mentioned above, it makes sense to specify a tolerance for the recog-
nition of patterns. The higher the tolerance, the greater will be the false
positive error rate (FPR). False positives means detecting certain patterns
within an introduction point circuit that we did not send. An example is
shown in Figure 8. Figure 9(d) shows the false positive rate for detecting a
traffic pattern depending of their length. It also shows the difference between
the used tolerance. Figures 9(a)–9(c) show the FPRs of hidden services with
different request rates.

Figure 8 Example of a false positive. Sent traffic pattern (6,7,3,3) was recognized. Another
traffic pattern, in this case (2,1,7,1,1,5), which was not sent by us, could be detected.



Critical Traffic Analysis on the Tor Network 151

(a) FPR for services with 26,000 requests per
day.

(b) FPR for services with 43,000 requests per
day.

(c) FPR for services with 65,000 requests per
day.

(d) FPR of (a) - (c) together.

Figure 9 FPR depending on the length of a pattern.

There are multiple works in literature about how popular hidden services
can be. As maintained by Alex Biryukov et al. [2], one of the most popular
non-botnet hidden service offers adult content and was requested 2,573 times
per 2 hours. This corresponds to 30,876 times per day. The most well-known
darknet marketplace Silk Road [6] was requested 1,175 times per 2 hours
(This corresponds to 14,100 times per day). According to Owen and Savage,
Silk Road was requested 8,067 times per day [18]. The Global commission on
internet governance [8] claims that the most popular hidden service contains
child-abuse material and was requested 168,152 times per day, [17].

Due to the different statements about the popularity of hidden services,
our noise-client sent requests to the hidden service in randomly chosen time
intervals such that the noise corresponds to either a) 26,000, b) 43,000 or c)
65,000 requests per day.

For each test case a), b), and c) we analyzed the traffic of 500 traffic
patterns, without sending a particular pattern from our client.

Table 3 shows that the false positive error rate for hidden services that
are requested over 26,000 times per day is 0%. This means, that none of



152 F. Platzer et al.

Table 3 False positive rates for patterns of length eight
Requests Per Day Tolerance False Positive Rate

26,000 2 seconds 0%

43,000 2 seconds 8.6%

65,000 2 seconds 72.8%

the 500 analyzed patterns was erroneously recognized as a sent pattern. For
hidden services that are requested 43,000 times per day the false positive rate
is 8.60%. The false positive rate for hidden services that are requested over
65,000 times per day is 72.80%.

Since almost all hidden services are requested less than 10,000 times per
day [2], we are able to deanonymize observed hidden services with a notable
high success rate.

6 Discussion and Limitations of Deanonymization

As stated in the introduction, our experiment doesn’t describe an attack
that is able to deanonymize any particular hidden service. To an already
known IP address that provides a Tor service, our attack aims at finding the
corresponding hidden services. This section briefly discusses its nevertheless
significant relevance.

Probability of success

Guard Probability. At the time of our experiment, Tor had over 6,385 relays.
3,050 of them had the guard flag and could be used as first node for estab-
lishing a circuit [21]. According to Tor metrics [21] there were 72,522 hidden
services.

The number of hidden services that select a particular guard node as their
guard can be calculated using the expectation value as follows:

E(x) =
N∑

n=1

pi xi, (1)

where

xi =

{
0 if node is not selected as guard

1 if node is selected as guard

N is the total number of all hidden services. pi is the guard probability
that a particular node or hidden service chooses this guard.



Critical Traffic Analysis on the Tor Network 153

The probability that a guard node will be chosen depends on its consensus
weight. The consensus weight is a value that is based on bandwidth observed
by the relay and bandwidth measured by the bandwidth authorities. For the
purpose of traffic balancing the bandwidth of each relay is measured [1]. This
measuring procedure is described in [12]. At the time of our experiment,
the median bandwidth of all guard nodes was about 5 MiB/s. These nodes
had a consensus weight of around 6,2004 and therefore a guard probability
of about 0.012% that a particular node chose this guard. Following the
Equation (1) above, in this particular setting, the expectation value for the
number of hidden services that chose this node as their guard was almost 9.
The most popular guard node had an advertised bandwidth of 86.62 MiB/s
and a consensus weight of 190,000. Its guard probability was 0.38%.5 Thus,
the expectation value for the number of hidden services that chose this node
as their guard node was 275. Each node or hidden service will hold a chosen
guard node for a random period between 30 and 60 days [3, 7]. This means
that an attacker could possibly deanonymize a significant number (depending
on its consensus weight) of hidden services within this time period with only
one guard node.

