
Privacy-Enhanced Robust Image Hashing
with Bloom Filters

Uwe Breidenbach1,∗, Martin Steinebach2 and Huajian Liu2

1TU Darmstadt, Germany
2Fraunhofer SIT, Germany
E-mail: uwe.breidenbach@posteo.de; steinebach@sit.fraunhofer.de;
huajian.liu@sit.fraunhofer.de
∗Corresponding Author

Received 01 December 2020; Accepted 02 December 2020;
Publication 10 March 2021

Abstract

Robust image hashes are used to detect known illegal images, even after
image processing. This is, for example, interesting for a forensic inves-
tigation, or for a company to protect their employees and customers by
filtering content. The disadvantage of robust hashes is that they leak structural
information of the pictures, which can lead to privacy issues. Our scientific
contribution is to extend a robust image hash with privacy protection. We thus
introduce and discuss such a privacy-preserving concept. The approach uses
a probabilistic data structure – known as Bloom filter – to store robust image
hashes. Bloom filter store elements by mapping hashes of each element to
an internal data structure. We choose a cryptographic hash function to one-
way encrypt and store elements. The privacy of the inserted elements is thus
protected. We evaluate our implementation, and compare it to its underlying
robust image hashing algorithm. Thereby, we show the cost with respect to
error rates for introducing a privacy protection into robust hashing. Finally,
we discuss our approach’s results and usability, and suggest possible future
improvements.

Journal of Cyber Security and Mobility, Vol. 10_1, 97–132.
doi: 10.13052/jcsm2245-1439.1014
© 2021 River Publishers



98 U. Breidenbach et al.

Keywords: Privacy-preserving, robust hashing, perceptual hashing, hash-
ing, fingerprinting, forensics.

1 Introduction

Today, users store vast amounts of data like music, videos, and images.
Advancements in technology allow an easy way to create and store
multimedia data. Nowadays, decent cameras are integrated into almost
every smartphone. This makes it inexpensive and easy to take plenty of
pictures.

Huge collections of images issue a challenge for law enforcement agen-
cies in a forensic investigation to determine if a suspect is in possession of
illegal images like child pornography. A manual analysis of every stored
image on a suspect’s computer system – including external storage – is
very time-consuming and impractical. Moreover, it is morally questionable,
because of an invasion of privacy. The privacy of the suspect – presumed
innocent until proved guilty –, of all other users sharing the investigated
computer, as well as of the known victims, who’s images form the reference
database, is at risk.

The privacy issue is circumvented by using automated tools for the
analysis in a forensic investigation. Only pictures marked as suspicious by the
tool need further manual investigation. A common approach to detect known
illegal images is by using a cryptographic hash function. The cryptographic
hashes of all the images are matched against a database of hashes of known
illegal images, basically doing a blacklist lookup. This approach is efficient
and precise in terms of false positives [30]. However, only exact copies are
detectable. This is particularly problematic for digital images, where only the
visual content, not the data representation matters. Even a marginal alteration
during image processing produces an entirely different cryptographic hash
value [29, 30]. An image with the same perceptible content is thus not
detected correctly.

Robust hashes are introduced to respond to the issue of undetectable
images due to slight alterations. Robust image hashes compare the per-
ceptible image content, instead of the binary data [29, 30, 32]. An abstract
representation of the image content is mapped into the robust hash. Similar
images produce similar robust hashes. This is necessary to compare modified
images. However, because of this property, drawing conclusions about an
image’s structure from its robust hash is possible [32, 34]. Potentially private
information can thus be revealed, which poses a privacy risk. Figure 1 shows



Privacy-Enhanced Robust Image Hashing 99

Figure 1 Two similar images feature similar hashes. A robust hash therefore may cause the
risk of leakage of image content.

an example. The two images differ at the lower left, still both hashes are
similar.

The prosecution of possession and distribution of illegal content is
mandatory for law enforcement. Meanwhile, the invasion of privacy needs
to be kept at a minimum for everyone involved. An investigator should not be
able to gain any information of a suspect, other than knowledge of positively
identified illegal images, or the absence of such. Likewise, the private data of
the known victims should not be available to anyone.

This demand of privacy is equally true for a preemptive data analysis,
e.g., as part of a corporation’s content filter to protect their employees and
users. The right to privacy is stated in United Nations’ Universal Dec-
laration of Human Rights, and is put into federal law [33]. Therefore, a
privacy-preserving technique to efficiently identify known illegal content is
imperative. Our goal is to introduce such a privacy-preserving approach.

2 Related Work

This section gives an overview of relevant research regarding our topic of
privacy-preserving forensics. Additionally, we briefly introduce the building



100 U. Breidenbach et al.

blocks of our approach, i.e. cryptographic, multimedia, and robust image
hashing, as well as the Bloom filter data structure.

2.1 Privacy-Preservation in Forensics

Privacy-preserving forensics was researched in general by [1, 17, 22], among
others [1,17,22]. In addition, more specific research in computer forensic has
been conducted. For example, [2] introduced a privacy-preserving technique
of analyzing emails [2]. However, the unique properties of multimedia data
has not been considered.

Cryptographic hashes, with their fragility to the smallest alterations,
represented an efficient means of bitwise file comparison. However, their
fragility is obstructive for processed multimedia files. Multimedia data is
processed frequently; while the file is altered, the perceptible content is
preserved. This results in false negatives [30]. In contrast, robust hashes use
the perceptible media content to identify files more accurate [30].

The focus of this research paper is on re-identifying known images in
the context of a forensic investigation. Re-identifying images is possible
with both, cryptographic and robust hashes. Efficient robust hashes have an
advantage for excluding images from further inspection with a whitelist. This
is, because known uninteresting images are more likely unaltered, e.g. images
shipped with the operating system. Blacklisted – known illegal – images,
however, benefit more from robust hashes, since the probability of detecting
modified images increases. Note: We re-identify the images itself; we do not
identify anything depicted on the images, e.g. a person.

This work focuses on robust image hashes. They show greater potential
of identifying known illegal images during a forensic investigation than
cryptographic hashes. Although, robust hashes are computationally more
expensive, [30] showed they are sufficiently fast for use in forensics [29, 30].
However, as mentioned before, robust hashes suffer from data leakage [32].
From a privacy perspective, this is not acceptable, and needs to be resolved.
Even though, we study robust image hashes, our results should be adaptable
to different methods and media types.

[32] addressed the privacy issue by combining the privacy-protection
of cryptographic hashes, and the robustness against image manipulation of
robust image hashes [32]. Firstly, they calculated a robust hash of an image,
and identified weak bits that are likely to flip due to image alterations.
Secondly, multiple versions of the robust hash are created by permuting
weak bit combinations. Finally, each permuted robust hash version is hashed



Privacy-Enhanced Robust Image Hashing 101

cryptographically. The information leakage is averted, because the cryp-
tographic hashes, stored for future reference, are infeasible to invert. As
to privacy-protection, the results are very promising. However, the authors
stated that this approach does not achieve a comparable precision, robustness,
and efficiency as the robust hash it is based on [32].

In our research we aim to fill the gap among robustness, privacy, and
efficiency of current image detection solutions in computer forensics.

2.2 Cryptographic Hashing

Cryptographic hash functions are commonly used in various secure protocols
as cryptographic primitives. We only give a brief recap here. For an exhaus-
tive description we refer to the literature, e.g. [12, 25, 27]. A hash function is
a deterministic function that maps an input of arbitrary length to a fixed-size
hash value. Cryptographic hashes require at least the following properties:

• Efficiency: The hash calculation must be efficient.
• One-way function: Inverting a hash – finding an input to a given hash

value – must be computational infeasible.
• Collision resistant: Finding any two inputs hashed to the same hash value

must be computational infeasible.

Examples for cryptographic one-way hash functions include the aged
MD5 and SHA, as well as modern, unbroken SHA3 and BLAKE2b speci-
fication.

