
How to Use Garbling for Privacy Preserving
Electronic Surveillance Services

Tommi Meskanen1, Valtteri Niemi1 and Noora Nieminen1,2

1Department of Mathematics and Statistics, University of Turku,
20014 Turun yliopisto, FINLAND
2Turku Centre for Computer Science (TUCS), FINLAND
Corresponding Authors: {tommes; pevani; nmniem}@utu.fi

Received 15 September 2014; Accepted 17 April 2015;
Publication 22 May 2015

Abstract

Various applications following the Internet of Things (IoT) paradigm have
become a part of our everyday lives. Therefore, designing mechanisms for
security, trust and privacy for this context is important. As one example,
applications related to electronic surveillance and monitoring have serious
issues related to privacy. Research is needed on how to design privacy
preserving surveillance system consisting of networked devices. One way
to implement privacy preserving electronic surveillance is to use tools for
multiparty computations. In this paper, we present an innovative way of using
garbling, a powerful cryptographic primitive for secure multiparty computa-
tion, to achieve privacy preserving electronic surveillance. We illustrate the
power of garbling in a context of a typical surveillance scenario. We discuss the
different security measures related to garbling as well as efficiency of garbling
schemes. Furthermore, we suggest further scenarios in which garbling can be
used to achieve privacy preservation.

Keywords: Internet of Things, privacy, electronic surveillance, garbling
schemes.

Journal of Cyber Security, Vol. 4, 41–64.
doi: 10.13052/jcsm2245-1439.413
c© 2015 River Publishers. All rights reserved.

42 T. Meskanen et al.

1 Introduction

Nowadays, we are surrounded by an increasing variety of things or objects that
are connected with each other and accessible through the Internet. This trend
is a consequence of a novel paradigm, Internet of Things (IoT), in which the
devices form a network configured to reach goals common to all devices. The
paradigm itself has gained increasing interest after the introduction of tech-
nologies that enable computing-like devices to share their states through the
common network. These technologies include Radio-frequency identification
tags (RFID) [10], Near-field communication (NFC) techniques and Wireless
sensor and actuator network (WSAN) [27]. As an example of a network of
devices trying to reach a common goal, consider an anti-theft system with
motion detecting sensors. The sensors located differently interact with each
other in order to detect unauthorized motion and prevent intruders. Many
other applications of IoT can be found in [3, 27]. Some of the applications
mentioned in [3] have been collected into Figure 1.

1.1 Related Research on Security

The technological advances alone are not sufficient to guarantee success for
IoT-based solutions – the security of the technology is an important aspect
as well. There are a variety of security threats related to IoT, as Roman et al.
show in [26]: The threats are targeted at infrastructure, protocol and network
security, data and privacy, identity management, trust and governance as well
as at fault tolerance. For example, current Internet protocols may not meet the

Figure 1 Applications of the Internet of Things (adapted from [3]).

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 43

security requirements of IoT, especially in the IP-based IoT as Heer et al. show
in [18]. The physical security of IoT devices, e.g. tamper-resistance, is also
an important aspect. An overview of different threats and possible solutions
can be found in [27], whereas a more detailed threat analysis of RFID can be
found in [10] and analyses of NFC from [17].

Several security threats are also identified by Kozlov et al. in [20]: there are
numerous scenarios which endanger the security, trust or privacy of the IoT and
these issues must be taken into account when considering legislation related to
the Internet of Things. According to Weber [28], the IoT technology used by
private enterprises must have resilience to attacks, authenticate the retrieved
address and object information, have an access control and ensure client
privacy. The privacy concerns are notable in situations in which the actions
of individuals are monitored in a privacy-sensitive context. For example,
a failed implementation of IoT related technology in a supermarket may
violate the client privacy by enabling “the mining of medical data, invasive
targeted advertising, and loss of autonomy through marketing profiles or
personal affect monitoring” [29]. However, innovative ways of deploying
privacy preserving IoT in privacy sensitive environments successfully are also
possible: Abie et al. consider risk-based adaptive security framework for IoT
in eHealth in [2]. More generally, techniques to achieve privacy preserving IoT
applications have been considered widely. For example, privacy preserving
electronic surveillance [11, 24] and even privacy preserving data mining [8]
are possible by using a set of powerful cryptographic methods, called secure
multiparty computation (SMPC).