Hidden Service Detection. From an attacker’s perspective, the worst case
scenario is checking all 72,522 hidden service addresses in order to find
the correct hidden service when using a single Tor client to send the traffic
pattern. For a pattern of length eight, the attacker has to wait about 15 seconds
per pattern, if he is using a serial process. For all existing services an attacker
must invest at most 12.5 days. However, if the attacker operates more than
one Tor client to send the pattern, he can reduce it to a fraction of that time.

If the attack is an effort driven by a large organization or government, that
could allocate a huge amount of resources, it seems realistic to deanonymize
a variety of hidden services (or even any) with a high success rate.

Padding Cells. Since Tor version 0.4.1.5, hidden services add padding cells
at the start of their introduction point and rendezvous point circuits. As a
result, the traffic of those circuits is more similar to general traffic [20]. The
following additional cells are sent:

• Two extra cells in each direction for rendezvous point circuits,
• One extra upstream cell for introduction point circuit,

4Note that the consensus weight may vary based on actual measurements by the bandwidth
authorities.

5Tor Metrics: https://metrics.torproject.org/rs.html#details/3CAE19138E4E025CFB42770
075DAAAF8FA0A1439, Accessed Sep 18 2019.

https://metrics.torproject.org/rs.html#details/3CAE19138E4E025CFB42770075DAAAF8FA0A1439
https://metrics.torproject.org/rs.html#details/3CAE19138E4E025CFB42770075DAAAF8FA0A1439


154 F. Platzer et al.

• Ten extra downstream cells for introduction point circuit.

Due to this implementation of padding cells, our method described in Sec-
tion 4.3 will not work for the most recent version of Tor. The fingerprints
described in Section 4.1.1 no longer provide us with information that we can
identify the position of a Tor node within a circuit. Furthermore, padding cells
prevent the detection of introduction point circuits with our method described
in Section 4.1.2.

Tor as an example network. This work shows the possibility to earn critical
information over a network that intends to provide both security and privacy
to its users only by analyzing the network traffic. Tor is the most popular and
well-known anonymity network insisting to provide anonymity and prevent
censorship. Tor has implemented many security mechanisms to protect its
users from deanonymization. One example is the uniform packet size to make
traffic analysis more difficult. Tor is a good example to show that missing
traffic noise can be a threat to the entire network through simple traffic
analysis.

At the end we want to explain why we discuss research results which
are seemingly outdated by the update of the Tor network and the padding
mechanism. We still find the results important as on the one hand it shows
that the addition of padding closed an important security gap in the protocol.
This is also a lesson learned for future developments of similar networks:
Traffic analysis based on timing is more common than some users imagine,
for example in network data hiding and its detection. There the hidden data
can be transmitted by artificial delays introduced by the stego algorithm. On
the other hand the results are important to know for all users of the now
obsolete version as it gives them a better idea if their anonymity could have
been compromised while using Tor.

7 Conclusion

Tor hidden services establish introduction point circuits to offer their service
anonymously. However, combining several traffic analysis steps, we showed
that it is possible to deanonymize hidden services if there is no generated
traffic noise, as was the case recently with Tor. Firstly, we showed that
introduction point circuits exhibit fingerprintable traffic so that we are able
to find out, whether or not a Tor node is within an introduction point circuit.
Secondly, we showed a way to find out the position within an introduction
point circuit. Both combined gives the opportunity to detect whether a Tor



Critical Traffic Analysis on the Tor Network 155

node is the guard node of a hidden service. This is critical because the guard
node knows the IP address of its hidden server. But it still does not know
which hidden service is based on that hidden server. We also showed that we
are able to recognize traffic we sent from a client to nodes under our control
using certain patterns. Sending a pattern of multiple packets to a selected
hidden service will route the pattern through an introduction point circuit,
and thus through a guard node. If this guard node is under our control and we
are able to recognize this pattern, we know both the IP address of the hidden
server and its hidden service. As a result, the hidden service is deanonymized.