2.3 Robust Hashing

Robust or perceptual hash functions use important characteristics of the
perceptual content of multimedia data to generate a hash. This hash is robust
against certain data manipulations, and can thus identify even transformed
media files. Three major properties of robust hashes are defined by [28]:

• Robustness: The hash values of perceptually similar multimedia items
are to a certain extent invariant. That is, two perceptually similar mul-
timedia files should ideally produce the same – or at least a very
similar – hash. The robustness property should hold true for manipu-
lations of the media data with the intend to prevent a re-identification of
the file – an attack.

• Pairwise independence: Perceptually distinct media items should pro-
duce distinct hash values to avoid collisions.



102 U. Breidenbach et al.

• Search efficiency: Querying stored hash values to identify similar hashes
to the query needs to be efficient. For some applications, e.g. with large
hash database and low latency demands, a linear search (O(n)) is not
sufficient.

The robustness property is responsible for leaking information. Because
similar multimedia data produces similar hashes, it is possible to find an
input that creates a similar hash value to a given hash. Therefore, drawing
certain conclusions about the media content from its robust hash is possible.
For example, portrait photos with a centered face in front of a light plain
background, all produce robust hashes with a similar structure.

Steinebach et al. [30] demonstrate this issue with two distinct landscape
pictures with similar image structure that result in a similar robust hash [30].
They introduce a mitigation to make the resulting robust hashes more diverse
by splitting the image into quadrants, and subsequently generating sub-hashes
of each quadrant. Steinebach et al. [32] illustrate the issue with another
example in [32]. Thereby, they clarify that it is possible to learn about the
structure of an unknown image to a given hash by comparing the hash to
hashes of known images. This data leakage poses a privacy risk.

2.4 Robust Image Hashing

A robust image hash is a specialized robust hash. The previously introduced
requirements – robustness, pairwise independence, and search efficiency –
thus apply. Two additional requirements are necessary for the intended use
in forensics [30]. Firstly, a low error rate is crucial to avoid costly man-
ual inspections. Secondly, the hash generation needs to be highly efficient.
Ideally, the hashes can be generated on-the-fly, without noticeable latency.

In this paper we want to address the privacy issue of robust hashes, which
is particularly critical in the context of a forensic investigation. We thus
choose a robust image hashing algorithm as basis that is especially designed
for the use in forensics. The block mean value based approach ForBild, devel-
oped by [30] in [30], is the most viable candidate [30]. Although, ForBild is
not the most robust method, it provides high detection rates even for image
manipulations like conversions, lossy compression, scaling, and rotation. In
favor of efficiency, ForBild compromises for slightly lesser robustness. It
uses only low-complexity algorithms and image transformations, and is thus
very efficient. This makes ForBild more suitable for the time constraints of
forensic investigations than other robust image hashes.



Privacy-Enhanced Robust Image Hashing 103

The Block Mean Value Hash (BMVH) was introduced by [36] in [36]
[36]. The most efficient variant of their four propositions is used as basis for
ForBild. However, robustness against image rotation is thus not supported.
The algorithm consists of the following steps:

1. Normalize image to a preset size and transform into grayscale.
2. All pixels of the image I are divided into N non-overlapping blocks Ii,

with 0 ≤ i < N , and hash size N (e.g. 256 bit).
3. Calculate the mean value Mi of all pixels for every block Ii, respec-

tively. Subsequently, determine the median value Md of the mean value
sequence Mi.

4. Normalize the mean value sequence into a binary form. The hash value
h is calculated by setting each bit hi either to 0 if Mi < Md, or 1 if
Mi ≥Md.

With ForBild, [30] extend the BMVH algorithm with a few simple
improvements to circumvent identified issues [30]. For one, the image is split
into four quadrants, each with own mean value Md. For images with similar
structure, this results in more diverse hashes. Secondly, a robustness against
mirroring is introduced by mirroring the image during hash generation, such
that the darkest quadrant is placed in the upper left corner. Thirdly, ForBild
introduces weighted bits that indicate how likely a bit flips, due to image
transformations. By calculating the similarity with weighted bits, the preci-
sion can be improved for inconclusive cases. This last improvement, however,
is not compatible with our approach.

One important aspect of the ForBild hash behavior is that the flipping
of hash bits is not linear. Figure 2 shows an example. The hashes at weak
and medium JPEG compression flip at different positions. The strong JPEG
compression then combines positions of both, weak and medium hashes, and
adds more flipped positions. This means that flipping positions is chaotic and
hard to predict. A maximum assumption can lead to reduction of the ability
to distinguish between images. A minimum assumption may not include
flipping positions that occur at weak changes, leading to an unexpected
increase of false negative results.

2.5 Zero-Knowledge Protocol and Secure Multiparty
Computation

A zero-knowledge protocol or zero-knowledge proof (ZKP) is a specific kind
of secure multi-party computation (SMC). In a zero-knowledge protocol one



104 U. Breidenbach et al.

Figure 2 Four variants of one image and the respective robust hash. Up left: original image.
Low left: weak JPEG compression. Up right: medium JPEG compression. Low right: strong
JPEG compression.

party proofs to another party, that the former has knowledge of a secret value
or algorithm. This would be a trivial task, by simply revealing the secret, if it
were not for the zero-knowledge part. The challenge lies in proving it without
revealing any information other than the fact of knowing the secret itself. An
SMC in general is the task of computing a function jointly between multiple
parties over their respective input [7,8]. Meanwhile, neither party is revealing
its private inputs. This also means that no trusted third party is necessary
for the computation. For this paper the secure computation is between two
parties only – the application and the database. The focus thus lies on secure
two-party computation (S2PC or 2PC).

ZKP and SMC can be interactive and non-interactive [11]. For an inter-
active ZKP or SMC all involved parties are communicating with each other
to reach the goal. In a non-interactive protocol there is no further interaction
after an initial message. All the necessary information to fulfill the task is
thus shared between the parties in one message. Usually, the non-interactivity
neither reduces the computational nor communicational complexity of the
method. Only the online phase, where all parties interact with each other, is
reduced to the initial communication.

The securely computed functions of SMC are manifold. The purpose
of ZKP is to proof the knowledge of a value, or a solution to a problem,
to another party. Many SMC protocols are specifically designed for one
purpose only, e.g. solving the Millionaires’ problem1 [37], or calculating the

1The Millionaires’ problem is a classic SMP problem: Two millionairs want to figure out,
which of them is richer, without revealing their fortune. In general, it is the problem of solving
the equation a ≤ b, without revealing the numbers a and b.



Privacy-Enhanced Robust Image Hashing 105

Hamming distance [7, 8, 19]. These SMC protocols are referred to as special
purpose SMC. In contrast, there are general purpose SMC protocols, that are
able to calculate multiple functions (of a specific class). The function can be
passed as part of the protocol’s initialization, or specified in advanced (before
starting the actual protocol). Generally, special purpose SMP protocols are
more efficient for the same task, than general purpose SMP protocols.

The idea of SMC arose in the 1980s from the work of [37] and [15].
Three major approaches exist today on how SMC is realized. New approaches
are often based on one of these three techniques, by extending or combining
them.

One, homomorphic encryption belongs to the first proposed protocols
ever [11, 13, 26]. Homomorphic encryption is an encryption scheme that
allows (some) computations on the cipher text (most common: addition).
The computational complexity is relatively high, and the functionality of the
protocols is limited [8].

Two, Yao’s garbled circuits introduced protocols with a better perfor-
mance and wider array of capabilities [37]. The function, which should be
computed jointly and securely, is described as a Boolean circuit known to
both involved parties. One party garbles (encrypts) the circuit and the other
evaluates (decrypts) it, each with their private input. The obtained value is
encrypted, and can be decrypted by the first party. For the communication,
oblivious transfer is used.