1.2 Our Contributions

The solutions to achieve SMPC include a variety of protocols, e.g. oblivious
transfer [25], secure sum protocols [8] and garbled circuits [30]. In this
paper, we consider a way of achieving privacy preserving IoT applications
by applying SMPC protocols. More specifically, we introduce a new way to
realize privacy preserving electronic surveillance.We present a new tool in
this context, garbling, which enables private computation on encrypted data.

The paper is organized as follows. We demonstrate the power of garbling
in an example scenario presented in Section 2. In Section 3, we describe the
realization of the privacy preserving electronic surveillance. In Section 4, we
analyze the novel application of garbling in more details by considering its
efficiency and what kinds of security goals are achieved by this technique.
Section 5 concludes the paper and proposes directions for future research
related to privacy preserving electronic surveillance.

44 T. Meskanen et al.

2 Problem Setting: Privacy Preserving Electronic
Surveillance System

Electronic surveillance is an application where privacy is a central concern.
Many cryptographic tools have been proposed to ensure at least some level
of privacy. In this paper, we present an innovative way of achieving privacy
by using garbling in the context of electronic surveillance. Let us consider the
following scenario as an example.

The client in this scenario is an elderly person living alone who wants
to use the security service provided by a security company. The security
company bases its service on an electronic surveillance system consisting
of Closed-Circuit Televisions (CCTV) and various sensors (for example,
motion detectors and/or sensors measuring the activity of the client). The
security company collects data obtained by the system for further analysis.
The analysis process contains tools for data mining, pattern recognition and
machine learning – the intelligent surveillance system is supervised to react
correctly on different situations. In certain situations (for instance, when the
ongoing event seems to differ significantly from the usual course of events),
the system evokes an alarm. The alarm together with an assessment of the
situation enables the security company to react appropriately to the situation
(e.g. call police/ambulance, send a guard from the company or just notify
the client). The security company has outsourced its data center services into
a cloud managed by a third-party company. The data from the surveillance
system is stored and analyzed entirely in the cloud environment.

The main concern in this scenario is how the privacy for the client is
managed. First obvious requirement is that anyone beyond the client, the
security company and the cloud should not learn the contents of the data
collected by the surveillance system. This requirement can be reached by
simply encrypting the data on the client side and decrypting the data on
the security company side. As a consequence, the security company and the
cloud provider can follow everything that is going on at the client’s home.
A serious concern is that the third-party company managing the cloud can
learn something about the client that could be used for unwanted or even
malicious purposes. Thus it is highly justified to hide the raw data also from
the cloud whereas the security company needs the raw data to be able to
react correctly in the alarming situations. A solution to this is to use two-party
computation between the security company and the cloud. This would allow
the cloud to analyze the surveillance data without allowing the cloud to learn
the raw data or the analytics tools.

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 45

However, this solution is still problematic. The security company should
monitor the surveillance data of numerous customers in real time while the
analysis on cloud is ongoing. This is not desirable because of several reasons.
From the company’s perspective, real-time monitoring is inefficient – several
employees are tied to follow the monitors and are demanded to be in alert
readiness all the time, even though nothing alarming is happening. From the
client’s perspective, the all-time surveillance is distracting and feels privacy
violating – the security company should be able to study the raw data only in
alarming situations and not otherwise.

To summarize the above analysis of the scenario, the implementation of
the privacy preserving electronic surveillance system should have the follow-
ing properties.

Confidentiality: All the information related to the electronic surveillance is
kept secret from parties excluding the client, the security company and the
third-party cloud. The third-party cloud performs the analysis on encrypted
data. The cloud retrieves the encrypted surveillance data from the client and
the encrypted surveillance data from the security company. The cloud is not
allowed to find out the unencrypted surveillance data (the data is privacy-
sensitive) or the analytics tool (the tool may be intellectual property of the
security company). Depending on the contract between the security company,
the client and the cloud, the final analysis result can either be concealed from
the cloud or can be revealed to the cloud. These alternatives are discussed in
more detail in Section 4. The security company is not allowed to retrieve the
unencrypted surveillance data unless the analysis result yields an alarm. The
client is not allowed to learn the implementation details of the analytics tool
(the tool may be intellectual property of the security company).