We evaluated our attacks using own Tor clients and hidden services on
the live Tor network. We were able to successfully identify the Tor node
under our control as guard node of our own hidden service in 100% of all
test cases. In 96.45% of all test cases we were able to find our sent traffic
pattern on our guard node. We have shown that the false positive rate is 0%
for hidden services that have been requested over 25,000 times per day. For
hidden services that have been requested over 43,000 times per day the false
positive rate stays as low as 8.6%. It grows to 72.80% for hidden services that
have been requested over 64,000 times per day.

Acknowledgment

The joint project PANDA on which this publication is based was funded
by the Federal Ministry of Education and Research under the funding codes
13N14355 and 13N14356. The authors are responsible for the content of this
publication.

References

[1] Alex Biryukov and Ivan Pustogarov. Bitcoin over tor isn’t a good idea.
In 2015 IEEE Symposium on Security and Privacy, pages 122–134.
IEEE, 2015.

[2] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Wein-
mann. Content and popularity analysis of tor hidden services. In 2014
IEEE 34th International Conference on Distributed Computing Systems
Workshops (ICDCSW), pages 188–193. IEEE, 2014.

[3] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling
for tor hidden services: Detection, measurement, deanonymization. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages 80–94.
IEEE, 2013.



156 F. Platzer et al.

[4] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Gold-
berg. A systematic approach to developing and evaluating website
fingerprinting defenses. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 227–238.
ACM, 2014.

[5] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touch-
ing from a distance: Website fingerprinting attacks and defenses. In
Proceedings of the 2012 ACM conference on Computer and communi-
cations security, pages 605–616. ACM, 2012.

[6] Nicolas Christin. Traveling the silk road: A measurement analysis of
a large anonymous online marketplace. In Proceedings of the 22nd
international conference on World Wide Web, pages 213–224. ACM,
2013.

[7] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Ian
Goldberg. Changing of the guards: A framework for understanding and
improving entry guard selection in tor. In Proceedings of the 2012 ACM
Workshop on Privacy in the Electronic Society, pages 43–54. ACM,
2012.

[8] Centre for International Goverance Innovation. Global Commission
on Internet Goverance, 2020 (accessed April 03, 2020).
https://www.cigionline.org/initiatives/global-commission-internet-
governance.

[9] Ian Avrum Goldberg and Eric Brewer. A pseudonymous communica-
tions infrastructure for the internet. University of California, Berkeley,
2000.

[10] David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding
routing information. In International Workshop on Information Hiding,
pages 137–150. Springer, 1996.

[11] Rob Jansen, Marc Juarez, Rafa Gálvez, Tariq Elahi, and Claudia Diaz.
Inside job: Applying traffic analysis to measure tor from within. In
NDSS, 2018.

[12] Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul
Syverson. Peerflow: Secure load balancing in tor. Proceedings on
Privacy Enhancing Technologies, 2017(2):74–94, 2017.

[13] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srini-
vas Devadas. Circuit fingerprinting attacks: Passive deanonymization
of tor hidden services. In 24th USENIX Security Symposium (USENIX
Security 15), 2015.



Critical Traffic Analysis on the Tor Network 157

[14] Zhen Ling, Junzhou Luo, Kui Wu, and Xinwen Fu. Protocol-level
hidden server discovery. In INFOCOM, 2013 Proceedings IEEE, pages
1043–1051. IEEE, 2013.

[15] Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido Wirtz.
Performance measurements and statistics of tor hidden services. In
Applications and the Internet, 2008. SAINT 2008. International Sym-
posium on, pages 1–7. IEEE, 2008.

[16] Lasse Overlier and Paul Syverson. Locating hidden servers. In Security
and Privacy, 2006 IEEE Symposium on, pages 15–pp. IEEE, 2006.