Three, oblivious transfers (OT) allows a sender to transfer a piece of
an information privately to a receiver [24]. The sender remains oblivious
about which piece of the information the receiver receives. OT is already
used in some SMC protocols like Yao’s garbled circuits [37]. Yet, more
recent research reveals the existence of significantly more efficient OT
implementations [9, 18].

2.6 Bloom Filter

A Bloom filter (BF) is a probabilistic data structure invented in [5] by [5]
[5]. BFs are space and time efficient, due to the introduction of a small
error margin. BFs can efficiently determine an element’s membership in a
set. Adding elements to a BF, and testing elements memberships is, with a
computational complexity of O(1), independent of the number of elements
contained in the BF [4].

Internally, a BF uses a zero-initialized bit array BF [] of size m. The
universe set of elements is denoted by U , the set of contained elements by



106 U. Breidenbach et al.

Figure 3 A Bloom filter with m = 19, k = 3, and S = {x, y, z}. The arrows point to the
bit positions in the BF [] that are set by the elements, respectively. A bit collision of elements
x and z is highlighted red. Element u ∈ U is not a member of BF, which is indicated by
the gray highlighted 0/̄bit. Although all bit positions of element v are set, it is actually not a
member of BF, and thus v ∈ V is a false positive.

S, and the element capacity by n = |S|. To insert an element, it is hashed
with k different hash functions. The resulting hashes are used to index a bit
positions in BF [], which subsequently are set to 1. Testing an element’s set
membership is analog to adding one, except that all k identified bit positions
are checked if they are set or unset. Only if all bits are set, the element
is – most likely – contained in the BF.

The probabilistic virtue of BFs derives from a limited array size, and
the deliberate occurrence of collisions, while adding new elements. A direct
consequence of having collisions is the possibility of false positives during a
membership test. This is the price to pay for space and time efficiency. The
false positive probability is denoted by p, and the hiding set of false positive
elements by V . Optimizing a BF for different properties is possible during
initialization by choosing appropriate values for m, k, and p in the equations
and approximations provided by [4]. Figure 3 shows an example of a BF.

BFs show a great potential, due to their efficiency and basic security, to
efficiently enhance the privacy of a robust image hash.

2.7 Metrics

A robust image hash needs to fulfill different requirements to be practical and
reliable for its purpose. In the following, we introduce established metrics to
measure our requirements.



Privacy-Enhanced Robust Image Hashing 107

Common to all hash functions is, that they map an input of arbitrary size
to a hash value of relatively small size. A smaller hash size is more likely to
produce collisions. A bigger hash size increases the memory consumption
of the database, as well as the data transfer size. Additionally, the hash
computation time increases, negligible for some algorithms though. For a
robust image hash in forensics, a hash size of 256 bit is appropriate. For a
cryptographic hash, the hash size depends mainly on the attack model. A hash
size of 256 bit is considered secure for most usage scenarios. For applications
with high security criteria, or to be prepared for the future, a hash size of
512 bit is recommended.

The robustness of a robust image hash is indicated by its ability to identify
modified images. The true positive rate tp and the false negative rate fn
are appropriate measurements to determine the robustness. A true positive
test result means that an element stored in the database is correctly detected
as such. A false negative result means that an element actually contained in
the database is not found. The recall measures the probability that an item
contained in the database is correctly identified as such.

The pairwise independence describes the hash’s ability to avoid collisions
for perceptually distinct images. The resulting hash values should be distinct
as well. To quantify this requirement, the true positive rate and the false
positive rate fp are used. A false positive result means that an element that
is not stored in the database is falsely identified as contained. The precision
measures the probability that an identified item is truly stored in the database.
It thus is a measure of how reliable the algorithm is.

The search efficiency reflects the time that is necessary to decide if a
test image is contained in the database or not. With the algorithm’s com-
plexity, the efficiency of a query can be estimated. It is common practice
for perceptual hashes that the entire database is searched for a query. The
complexity of a search is thusO(n). For huge databases even this complexity
could become problematic. Nevertheless, a complexity of O(n) serves as
reference.

The efficiency of calculating a robust image hash is of importance as well.
This is even true today with all the advancements of computer hardware and
increased computational power. That is, because at the same time the size of
multimedia and thus image collections increased drastically. The computation
time is of relevance for initializing the database, and also for querying test
images. However, this metric depends highly on the computational power of
the computer system in use.



108 U. Breidenbach et al.

The Hamming distance is a metric to quantify an error between two binary
data points. It is often used to determine the similarity of perceptual hashes.
The Hamming distance is defined as HD(x, y) the number of bits that differ
between binary data points x and y [16]. For example, the bytes 111111112
and 111101102 differ by two bits. Their Hamming distance thus is 2.

The Bit error rate (BER) is a normalized metric of the distance of two
binary values, in our case hashes. The number of mismatched bits i (also
known as the Hamming distance) divided by the hash size n yields the
BER [36].

3 Concept

We aim to develop a privacy-preserving robust image hashing application.
Such an application consists of three major components: A robust image
hashing algorithm (see 2.4), a database to store and query for known image
hashes, and a privacy-preserving technology that secures the image hashes.
We consider three privacy protection options: One, a zero-knowledge proto-
col privately queries an external database. Two, a homomorphic encryption
protects a local database that is queried in the encrypted domain. Three,
a Bloom filter (see 2.6) is used as database to store multiple irreversible
cryptographic hashes (see 2.2) for each robust image hash. Figure 4 illustrates
our concept idea.

The first option privately generates robust hashes, e.g. of a suspects
computer, with a client-side application. The reference database with robust
hashes of known images, e.g. child pornographic images, is securely stored
externally. The client-side queries the database with a robust hash, and
gets only a similarity score of the closest match. The database, on the
other side, learns nothing about the queried robust image hashes. A zero-
knowledge protocol could realize such a private communication. However,
the communicational complexity of existing zero-knowledge solutions is
not efficient enough. To query one closest-matching similarity score, the
zero-knowledge protocol has to run for each robust hash in the database.
This is very inefficient with a large test size, and especially for large
databases.

The second consideration, protecting a database with homomorphic
encryption, and querying it locally in the encrypted domain, suffers from
a similar efficiency problem. Determining the highest similarity score of
one queried robust hash, makes it necessary to calculate the similarity for



Privacy-Enhanced Robust Image Hashing 109

Figure 4 Idea of our image hashing application, split into two modes of operation: initializa-
tion (left) and detection (right). A secure and private communication is indicated by the arrows
between the modes of operation. Either we have secure and private requests and responses, or
we release a privacy-preserved database.

every image hash in the database. The computational complexity thus quickly
exceeds a tolerable cost limit in a forensic investigation.

Our third option queries a local, privacy-preserved database as well. We
replace the conventional database with a BF. The BF in combination with
the one-way property of a cryptographic hash function privately stores the
known robust image hashes. The privacy of all elements in the database is
thus protected. The challenge is to establish a membership test for similar
items. That is for one, because cryptographic hashes match only exact copies,
and secondly, because BFs only support exact membership tests.

We tackle this challenge by partitioning each robust hash into multiple
blocks. Subsequently, each block is cryptographically hashed and stored sep-
arately in the BF. For similar images, and thus similar robust image hashes,
only a few blocks should differ. The similarity of a robust hash can therefore
be determined by the number of hits and the total number of tested blocks. To
improve robustness (for the cost of space and time efficiency), robust hashes
can be differently partitioned and stored multiple times.



110 U. Breidenbach et al.

3.1 Application Flow

A more detailed overview of the application flow can be formalized by the
following. We highlight the involved elements of each step. We start with the
process of adding an image to the database:

1. A robust hash of an image is obtained using ForBild (see 2.4).
2. Split the robust hash into multiple blocks by using at least one partition.
3. Cryptographically hash (see 2.2) each block.
4. Split each cryptographic hash into multiple indices. This optimization

is possible, because BF [] has at maximum a 64 bit index, and modern
cryptographic hashes have a typical size of 512 bit.