Integrity: We may assume that the client is honest and therefore the surveil-
lance data is authentic. Cloud can be honest, semi-honest or even malicious –
a garbling scheme achieving certain level of security (explained in Section 4)
guarantees that the analysis result is also authentic. Additionally, integrity of
data in transit is protected, e.g. by using message authentication codes.

Entity authentication: The cloud does not need to authenticate itself, since
all the data it processes is encrypted (in the case the cloud is not allowed to
find out the analysis result). The security company and the client authenticate
themselves when the system is first configured. After the authentication, we

46 T. Meskanen et al.

assume that the channel between the client and the security company is
confidential and authentic.

Access control: The security company is able to retrieve the unencrypted
surveillance data only in the case in which the final analysis result yields an
alarm. This requires that the analytics tools must not reveal the surveillance
data. To ascertain this, the client and the security company use a trusted auditor
that verifies appropriateness of the analytics tool (the analytics tool does not
leak surveillance data in the final analysis report). We have described the differ-
ent solutions for accessing the unencrypted surveillance data in Section 3.1.

Authorization: Access control, entity authentication and other security mea-
sures naturally require that access to various resources is properly authorized.
For example, the client has to authorize the security company to have access to
raw data in case of alarm and the security company has to provide authorization
for the cloud provider in order to receive garbled data from the client.

Non-repudiation: We assume that the garbling protocol will achieve authen-
ticity. This guarantees that the cloud cannot forge the garbled evaluation, and
that the encrypted analysis result is authentic. We assume that the surveillance
data is authentic. We also assume that the channel between the client and the
security company is confidential and authentic. We also assume that the cloud
service provider and the security company are not in the conspiracy against the
client. Then log data collected by all parties can be used for non-repudiation
purposes, see also discussion about logs in Section 3.2.

Availability: The system is naturally based on the assumption that raw data
will be available for the security company in alarming situations. Related to
this, there are threats purely concerning implementation. For example, burglars
may cut off sending of data to the cloud. Also, the surveillance data stream
may be interrupted on client side. As an example, robbers may break the
CCTV equipment and sensors or the client may throw a towel on top of the
surveillance camera etc.

To achieve these properties, we need an additional tool that enables the
cloud to evaluate the analytics algorithms on the surveillance data without
learning anything about the algorithms or data. A tool that fulfills this require-
ment is garbling. The formal definition of garbling and different security
aspects related to garbling can be found in Section 4. In the following section,
we concentrate on how the surveillance system using garbling should be
implemented.

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 47

3 Operating Model: How to Build Privacy Preservation
in the Surveillance System

In this section, we describe the operating model that aims at a solution for
the problem presented in the previous section: How can the security company
provide privacy preserving electronic surveillance to an elderly person even
when all the data services of the company have been outsourced to a third-party
cloud provider.

Our solution is based on a cryptographic tool for secure multiparty com-
putation, garbling. Garbling enables secure and private function evaluation.
A user who does not have enough computing resources utilizes a possibly
untrustworthy evaluator, such as cloud, to accomplish the evaluation of some
function f on argument x. However, the user wants to keep both the function f
and the argument x secret from the evaluator. The user and the cloud agree on
using a garbling scheme that works as follows. First, the user garbles function
f and its argument x and obtains garbled function F and garbled argument
X. The user gives F and X to the evaluator who runs the garbled evaluation
to get the garbled value Y = Ev(F, X). Now, either the evaluator or the user
ungarbles Y to get the final value y, which is equal to the result of the original
evaluation y = ev(f, x).

In the scenario presented in the previous section, the electronic surveil-
lance system is designed under the IoT paradigm, making the computational
resources of the system limited. This means that the surveillance data analysis
must take place outside the surveillance system, for example at the data center
of the security company. Since the data center services are outsourced, the
analysis takes place in the cloud managed by a third-party company. The
surveillance data from the client’s home is privacy sensitive as are the analytics
tools of the security company, so the three parties agree on using a garbling
scheme. Figure 2 illustrates the scenario showing also how the garbling scheme
is used by the different parties.