[17] Gareth Owen and Nick Savage. The tor dark net. 2015.
[18] Gareth Owen and Nick Savage. Empirical analysis of tor hidden

services. IET Information Security, 10(3):113–118, 2016.
[19] The Tor Project. Configuring Onion Services for Tor, 2019

(accessed Mai 06, 2019). https://2019.www.torproject.org/docs/tor-
onion-service.html.en.

[20] The Tor Project. New release: Tor 0.4.1.5, 2020 (accessed April 03,
2020). https://blog.torproject.org/new-release-tor-0415.

[21] The Tor Project. Tor metrics portal, 2020 (accessed December 01,
2020). https://metrics.torproject.org.

[22] Paul Syverson, R Dingledine, and N Mathewson. Tor: The secondgen-
eration onion router. In Usenix Security, 2004.

[23] Tao Wang. Website fingerprinting: Attacks and defenses. 2016.
[24] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Gold-

berg. Effective attacks and provable defenses for website fingerprinting.
In USENIX Security Symposium, pages 143–157, 2014.

[25] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor. In
Proceedings of the 12th ACM workshop on Workshop on privacy in the
electronic society, pages 201–212. ACM, 2013.

[26] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields.
Defending anonymous communications against passive logging attacks.
In 2003 Symposium on Security and Privacy, 2003., pages 28–41. IEEE,
2003.

[27] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields.
The predecessor attack: An analysis of a threat to anonymous communi-
cations systems. ACM Transactions on Information and System Security
(TISSEC), 7(4):489–522, 2004.



158 F. Platzer et al.

Biographies

Florian Platzer is a research assistant at the Fraunhofer Institute for Secure
Information Technology. He is part of the PANDA project at Fraunhofer SIT.
The PANDA project is an interdisciplinary project researching the darknet.
Within this project he is responsible for the computer science part. Florian
studied IT security at the Technical University of Darmstadt, Germany.
He wrote his master thesis about deanonymization of Tor hidden services.

Marcel Schäfer serves as Senior Research Scientist for the Fraunhofer
USA Center for Experimental Engineering CESE in Maryland since 2019.
From 2009 to 2018 he was with Fraunhofer Institute for Secure Information
Technologies SIT in Germany. With a Master’s degree in mathematics from
the University of Wuppertal, Germany and a PhD in computer science from
the Technical University of Darmstadt, Germany, he consults and teaches
for topics on dark web, privacy networks and anonymous communication,
and also serves as a subject matter expert for privacy, e.g. GDPR and data
anonymization. As PI, Co-PI and researcher Dr. Schäfer has lead and worked
in various projects that discover new challenges and opportunities broadly



Critical Traffic Analysis on the Tor Network 159

spread over the fields of cybersecurity and software engineering in both the
public and private sector.

Martin Steinebach is the manager of the Media Security and IT Forensics
division at Fraunhofer SIT. From 2003 to 2007 he was the manager of
the Media Security in IT division at Fraunhofer IPSI. He studied computer
science at the Technical University of Darmstadt and finished his diploma
thesis on copyright protection for digital audio in 1999. In 2003 he received
his PhD at the Technical University of Darmstadt for this work on digi-
tal audio watermarking. In 2016 he became honorary professor at the TU
Darmstadt. He gives lectures on Multimedia Security as well as Civil Secu-
rity. He is Principle Investigator at ATHENE and represents IT Forensics
and AI security. Before he was Principle Investigator at CASED with the
topics Multimedia Security and IT Forensics. In 2012 his work on robust
image hashing for detection of child pornography reached the second rank
“Deutscher ITSicherheitspreis”, an award funded by Host Görtz.




	Introduction
	Related Work
	Background
	Traffic Analysis to Deanonymize Hidden Services
	Ascertain the Position Within an Introduction Point Circuit
	Circuit position
	Recognizing introduction point circuits

	Sending and Recognizing Our Own Traffic
	Deanonymizing Hidden Services

	Evaluation
	Experiment Setup
	Experiment Results

	Discussion and Limitations of Deanonymization
	Conclusion