5. Normalize each index to the integer interval of [0,m− 1].
6. Set all the bits in BF [], mapped by the normalized indices.

Testing an image is analogous to adding one, except for:

6. Check all the bits in BF [], mapped by the normalized indices.
7. A block is detected only if all its bits, and in extend all indexed bits of

a cryptographic hash, are set. A block is not identified if only one bit is
unset.

8. Calculate the robust hash’s similarity score, using the results of all tested
blocks.

3.2 Second Decision Stage

We consider a second detection stage to analyze inconclusive results further.
The idea is to determine the closest matches in the database to a robust
image hash. With this reduced set of closest matches, a different method of
identifying robust image hashes with a high complexity becomes viable, e.g.
zero-knowledge or homomorphic encryption.

The majority of images should be identified on the client-side using our
privacy-preserving BF. In practice most images should be unknown, and thus
unambiguously tested negative. In ambiguous cases the client sends a flat BF,
i.e. all normalized indices of the robust image hash in question, to a server.

The server holds a BF like structure, initialized with the same parameters
as the client-side BF (more precisely: it is the other way around; the privacy-
preserving client-side BF derives from the server). The difference lies in the
internal bit array, which is replaced on the server-side by a list of image
IDs for each set bit. By looking up and counting all IDs indexed by the
flat BF query, the server can determine the closest matches. Finally, with
this drastically reduced subset of the original database of known images, an



Privacy-Enhanced Robust Image Hashing 111

additional decision algorithm of high complexity, e.g. zero-knowledge based,
can be initiated.

4 Implementation

This section briefly describes the implementation of all necessary compo-
nents. We implement our approach efficiently in modern C++17 standard.

4.1 Cryptographic Hash

Our main concern regarding a cryptographic hash is its security, because
we one-way–encrypt the blocks of a robust image hash with it for privacy
protection. We thus select a few established candidates that are considered
secure. SHA2 and SHA3 are United States’ Institute of Standards and Tech-
nology (NIST) standards [12]. As a SHA3 standardization finalist, BLAKE2b
provides state-of-the-art security [23].

Efficiency is a subordinated requirement for our choice. We thus test our
candidate’s efficiency (256 and 512 bit if available), using two widely used,
modern C++ libraries, crypto++ and botan/̄2.2 The most efficient3 – and thus
our choice – is the botan/̄2 implementation of BLAKE2b with 512 bit.

Our selection, BLAKE2b, has a hash size of 512 bit. Since our index uses
at maximum 64 bit, we can improve the robustness of our approach by using
512 bit/64 bit = 8 indices to store a block. The computation overhead is
negligible. However, the BF memory requirement increases.

4.2 Robust Image Hash

As described in section 2.4, we choose ForBild as robust image hashing
algorithm. A C++ implementation is provided by the rHash API, developed
at Fraunhofer Institute for Secure Information Technology (SIT).

4.3 Bloom Filter

A Bloom filter is the key component of our implementation. An overview
of the BF functionality is given in section 3.1. This section describes the
implementation in more details.

2An additional advantage of botan/̄2 is its security review and improvement by the German
Federal Office for Information Security.

3Even though popular SHA1 and MD5 are excluded, because they are considered broken,
they are outperformed by BLAKE2b anyways.



112 U. Breidenbach et al.

The BF is initialized with the maximum capacity of stored robust image
hashes n. We optimize the internal array size m for space efficiency and
privacy by approximating:

m′ =
n ∗ P ∗ k ∗ k2

ln 2
, (1)

with the number of partitions P ≥ 1, the number of blocks per partition
k = 16, and the number of indices per block k2 = 8. The best privacy
capability is reached with 50 % set and 50 % unset bits of BF []. Finally,
we set the size m to a prime equal to or greater than m′. All initialization
parameters are fixed and can not be changed later, without regenerating the
whole database.

After initialization, the BF can process image hashes. An image hash is
partitioned into multiple blocks with at least one partition. Because partitions
highly affect privacy, robustness, precision, and efficiency, we choose the
partition parameters very carefully. A block size of 16 should provide enough
data variety to prevent brute forcing the pre-image of a cryptographic hash,
while being small enough to provide sufficient robustness against image
modifications.

A block thus consists of a 3 bit partition ID, a 4 bit block position, and
16 bit (block size) of robust image hash data. That sums up to a total of
23 bit per block. During our evaluation, we vary the partition combinations
to optimize robustness and precision. Examples of partitions are shown in
Figure 5.

Subsequently, each (23 bit) block is cryptographically hashed, what even-
tually results in the indices. Each index needs to be normalized to a value that
fits into BF [], i.e. [0,m− 1]. To ensure a uniform distribution of the indices,
we use the division method given by equation:

h(x) = x mod m (2)

We circumvent an error-prone case – a reduction of h(x) to the s least
significant bits, e.g. by setting m = 2s – during initialization by choosing
m prime.

The similarity score ssim of an image hash to the closest one stored in the
database is statistically determined with:

ssim = 1−
blkneg ∗ 0.5

blkt
, (3)



Privacy-Enhanced Robust Image Hashing 113

Figure 5 A partition separates a robust image hash into multiple blocks. The two partitions
on top are more fine-grained regarding perceptible blocks, while the lower two are more
efficient, using consecutive data bytes.

with 0.5 ≤ ssim ≤ 1, the total number of tested blocks blkt > 0, and the num-
ber of negatively tested blocks 0 ≤ blkneg ≤ blkt. A ssim = 0.5 constitutes
the average similarity compared to a randomly chosen bit sequence.

4.4 Bloom Filter Hardening

The security and privacy properties of BFs are studied in e.g. [3, 4, 20].
Additionally, several hardening techniques for BFs are sugested in [10, 21],



114 U. Breidenbach et al.

such as salting, noise injection, and a random selection of hash functions.
Some of which are useful to improve our approach’s security.

A collusion attack analyzes different releases of a BF database in order
to identify newly added image hashes. The stored hashes are still one-way
encrypted. Thus, to determine if a block belongs to an image hash, the
block has to be probed, i.e. cryptographically hashed and used as normalized
indices to verify set bits of BF [].

To mitigate collusion attacks, we make the comparison harder. Firstly,
never reusing the same BF size prevents a direct bitwise comparison. A
blacklist of already used BF sizes is thus kept. Secondly, a BF is initialized
with a random unique salt. Half of the salt is prepended and half is appended
to each block before cryptographically hashing it. A salt makes probing
blocks in a large scale infeasible, because it prevents precomputed rainbow
tables. The disadvantage of using a salt and a unique BF size is that the
BF needs to be regenerated on every update, not only when the capacity is
insufficient.

However, in case of a successful attack, an identified image can be denied
due to the probabilistic nature of BFs. Because image hashes share bits in
BF [] due to collisions, the possibility of false positives exists. By increasing
the false positive probability, elements can be denied with higher plausibility.
In return, the BF size needs to be adjusted to compensate for a decrease in
precision and robustness.

One technique to increase the deniability is to inject random noise. A
second technique is the injection of tailored false positive image hashes that
share a lot of bits with true positive elements. We implement tailored false
positives by splitting two known images in half and combining them to two
fake images. Since a lot of consecutive image data is unchanged, so are
many stored blocks. The additionally added data is thus limited. However,
true positive blocks are more plausible deniable, because they are covered by
false positive elements. This method proved to be more effective than adding
random noise, and is thus pursued [4].

4.5 Closest Match Bloom Filter Extension

We modify our BF implementation to determine the closest matches of a
requested robust image hash on the server-side (see 3.2). The server’s internal
BF array is replaced by a list of the same size. This list holds a linked list for
each set bit. Each linked list stores all IDs of corresponding known images.