3.1 Responsibilities of the Different Parties

The surveillance data is garbled on the client side. In this way, neither the cloud
nor the security company is able to access the raw data directly. The garbled
surveillance data is sent to the cloud for analysis. The security company
has garbled its analytics tools that act as the function to be evaluated on
cloud. After receiving both the garbled data and the garbled analytics tools,
the cloud runs the garbled evaluation getting the garbled final value. If the
cloud is allowed to decrypt the garbled analysis result, then it decrypts the

48 T. Meskanen et al.

Figure 2 Scenario about electronic surveillance.

garbled value getting the final outcome of the analysis. This final outcome
is sent to the security company for further investigation. However, letting
the cloud learn the analysis results might not be convenient – it can violate
the privacy in similar manner as the actual surveillance data. Thus, a more
convenient way of implementation is that the cloud sends the garbled analysis
outcome to the security company for further investigation. Now, the security
company ungarbles the data received from the cloud. Based on the analysis
outcome, the security company takes corresponding actions (e.g. by visiting
the home or calling the police, an ambulance, a social worker, the person’s
relatives etc.).

A straight-forward way of reacting to the alarm situation for the security
company is that a guard from the company visits the client for further
inspection in spite of what has caused the alarm. Then, the security company
does not have or even need an access to the raw data (in Figure 2 this means,
that no encrypted surveillance data X̃ is provided to the security company).
However, this is not a practical approach. The company should adaptively react
to different alarms – for example a robbery should cause different reactions
than the client staying suspiciously long in the shower.

To adaptively react to the various situations, the security company needs
an access to the raw data. Granting the security company access to the
raw data with no restrictions is not a satisfactory solution since it would
violate the requirements set to the system: the raw data should be accessible
for the security company only in alarming situations (see Confidentiality
requirement in Section 2). One possible way of realizing the access control

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 49

would be to encrypt the raw data twice, independently for the cloud and for
the security company. The raw data is protected against the cloud by garbling
the argument x. Garbling x is modeled by encrypting x using the encryption
algorithm En together with encryption key e. Respectively, the algorithm De
with the decryption key d is used to ungarble Y to final value y. The encryption
against the security company utilizes an independent encryption algorithm Ẽn
with key ẽ. The decryption algorithm D̃e with the decryption key d̃ is used to
recover the raw data from the encrypted data X̃ – this key is called recovery
key to avoid confusion between the two keysd (which is needed for ungarbling)
and d̃ (which is needed for recovering x from X̃).

The surveillance data is collected in pieces and these pieces are then
encrypted and sent to the cloud (X) and to the security company (X̃) by
the client. Data pieces may contain overlaps so that successful reconstruction
of the course of events without gaps is possible. Since the cloud does not
learn the keys (e, d), and hence learns nothing privacy – violating about the
surveillance data x or the analysis result y, the same keys (e, d) may be used
for many evaluations by the analytics tool.

The same does not hold for the keys (ẽ, d̃) related to the encryp-
tion of surveillance data against the security company. If the same keys
(ẽ, d̃) were used, then the security company would-be able to follow all
the surveillance data after accessing the keys (ẽ, d̃) for the first time – even
in the non – alarming situations. This clearly violates the privacy policy we
have set to the system. Thus, a more sophisticated access control method is
needed. We have identified the following two approaches to implement access
to the recovery key d̃.

3.2 The First Approach

In this approach, the recovery key d̃ for recovering the encrypted surve-
illance data X̃ is possessed by the security company. However, the key d̃
must be protected by an electronic seal because otherwise the company could
decrypt all the surveillance data and not only the data related to alarms. The
company is allowed to break the seal whenever the analysis yields an alarm.
After breaking the seal, the company uses the recovery key to obtain the actual
surveillance data consisting of the moments some time before and after the
alarm.