Privacy-Enhanced Robust Image Hashing 115

A request is made by the client with a flat BF, a space efficient BF with
only one element, i.e. a list of normalized BF indices of a robust image
hash. The server determines all indexed linked lists, and thus all indexed
IDs of known images. The quantity of occurrences of each ID indicates the
similarity. The higher the frequency of an ID, the more indexed blocks are
identified, and thus the closer the match.

Our closest matching BF extension provides a proof of concept. The
implementation makes no claim to be complete or efficient. It merely proofs
that an additional higher complexity decision stage can be implemented in
the future.

5 Evaluation

The evaluation conditions are initially established in this section. The eval-
uation is conducted with a set of known and unknown images. Different
combinations of partitions with different thresholds are evaluated first to
determine sane parameters for our approach. We use these parameters for
the remaining evaluation. The most important quantifiers are precision and
recall. The precision is the probability that an identified image actually is
contained in the database. It thus measures the reliability. The recall is the
probability of positively re-identifying a known image that is stored in the
database. It thus measures the robustness.

5.1 Test Set

We aim to evaluate our application in the context of a forensic investigation,
e.g. to prosecute child pornography charges, as realistically as possible.
Therefore, we settle for the Galaxy set of cheerleader photos. This set has
been used for its characteristics in related research, e.g. [6, 29–32, 35]. All
photos show one or more people with diverse skin colors. The pictures were
taken inside and outdoors, with different resolution, and in landscape and
portrait orientation.

We divide 3092 distinct photos randomly into two groups, known and
unknown, of 1546 pictures each. The known group is inserted into the
database to evaluate how well images can be re-identified. The unknown
group is used to evaluate the false positive rate. It thus is not added to the
database.



116 U. Breidenbach et al.

5.2 Attacks

To evaluate the algorithm’s robustness and reliability, we use different image
processing techniques to attack our test set. The techniques used, are covered
by ForBild. They range from normal image processing, e.g. to reduce the size,
to image manipulations with a malicious intent, e.g. to circumvent copyright
filters. All 3092 pictures are attacked with the following 15 transformations:

• JPEG compression with quality q ∈ {90, 80, 70, . . . , 10}.
• Scaling 150 %, 110 %, 90 %, 75 %, and 50 %.
• Horizontal mirroring.

ImageMagick version 7.0.9-10 Q16 x86_64 is used for the attacks. JPEG
compression is an attack by itself, we thus use lossless PNG for the other
attacks. In summery, our evaluation thus consists of:

• 1546 known images in the database.
• 1546 unknown images.
• 1546 ∗ 15 = 23190 attacked known images.
• 1546 ∗ 15 = 23190 attacked unknown images.
• 49472 test images in total.

5.3 Testbed

We evaluate our implementation single threaded on a test system with the
following specifications:

• Notebook: Lenovo ThinkPad T450s
• Processor: Intel Core i5-5300U, 2.30 GHz
• Memory: 8 GiB DDR3L SDRAM, 1600 MHz
• Storage: 256 GB SSD, Serial ATA-600
• Operating System: Manjaro Linux, kernel 5.4

5.4 Parameter Determination

In the following we determine the most viable parameters for our application,
for a later evaluation of its robustness and reliability. Several partitions are
provided to separate a robust image hash into multiple blocks (see 4.3). The
partitions are designed to complement each other, i.e. any two partitions never
define the same block.

A list of partition(s) that work nicely together, is one essential parameter
to determine.



Privacy-Enhanced Robust Image Hashing 117

The similarity threshold tsim, whether a robust image hash is consid-
ered similar or distinct to a known one, is the second crucial parameter to
determine for practical use in forensics.

We conduct our evaluation by calculating recall and precision for different
tsim, and multiple combinations of partitions. The threshold tsim needs to
be considerably larger than 0.5, the average similarity to randomly chosen
data. We thus evaluate 0.7 ≤ tsim ≤ 0.975 in steps of size 0.025. The
following diverse combinations of partitions are used in a BF for evaluation:
one, partition 1 only (P1); two, partition 1 and 2 (P1,2); three, partition 3 and
4 (P3,4); and four, partition 1 to 4 (P1,2,3,4).

The results of the evaluation are shown in Table 1. Additionally, graphs
6 and 7 illustrate precision and recall, respectively. A precision approaching

Table 1 Recall and precision of Bloom filters with different combination of partitions and
threshold 0.85 ≤ tsim ≤ 0.975 in 0.025 steps. The most promising results for our use case in
forensics are marked.

tsim Recall Precision Recall Precision

P1,2,3,4 P1,2

0.975 0.566866 0.999145 0.530320 0.999010

0.95 0.765362 0.999050 0.791801 0.998114

0.925 0.879892 0.998257 0.869542 0.995925

0.9 0.938753 0.993072 0.943807 0.984565

0.875 0.973763 0.975459 0.974652 0.960518

0.85 0.984031 0.950041 0.981808 0.942085

0.825 0.990742 0.915807 0.991389 0.898772

0.8 0.993895 0.878475 0.993451 0.873121

0.775 0.995310 0.829850 0.995391 0.802490

P3,4 P1

0.975 0.517101 0.999063 0.494947 0.998043

0.95 0.779148 0.998860 0.756185 0.995529

0.925 0.864570 0.998086 0.895294 0.986898

0.9 0.942149 0.989219 0.953105 0.965438

0.875 0.974854 0.970382 0.977927 0.930850

0.85 0.981970 0.956036 0.977927 0.930850

0.825 0.990055 0.916816 0.989044 0.887667

0.8 0.992885 0.893513 0.993370 0.833854

0.775 0.995149 0.822425 0.995674 0.762697



118 U. Breidenbach et al.

Figure 6 Precision of BF for different partitions and tsim.

Figure 7 Recall of BF for different partitions and tsim.

1, and a recall greater than 0.99, would be ideal in the context of a forensic
investigation [30]. The results show that BFs improve using more partitions.
However, the precision and recall of P3,4 comes close to the results of
P1,2,3,4. Figure 8 shows a comparison of recall and precision for different
thresholds with P1,2,3,4.

The most viable parameter combinations are:

1. P1,2,3,4 with tsim = 0.925
2. P1,2,3,4 with tsim = 0.9
3. P3,4 with tsim = 0.925



Privacy-Enhanced Robust Image Hashing 119

0,9750,950,9250,9
0,875

0,85

0,825

0,8

0,775

0,75

0,725

0,7

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0,50,550,60,650,70,750,80,850,90,951

Pr
ec

isi
on

Recall

Recall vs Precision for P1,2,3,4

Figure 8 Recall vs. precision for P1,2,3,4. Thresholds are attached to the data points.

Table 2 Shows the conducted efficiency measurements for ForBild and the BF variants, i.e.
the database size (db size), the database initialization time (db init), and the time to query the
entire test set (test)

Algorithm db size (KiB) db init (s) Test (s)

ForBild 48.4 18.89 691.09

BF P1,2,3,4 139.4 18.57 661.01

BF P1,2 69.7 21.21 709.16

BF P3,4 69.7 20.83 678.98

BF P1 34.8 18.33 667.91

The efficiency measurements are shown in Table 2. Time is measured
in high precision with std::chrono::high_resolution_clock::now() C++ stan-
dard function. The database size is moderately larger for BFs compared to
ForBild. The size of a BF rises linear with the number of used partitions.
Initializing the BF databases takes slightly longer. However, this should
be negligible in practice, since the robust hash generation is still the most
time-consuming part.