The above approach requires a countermeasure to detect unauthorized
access to the surveillance data. One possible way is to utilize event logging.
Each of the three parties related to the surveillance are maintaining their

50 T. Meskanen et al.

own independent event logs. The independent logs contain information that
can be derived from the activities of the different parties (for example, the
company logs access to the raw data together with a synopsis of the analysis
results). These three independent logs can in principle be compared to detect
unauthorized or illegitimate access to the backup data. Of course, the different
logs can be forged and the comparison does not work in the desired way in
case there are conspiracies between the parties but solving conspiracy issues
is not in the scope of this paper.

In this approach, the efficiency of the implementation depends on the
efficiency of the used garbling scheme as well as the efficiency of the used

independent encryption scheme E = (˜KeyGen, Ẽn, D̃e). The efficiency of
garbling schemes is discussed in more detail in Section 4.3. The efficiency
of the encryption scheme E is due to the choice of the security company. For
example, E may be AES-128.

3.3 The Second Approach

In this approach, the recovery key d̃ is in client’s possession. Since the secu-
rity company does not possess the decryption key d̃ of X̃ , the company cannot
monitor the data unless it is handed the decryption key. The company should be
able to get the decryption key only in alarming situations. A straight-forward
way of implementing the access control into the recovery key d̃ is to use
timestamped key management (see [19] for further information). The security
company can access the keys d̃ related to the raw data having certain
timestamps that correspond to the time of the alarm detection as well as the
data from some moments before and after the alarm detection. The client can
later check which keys have been sent to the security company and, if needed,
check the corresponding raw data.

There is also a more innovative way of implementing the access control
into the recovery key d̃. Informally, our idea is to send the recovery key d̃ to
the security company via the cloud in such a way that the cloud does not learn
the recovery key. Moreover, the security company will receive the key only
in the case that the final analysis results yield an alarm. Next, we explain in
more details, how this functionality can be implemented.

For simplicity, let us assume that the final surveillance analysis result
is either alarm or no alarm, i.e. y ∈ {alarm, no alarm}. Now, we want that
the security company gets d̃ whenever y = alarm. This can be reached by
attaching first the recovery key d̃ to the surveillance data, i.e. xm = (x, d̃).
This argument is then garbled and sent to the cloud, thus the cloud is not able

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 51

to learn d̃. The function f needs to be modified in order to be able to handle
the new argument type. We define the modified function as follows

fm(xm) =
{

(y, d̃) if y = alarm
(y, ε) otherwise (where ε is the empty string)

The garbling scheme works in a similar manner as before. The cloud gets
the garbled argument Xm from the client and the garbled function Fm from
the security company. The cloud computes the garbled value Ym and sends
it to the security company. The security company ungarbles Ym and gets

ym= (y, β). Here, β ∈
{

d̃, ε
}

depends on whether y = alarm or not.

The modifications in x and f now give the required functionalities. First
of all, the security company gets the recovery key d̃ only in the case y yields
an alarm. Secondly, sending the key via the cloud is not insecure – the key
remains garbled during the whole garbled evaluation in similar manner as the
argument and the function.

The efficiency of implementation using this approach depends on the
efficiency of the used garbling scheme and the efficiency of the used encryption

scheme E =
(

˜KeyGen, Ẽn, D̃e
)
. However, the function fm and the argument

xm are more complex than in the first approach, since the argument xm

contains the recovery key d̃ and the function fm needs to process d̃ somehow.
This means, that the second approach is not as efficient as the first approach.
On the other hand, the second approach provides better control over the use
of the recovery key d̃.

4 Implementation of the Surveillance Service

In this section, we describe garbling schemes in more details. We start by
defining the concept after which we discuss the different security measures
for garbling schemes. We also discuss which of the security concepts are ideal
for the use in the context of privacy preserving electronic surveillance.

4.1 Building Blocks

As mentioned earlier, our main building block to construct a privacy pre-
serving and cloud-assisted surveillance system is garbling. Garbling enables
surveillance data to be analyzed on cloud environment without compromising
the privacy of the client or revealing business secrets in the form of the
analytics tool.

52 T. Meskanen et al.

The surveillance analytics tool may contain algorithms e.g. for anomaly
detection [7, 9] (to detect the abnormal situations among the normal
situations), and for machine learning. Recently, a method for running machine
learning algorithms on encrypted data has been proposed [16].

One possible way of teaching the analytics tool is the following. Before the
surveillance starts, the company and the client may have collected data from
normal situations. These labeled situations together with the data from the
surveillance system act as the training data for the semi-supervised learning
(see [31] for more information) algorithm that now helps in doing the final
analysis together with the other algorithms. We do not concentrate on the exact
implementation of the analytics tool as our focus is on the tools enabling the
privacy preserving surveillance.

4.2 Formal Definitions for Garbling

Formally, a garbling scheme is a 6-tuple of algorithms, (KeyGen, Ga, En, De,
Ev, ev). The last component of the tuple is the evaluation algorithm ev: an
algorithm that computes the value of function f on argument, i.e. y = f (x). In
our scenario, the function f is the surveillance analytics tool and the argument
x is the surveillance data. To hide the analytics tool and the surveillance data,
both f and x are garbled. To do this, first key generation algorithm KeyGen is
called to generate three keys (g, e, d). The garbling algorithm Ga computes
the garbled function F = Ga(g, f) based on the function f and garbling
key g. The encryption algorithm En computes the garbling X = En(e, x) based
on argument x and encryption key e. The garbled evaluation function (the
garbled analytics tool) computes the garbled value Y = Ev(F, X) (garbled
analysis). Finally, the decryption algorithm De ungarbles Y and returns the
final analysis result y = De(d, Y) by using the decryption key d issued by
the KeyGen algorithm. Note that the final analysis result must be the same
despite of the method used for evaluation: the garbled evaluation must yield the
same final analysis result as the actual evaluation, i.e. ev(f, x) = y = De(d, Y)
= De(d, Ev(F, X)). The garbled evaluation process is illustrated in Figure 3.
For further details, consult e.g. [22].

In the example scenario presented in this paper, a garbling scheme
G = (KeyGen, Ga, En, De, Ev, ev) is used as follows. The client in the
scenario uses the algorithms KeyGen and En. The security company uses
algorithm Ga. The cloud uses algorithm Ev. Depending on the case, either the
cloud or the security company uses algorithm De. Figure 4 illustrates how
the different algorithms are run by different parties in the example scenario.

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 53

Figure 3 The components and the workings of a garbling scheme. The diagram is adapted
from [22].

Figure 4 Garbling scheme in the surveillance scenario.

In the illustration, we assume that the channel between the client and the
security company assures data integrity, authenticity and confidentiality. This
is not assumed for the channel between the client/the security company and
the cloud. We also present the situation in which the security company is the
party ungarbling Y.

4.3 Security Considerations

In this section, we first introduce different security concepts for garbling
schemes. Exact definitions for each concept can be found in literature [6, 5,
21–23]. Then, we analyze which of the security concepts meet the require-
ments for the privacy preserving electronic surveillance system proposed in
the previous section.

54 T. Meskanen et al.

Every security concept can be characterized by security notion and level
of reusability. The security notion tells what kind of information about the
function f and the argument x is allowed to be leaked. The notion function
and argument hiding means that the garbling scheme is allowed to leak
f(x), but neither f nor x. The notion function, argument and final value
hiding does not allow the garbling scheme to leak any of f, x or f(x).
The notion matchability-only does not allow the garbling scheme to leak f
nor x, but when evaluating f on two different arguments x1 and x2, the
garbling scheme is allowed to leak whether f(x1)= y1 = y2 = f(x2).
Note that the names of the notions differ from the ones used in literature.
We use non-standard names to distinguish what we mean by privacy in
the example scenario and privacy related to garbling schemes. The notion
function and argument hiding corresponds the notion privacy in [5, 23].
The notion function, argument and final value hiding corresponds the notion
obliviousness in [5, 23].

The security notions described above deal with secrecy. The authenticity
property can also be formalized for garbling schemes. Authenticity guarantees
that an adversary is unable to create a garbled value Y from a garbled
function F and its garbled argument X such that Y �= F(X) but which will be
considered authentic. For a formal definition of authenticity for garbling
schemes, consult [6]. The authenticity of garbling schemes is needed to fulfill
requirement 2, demanding that the final analysis result must be authentic. Thus,
the garbling scheme used in the example scenario must achieve authenticity
in the sense explained in [6].