The elapsed time to test the whole image test set of 49472 images against
the database, is usually faster for the BF implementation by a few seconds



120 U. Breidenbach et al.

Table 3 Performance at different thresholds

Total img Threshold TP FN TN FP Recall Precision

24736 0.975 14022 10714 24724 12 0.56686611 0.99914493

24736 0.95 18932 5804 24718 18 0.76536223 0.99905013

24736 0.925 21765 2971 24698 38 0.87989166 0.99825712

24736 0.9 23221 1515 24574 162 0.93875323 0.99307189

24736 0.875 24087 649 24130 606 0.97376294 0.97545863

24736 0.85 24341 395 23456 1280 0.98403137 0.95004098

24736 0.825 24507 229 22483 2253 0.99074224 0.91580717

24736 0.8 24585 151 21335 3401 0.99389554 0.87847495

24736 0.775 24620 116 19688 5048 0.99531048 0.82985034

24736 0.75 24645 91 16664 8072 0.99632115 0.75327811

24736 0.725 24663 73 13637 11099 0.99704884 0.68964264

24736 0.7 24679 57 10838 13898 0.99769567 0.63973352

compared to ForBild. This effect should become more noticeable with grow-
ing database size n, since ForBild compares elements with complexity O(n),
while BF only requires O(1). The difference in query time between BFs do
not correlate to the number or type of used partition. It seems other factors
have more impact on the overall time consumption, e.g. storage lookup or
robust image hash generation.

For our algorithm with use in forensics, precision is more important than
recall, and recall is more important than efficiency. We thus select option (1),
combining partitions 1 to 4 with tsim = 0.925. Table 3 shows the detailed
performance of this combination for thresholds from tsim = 0.7 to tsim =
0.975. The third option – P3,4 with tsim = 0.925 – is a good alternative in
case efficiency is of greater value.

5.5 Robustness and Reliability

The robustness of our approach – more precisely of the BF using partitions 1
to 4, and tsim = 0.925 – against various image manipulations is evaluated by
attacking the set of known images (see 5.2). We have 15 attacks – 9× JPEG,
5× scaling, and 1× mirroring – on 1546 known images, resulting in a total
of 23190 attacked known images. Subsequently, we test the attacked known
images against the database of known images. The resulting recall indicates
the robustness.



Privacy-Enhanced Robust Image Hashing 121

Figure 9 Recall of JPEG compression for different qualities.

5.5.1 JPEG
We evaluate the robustness against JPEG compression for different image
qualities. The evaluated image quality ranges in steps of 10 % from 10 %
to 90 %. Figure 9 shows the recall for each compression level. The recall
decreases with lower image quality and stronger compression rates. The
recall falls below 0.9 for qualities of 30 % and below. The average JPEG
compression recall is 0.911600. ForBild, in comparison, has a recall of 1.

5.5.2 Scaling
The robustness against image scaling is evaluated by scaling each known
image to 50 %, 75 %, 90 %, 110 %, and 150 %. The recall is shown
in Figure 10. Scaling severely affects the recall. It is lowered to 0.9 and
below. Scaling down is more fragile than scaling up, with a recall below
0.7 for halving the image size. ForBild as reference has a recall of 1 for
scaling.

5.5.3 Horizontal mirroring
The robustness against horizontal mirroring is first introduced in ForBild with
a recall of 1. The recall of our approach is with 0.76 low.

5.5.4 Robustness Summary
Table 4 lists the recall and precision of all evaluated attacks in greater detail.
The issue of decreasing robustness is illustrated by Figure 11. Each dot is



122 U. Breidenbach et al.

Figure 10 Recall of scaling for different sizes.

Table 4 Recall and precision for all attacks (see 5.2)

Attack Percent Recall Precision

JPEG compression 90 0.990298 0.998695

JPEG compression 80 0.990298 0.998044

JPEG compression 70 0.971539 0.998007

JPEG compression 60 0.932083 0.996542

JPEG compression 50 0.932730 0.997924

JPEG compression 40 0.914618 0.997179

JPEG compression 30 0.891979 0.998552

JPEG compression 20 0.846701 0.997713

JPEG compression 10 0.734153 0.995614

JPEG compression avg. 0.911600 0.997586

Scaling 150 0.902329 1.000000

Scaling 110 0.888745 1.000000

Scaling 90 0.840233 0.999231

Scaling 75 0.792367 0.996745

Scaling 50 0.690168 0.999064

Scaling avg. 0.822768 0.999008

Horizontal Mirroring 0.760026 1.000000



Privacy-Enhanced Robust Image Hashing 123

Figure 11 Distribution of the similarity score of known and unknown images.

a similarity score ssim of a picture, all (attacked) known images are blue,
while all (attacked) unknown images are red. The lack of a gap between the
blue and the red cloud makes deciding between known and unknown more
difficult, and thus reduces robustness.

5.5.5 Reliability
We evaluate the reliability of our approach by means of the precision. The
precision is the probability that false positives occur. In a forensic investiga-
tion, false positives require an expensive manual investigation, and thus need
to be avoided. We test the set of 1546 unknown images against the database
of known images. This results in a precision of 0.998708 (two false positives
exist). Testing the whole test set of 49472 images, including the attacked ones,
results in a precision of 0.998257 (38 false positives exist). ForBild, however,
provides a precision of 1.



124 U. Breidenbach et al.

5.6 Privacy

Our approach protects the robust image hashes with a one-way encryption
using cryptographic hashes. Additionally, the nature of a BF obfuscates the
origin of stored blocks. However, a few attack vectors need to be considered.
The most successful attacks on BFs are based on cryptoanalysis, and rely on
publicly available identifiers, or a small guessable universe set of identifiers
[10, 14, 21]. This does not apply for our approach, since the robust image
hashes, and in extend the 23 bit blocks, are not easily guessable. In the
following we evaluate the BF hardening techniques presented in 4.4.

The introduction of a unique salt into a BF results in a totally different
binary file compared to the same BF without a salt. The changes in robustness
and reliability – due to different collisions – are negligible. Initializing
and querying the salted BF takes slightly longer. However, this should be
irrelevant in practice.

We evaluate two magnitudes of injecting tailored false positives to
increased element deniability. [4] introduced a privacy metric for BFs, the
γ-K-anonymity [4]. The γ-K-anonymity states that at least K − 1 false
positives cover any randomly chosen element with probability γ. One round
of adding tailored elements gives 0.75-2-anonymity. Two rounds guarantee
1.50-2-anonymity or 0.50-3-anonymity. Overall, the injection of tailored false
positives shows only negligible variations in robustness and reliability. This
is due to the increase in BF size of approx. 13 and 26 KiB, respectively, to
compensate for the elevated false positive probability.

5.7 Closest Match

The closest match server-side BF extension successfully determines the
closest matching IDs of known images to a queried robust image hash.
The robustness and reliability of the extension is marginally better than of
the client-side BF (due to the elimination of false positives). The server
only learns the one-way encrypted and normalized indices in the flat BF of
the queried robust image hash. The client learns nothing about the known
images. However, learning the closest matching similarity score would be
allowed.

This proofs the concept of reducing the server-side database size to a
small subset of closest matches. By choosing a constant subset size, an
algorithm with a complexity dependent on the database size, can be reduced
to O(1). A future privacy-preserving implementation of an extra decision
stage, e.g. using zero-knowledge, is thus possible. However, the closest match



Privacy-Enhanced Robust Image Hashing 125

extension needs improvements regarding its efficiency. A database size of
almost 8 MiB does not suffice for practical use.

6 Summary and Future Work

The introduced approach is a new attempt to apply privacy protection to
robust image hashing in forensics. Our main concern of privacy protection
is successfully realized. The robust image hashes, including possible private
information, are protected against unauthorized access on both ends, the
database and the system under investigation. The confidentiality of the robust
hashes is ensured due to the one-way property of cryptographic hashes. It is
not computationally feasible to recover any data from the one-way encrypted
Bloom filter database.

Additionally, measures to improve on privacy, e.g. salting and γ-K-
anonymity, are available at an acceptable cost of efficiency. Further, the proof
of concept of a closest match extension lays the ground for an efficient
privacy-preserving protocol, e.g. zero-knowledge, to improve robustness and
reliability in the future.