Another characteristic of a garbling scheme is the level of reusability. The
level of reusability tells how many times the same garbled function can be
securely used for different arguments. The first reusability level enables only
one-time use of the same garbled function [5, 6, 21] whereas higher levels
of reusability enable several or even arbitrary reuse of the garbled function
[15, 23].

Let us first recall Confidentiality, Integrity, Entity authentication, Access
control, Authorization, Non-repudiation and Availability requirements pre-
sented in Section 2. The Confidentiality requirement says that the unencrypted
surveillance data must be kept secret from third parties, including the cloud.
Moreover, the analytics tool must be hidden from third-party cloud. From the
garbling point-of-view, this means that the garbling scheme should be at least
function and argument hiding. The Confidentiality requirement also tells that
hiding the final analysis result depends on the contract between the client,
security company and the cloud.

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 55

We have identified three possible configurations of the surveillance system
all of which set different security requirements to the garbling scheme in use.
In all three cases, the surveillance data as well as the surveillance data analytics
tools are kept secret from the cloud. The differences in the configurations are
related to the final analysis results: are the analysis results kept totally, partially
or not at all secret from the cloud. Let us next provide more details of these
three different configurations.

Case 1: The cloud is allowed to learn nothing about the resulting analysis.
This means that the surveillance data, the analytics tool and the final analysis
result are all hidden from the cloud. From the garbling point-of-view, this
is the same as hiding the function, the argument and the final value. This is
desirable, because the third-party company may use the information about
the analysis for its own purposes that might be unwanted by the client.
Thus, the garbling scheme must leak none of f (the analytics tool), x (the
surveillance data) or y = ev(f, x) (the analysis result) to the cloud. A garb-
ling scheme that is function, argument and final value hiding meets these
requirements.

Case 2: The cloud is allowed to learn indirect information about the
analysis result but possibly not the actual content of the final analysis. From the
garbling point-of-view, this is the same as hiding the function, the argument
and the final value but leaking some information about the final value. One
justification for this weaker privacy requirement is the following: the cloud
service provider may anyway be able to find out the actions of the security
company related to certain garbled analysis results. For example, the cloud
has found that garbled analysis result Y yields a call to the police. When the
same garbled analysis result Y is found later again on the cloud, the cloud
service provider is able to predict the reaction of the security company – the
security company will probably call to the police.

Thus, we could require that the cloud service provider cannot find out f, x
or y but it is able to find out whether the certain Y yields similar actions as
before. For the garbling scheme this means that the scheme should not leak
f, x or y but it may leak whether f(x1) = y1 = y2 = f(x2) when computing
ev(f1, x1) and ev(f2, x2). This is exactly what a garbling scheme achieving
matchability-only security provides.

Case 3: The cloud service provider is allowed to learn the final analysis
result. From the garbling point-of-view, this means that the garbling scheme
is allowed to leak the final value y whereas it must hide the function and
the argument. However, the Confidentiality requirement tells that the cloud
is allowed to learn nothing about the ungarbled surveillance data, meaning

56 T. Meskanen et al.

that the final analysis cannot contain parts of surveillance data. To assure
this, the final value could be something else than a review of the surveillance
data. It may also be the type of alarm, like no alarm, low urgency, medium
urgency, high urgency etc. or simply alarm/no alarm. Now it may under some
circumstances be acceptable to let the cloud provider to know the type of
the alarm. This means the garbling scheme should hide f and x but it may
leak y. This is exactly what a function and argument hiding garbling scheme
provides. However, it is questionable whether the cloud should generally learn
that there is an alarming situation at the client. This violates the requirement
that the third – party cloud should learn nothing about the surveillance, not
even the fact that the security company is being alarmed.

The above reasoning suggests that the garbling scheme should either be
function, argument and final value hiding or achieve matchability-only. From
the practical point of view, matchability-only is preferable as it has been shown
in [21–23] that it is at least as easy to achieve matchability-only as to be
function, argument and final value hiding. Moreover, for practical reasons
one should be able to use the same garbled analytics tool for several garbled
surveillance data entries. For the garbling scheme this converts to reusability.
Thus we suggest that the applied garbling scheme should be reusable as
well as achieve matchability-only and authenticity. This guarantees that the
surveillance is privacy-preserving since the third parties do not learn the
ungarbled surveillance data or the ungarbled analysis result.