The efficiency of a robust image hashing application is important in
a forensic investigation. The evaluation results show that our approach is
sufficiently efficient, even outperforming the robust image hash it is based on
during detection. Especially for larger databases we improve the efficiency,
because a hash lookup now is independent of the database size. The provided
precision is acceptable for most use cases in forensics.

The robustness against JPEG compression averages at a recall of 0.912.
The robustness against scaling and mirroring is lower, with 0.823 and
0.760, respectively. The total average recall lies at 0.880 with a precision
of 0.998. The approach does not achieve similar results to ForBild. However,
it provides protection of privacy at a cost of 12 % loss of recall.

6.1 Future Work

This work is only one step on the road of making robust hashes privacy-
preserving. Our evaluation showed that robustness and reliability of a BF
increased by using more partitions. Introducing more distinct partitions
increases the number of diverse blocks stored in the BF. This could improve
the probability that more blocks survive small bit errors with large impact.
Additionally, reducing the block size should show improvements as well.
However, this will reduce the privacy guarantee with it.



126 U. Breidenbach et al.

A promising improvement of our approach is to make the closest match
extension more efficient. This could be done by reducing the database size
and complexity. The currently used linked lists could be replaced by Bloom
filters storing IDs. To determine the corresponding IDs to an index, a BF need
to be queried with every known ID. Subsequently, after improving the closest
matching implementation, a privacy-preserving communication protocol can
be implemented to calculate the similarity, e.g. using zero-knowledge or
secure multi-party computation. The protocol’s complexity is reduced to a
constant one, and is thus efficient. This should improve the robustness and
reliability to those of the underlying robust hashing algorithm.

There is a multitude of robust hash function available. Robust image
hashing with ForBild was just one example. The presented privacy-preserving
solution is independent of the hashed media data. This technique should thus
be adaptable to other robust hashes, and possibly other fields of application.

Acknowledgment

This publication derived from the master thesis of the main author [34],
supervised by the additional authors. This work is partially taken from it, e.g.
2.5 and 2.7. The master thesis was written at the Department of Computer Sci-
ence of Technische Universität Darmstadt, Germany, and the Media Security
and IT-Forensics Group of the Fraunhofer Institute for Secure Information
Technology, Darmstadt, Germany, and in cooperation with the Department of
Computer Engineering of the Faculty of Engineering of Mahidol University,
Thailand. Many thanks for all the help and support!

This research work has been funded by the German Federal Ministry of
Education and Research and the Hessen State Ministry of Higher Education,
Research and the Arts within their joint support of the National Research
Center for Applied Cybersecurity.

References

[1] A. Aminnezhad and A. Dehghantanha. A survey on privacy issues in
digital forensics. International Journal of Cyber-Security and Digital
Forensics (IJCSDF), 3:183–199, 2014. ISSN 2305-0012. URL https:
//usir.salford.ac.uk/id/eprint/34016/1/asurvey.pdf.

[2] F. Armknecht and A. Dewald. Privacy-preserving email forensics.
Digital Investigation, 14:S127–S136, Aug. 2015. ISSN 1742-2876. .

https://usir.salford.ac.uk/id/eprint/34016/1/asurvey.pdf
https://usir.salford.ac.uk/id/eprint/34016/1/asurvey.pdf


Privacy-Enhanced Robust Image Hashing 127

[3] D. Arp, E. Quiring, T. Krueger, S. Dragiev, and K. Rieck. Privacy-
Enhanced Fraud Detection with Bloom Filters. In Security and Privacy
in Communication Networks, volume 254, pages 396–415. Springer
International Publishing, Cham, 2018. ISBN 978-3-030-01700-2 978-
3-030-01701-9. .

[4] G. Bianchi, L. Bracciale, and P. Loreti. ”Better Than Nothing” Pri-
vacy with Bloom Filters: To What Extent? In Privacy in Statistical
Databases, volume 7556, pages 348–363. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-33627-0. .

[5] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM, 13(7):422–426, July 1970. ISSN 0001-0782. .

[6] F. Breitinger, H. Liu, C. Winter, H. Baier, A. Rybalchenko, and
M. Steinebach. Towards a Process Model for Hash Functions in Dig-
ital Forensics. In Digital Forensics and Cyber Crime, volume 132,
pages 170–186. Springer International Publishing, Cham, 2014. ISBN
978-3-319-14288-3 978-3-319-14289-0. .

[7] J. Bringer, H. Chabanne, and A. Patey. SHADE: Secure HAmming
DistancE Computation from Oblivious Transfer. In Financial Cryp-
tography and Data Security, volume 7862, pages 164–176. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-41319-3
978-3-642-41320-9. .

[8] J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider, and
M. Zohner. GSHADE: Faster privacy-preserving distance computation
and biometric identification. In Proceedings of the 2nd ACM Work-
shop on Information Hiding and Multimedia Security - IH&MMSec
’14, pages 187–198, Salzburg, Austria, 2014. ACM Press. ISBN
978-1-4503-2647-6. .

[9] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein.
Secure Multi-Party Computation of Boolean Circuits with Applications
to Privacy in On-Line Marketplaces. In Topics in Cryptology – CT-
RSA 2012, Lecture Notes in Computer Science, pages 416–432, Berlin,
Heidelberg, 2012. Springer. ISBN 978-3-642-27954-6. .

[10] P. Christen, R. Schnell, D. Vatsalan, and T. Ranbaduge. Efficient
Cryptanalysis of Bloom Filters for Privacy-Preserving Record Linkage.
In Advances in Knowledge Discovery and Data Mining, volume 10234,
pages 628–640. Springer International Publishing, Cham, 2017. ISBN
978-3-319-57453-0 978-3-319-57454-7. .

[11] R. Cramer and I. Damgå rd. Zero-knowledge proofs for finite field arith-
metic, or: Can zero-knowledge be for free? In Advances in Cryptology



128 U. Breidenbach et al.

— CRYPTO ’98, Lecture Notes in Computer Science, pages 424–441.
Springer Berlin Heidelberg, 1998. ISBN 978-3-540-68462-6.

[12] M. J. Dworkin. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Techreport 202, National Institute of
Standards and Technology, Aug. 2015.

[13] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft. Privacy-Preserving Face Recognition. In Privacy Enhanc-
ing Technologies, Lecture Notes in Computer Science, pages 235–253,
Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-03168-7. .

[14] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber. On the privacy
provisions of Bloom filters in lightweight bitcoin clients. In Proceedings
of the 30th Annual Computer Security Applications Conference on -
ACSAC ’14, pages 326–335, New Orleans, Louisiana, 2014. ACM Press.
ISBN 978-1-4503-3005-3. .

[15] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental
Game. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, STOC ’87, pages 218–229, New York, NY, USA,
1987. ACM. ISBN 978-0-89791-221-1. .

[16] R. W. Hamming. Error detecting and error correcting codes. The Bell
System Technical Journal, 29(2):147–160, Apr. 1950. ISSN 0005-8580.
.

[17] S. Hou, T. Uehara, S. M. Yiu, L. C. K. Hui, and K. P. Chow. Privacy
Preserving Confidential Forensic Investigation for Shared or Remote
Servers. In 2011 Seventh International Conference on Intelligent Infor-
mation Hiding and Multimedia Signal Processing, pages 378–383, Oct.
2011. .

[18] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-
party Computation Using Garbled Circuits. In Proceedings of the 20th
USENIX Conference on Security, SEC’11, pages 35–35, Berkeley, CA,
USA, 2011. USENIX Association. URL http://dl.acm.org/citation.cf
m?id=2028067.2028102.

[19] A. Jarrous and B. Pinkas. Secure Hamming Distance Based Computa-
tion and Its Applications. In RoboCup 2001: Robot Soccer World Cup
V, volume 2377, pages 107–124. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-540-43912-7 978-3-540-45603-2. .

[20] K. Kanemura, K. Toyoda, and T. Ohtsuki. Design of privacy-preserving
mobile Bitcoin client based on γ-deniability enabled bloom filter. In
2017 IEEE 28th Annual International Symposium on Personal, Indoor,

http://dl.acm.org/citation.cfm?id=2028067.2028102
http://dl.acm.org/citation.cfm?id=2028067.2028102


Privacy-Enhanced Robust Image Hashing 129

and Mobile Radio Communications (PIMRC), pages 1–6, Montreal, QC,
Oct. 2017. IEEE. ISBN 978-1-5386-3529-2 978-1-5386-3531-5. .

[21] M. Kroll and S. Steinmetzer. Automated Cryptanalysis of Bloom Filter
Encryptions of Health Records. In Proceedings of the International
Conference on Health Informatics, volume 1, pages 5–13, Lisbon, Jan.
2015. SciTePress. ISBN 978-989-758-068-0. .

[22] F. Y. W. Law, P. P. F. Chan, S. M. Yiu, K. P. Chow, M. Y. K. Kwan,
H. K. S. Tse, and P. K. Y. Lai. Protecting Digital Data Privacy in
Computer Forensic Examination. In 2011 Sixth IEEE International
Workshop on Systematic Approaches to Digital Forensic Engineering,
pages 1–6, May 2011. .

[23] M-J. Saarinen and J-P. Aumasson. The BLAKE2 Cryptographic Hash
and Message Authentication Code (MAC). Technical Report RFC7693,
RFC Editor, Nov. 2015.

[24] M. Naor, B. Pinkas, and B. Pinkas. Efficient Oblivious Transfer Pro-
tocols. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’01, pages 448–457, Philadelphia, PA,
USA, 2001. Society for Industrial and Applied Mathematics. ISBN 978-
0-89871-490-6. URL http://dl.acm.org/citation.cfm?id=365411.36550
2.

[25] J. R. Nechvatal, E. B. Barker, L. E. Bassham, W. E. Burr, M. J. Dworkin,
J. Foti, and E. Roback. Report on the Development of the Advanced
Encryption Standard (AES). Journal of Research (NIST JRES) -, 106
No. 3, June 2001. URL https://www.nist.gov/publications/report-devel
opment-advanced-encryption-standard-aes.

[26] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI - A System
for Secure Face Identification. In 2010 IEEE Symposium on Security
and Privacy, pages 239–254, Oakland, CA, USA, 2010. IEEE. ISBN
978-1-4244-6894-2. .

[27] B. Preneel. Cryptographic hash functions. European Transactions on
Telecommunications, 5(4):431–448, 1994. ISSN 1541-8251. .

[28] J. S. Seo, J. Haitsma, T. Kalker, and C. D. Yoo. A robust image
fingerprinting system using the Radon transform. Signal Processing:
Image Communication, 19(4):325–339, Apr. 2004. ISSN 0923-5965. .

[29] M. Steinebach. Robust Hashing for Efficient Forensic Analysis of Image
Sets. In Digital Forensics and Cyber Crime, Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, pages 180–187. Springer Berlin Heidelberg, 2012.
ISBN 978-3-642-35515-8. .

http://dl.acm.org/citation.cfm?id=365411.365502
http://dl.acm.org/citation.cfm?id=365411.365502
https://www.nist.gov/publications/report-development-advanced-encryption-standard-aes
https://www.nist.gov/publications/report-development-advanced-encryption-standard-aes


130 U. Breidenbach et al.

[30] M. Steinebach, H. Liu, and Y. Yannikos. ForBild: Efficient Robust
Image Hashing. In Media Watermarking, Security and Forensics
2012, volume 8303, page 83030O. International Society for Optics and
Photonics, Feb. 2012. .

[31] M. Steinebach, H. Liu, and Y. Yannikos. Efficient Cropping-Resistant
Robust Image Hashing. In 2014 Ninth International Conference on
Availability, Reliability and Security, pages 579–585, Sept. 2014. .

[32] M. Steinebach, S. Lutz, and H. Liu. Privacy and Robust Hashes.
In Proceedings of the 14th International Conference on Availability,
Reliability and Security - ARES ’19, pages 1–8, Canterbury, CA, United
Kingdom, 2019. ACM Press. ISBN 978-1-4503-7164-3. .

[33] United Nations. Universal Declaration of Human Rights, Dec. 1948.
URL http://www.un.org/en/universal-declaration-human-rights/index.h
tml.

[34] Uwe Breidenbach. Privacy-Enhanced Robust Image Hashing with
Bloom Filters. master, TU Darmstadt, Jan. 2020.

[35] C. Winter, M. Steinebach, and Y. Yannikos. Fast indexing strategies
for robust image hashes. Digital Investigation, 11:S27–S35, May 2014.
ISSN 17422876. .

[36] B. Yang, F. Gu, and X. Niu. Block Mean Value Based Image Perceptual
Hashing. In 2006 International Conference on Intelligent Information
Hiding and Multimedia, pages 167–172, Dec. 2006. .

[37] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (Sfcs 1986), pages
162–167, Oct. 1986. .

Biographies

Uwe Breidenbach. In 2016 Uwe Breidenbach graduated with a BSc in
Computer Science, and in 2020 with a MSc in IT-Security, as well as a

http://www.un.org/en/universal-declaration-human-rights/index.html
http://www.un.org/en/universal-declaration-human-rights/index.html


Privacy-Enhanced Robust Image Hashing 131

MSc in Computer Science from Technische Universität Darmstadt, Ger-
many. He wrote his bachelor and master thesis at the Fraunhofer Institute
for Secure Information Technology, Darmstadt, Germany. In addition, the
master thesis was written in cooperation with the Faculty of Engineering of
Mahidol University, Thailand. His main interest of research and work include
penetration testing, ethical hacking, network security, digital forensics, and
privacy protection.

Martin Steinebach is the manager of the Media Security and IT Forensics
division at Fraunhofer SIT. From 2003 to 2007 he was the manager of
the Media Security in IT division at Fraunhofer IPSI. He studied computer
science at the Technical University of Darmstadt and finished his diploma
thesis on copyright protection for digital audio in 1999. In 2003 he received
his PhD at the Technical University of Darmstadt for his work on digital audio
watermarking. In 2016 he became honorary professor at the TU Darmstadt.
He gives lectures on Multimedia Security as well as Civil Security. He
is Principle Investigator at ATHENE and represents IT Forensics and AI
Security. Before he was Principle Investigator at CASED with the topics
Multimedia Security and IT Forensics. In 2012 his work on robust image
hashing for detection of child pornography reached the second rank of the
Deutscher IT Sicherheitspreis, an award funded by Host Görtz.



132 U. Breidenbach et al.

Huajian Liu received his B.S. and M.S. degrees in electronic engineering
from Dalian University of Technology, China, in 1999 and 2002, respec-
tively, and his Ph.D. degree in computer science from Technical University
Darmstadt, Germany, in 2008. He is currently a senior research scientist at
Fraunhofer Institute for Secure Information Technology (SIT). His major
research interests include information security, digital watermarking, robust
hashing and digital forensics.


	Introduction
	Related Work
	Privacy-Preservation in Forensics
	Cryptographic Hashing
	Robust Hashing
	Robust Image Hashing
	Zero-Knowledge Protocol and Secure Multiparty Computation
	Bloom Filter
	Metrics

	Concept
	Application Flow
	Second Decision Stage

	Implementation
	Cryptographic Hash
	Robust Image Hash
	Bloom Filter
	Bloom Filter Hardening
	Closest Match Bloom Filter Extension

	Evaluation
	Test Set
	Attacks
	Testbed
	Parameter Determination
	Robustness and Reliability
	JPEG
	Scaling
	Horizontal mirroring
	Robustness Summary
	Reliability

	Privacy
	Closest Match

	Summary and Future Work
	Future Work