4.4 Efficiency Considerations

The above concepts do not restrict the computation method for evaluating
function f on argument x – the function f may represent models such as a
circuit, a Turing machine or a random-access machine. Methods for garbling
various computational models have been constructed. For example, there exist
garbling schemes for circuits [30], Turing machines [14] and random-access
machines [13].

The choice of the computation method affects the efficiency of the garbling
scheme. Choosing circuits over Turing machines has at least two unfortunate
consequences. The first consequence is related to the running time of circuits.
The running time of a circuit is constant, implying that evaluating a circuit
with any input takes the worst-case running time. This is not the case for
Turing machines. Another unfortunate consequence is related to the size of
the garbled function F. Turing machines outperform circuits also in this aspect:
the size of garbled circuit is as large as the running time of the algorithm where

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 57

as the size of the garbled Turing machine depends only on the description of
the algorithm and not on the input value x. [14]

On the other hand, using circuits as the computation method has benefits
over Turing machines when considering the costs of constructing the garbling
scheme. Garbled circuits are known to have efficient constructions [4] where
as such are not known for garbled Turing machines. Garbled Turing machines
typically use fully-homomorphic encryption [12] as a building block which
causes inefficiency in the construction.

Next we provide some numbers on the efficiency of garbling. The values
have been collected from [4], in which three different garbling schemes have
been experimented by using JustGarble (the source code is open-source and is
available in [1]) system on an x86-64 Intel Core i7-970 processor clocked at
3.201 GHz with a 12MB L3 cache. The three garbling schemes are based on a
function and value hiding garbling scheme Garble1 presented in [6]. All three
presented garbling schemes are based on dual-key cipher. The difference in
the three schemes is the different optimization techniques used to reduce the
evaluation time. For more details, consult [4].

On a circuit having 15.5 million gates, of which 9.11 million gates are
XOR gates, the most efficient garbling scheme GaX uses approximately 0.49
seconds to garble the circuit and 0.23 seconds to evaluate the garbled circuit
[4]. This shows that the time for evaluating and garbling using GaX is efficient
even on quite large circuits, meaning that even complex algorithms represented
as circuits can be efficiently garbled and evaluated with GaX.

Using this measurement data presented in [4], we can estimate the effi-
ciency of our solution for the example scenario as follows. Let us assume that
the garbling scheme GaX is used. Let us further assume that the analytics tool
is presented as a circuit having approximately 15.5 million gates. If the client
sends surveillance data at rate of 0.5 kilobits/second then an analysis result is
received by the security company approximately once per second. Achieving
the low sending rate of 0.5 kilobits per second requires some pre-processing of
the surveillance data on client side, e.g concerning the captured video stream
where raw data is accumulated in much higher data rate. As a summary, these
figures seem to be acceptable from practical point-of-view.

There are some known issues related to the use of scheme GaX. The
garbled argument F is constructed at the same time as the keys (e, d), meaning
that one party needs to possess both the function and the argument. We can
solve this problem in two ways. First one is to let a trusted authority to run the
garbling algorithm Ga with the garbling key g obtained from the client and the
function f obtained from the security company. Another solution would be

58 T. Meskanen et al.

that the client and the security company use a secure multiparty computation
protocol for computing Ga(g, f) together in such a way that the security
company does not learn g and the client does not learn f . Unfortunately,
both solutions add to the complexity of the system and increase the time
to garble.

Another problem in using any of the garbling schemes from [4] is that
these garbling schemes are not reusable. This means that every time a new
surveillance data entry is ready to be processed, both the surveillance data
entry and the analytics tool need to be garbled. This implies that big amount
of the total computation happens in the client side, and therefore the benefit of
using cloud is questionable. In garbling schemes supporting reusable garbled
circuits, the analytics tool represented as a circuit is garbled only once which
would increase the overall efficiency of the garbling scheme. In our scenario,
this would correspond to a situation where most of the computation load can
be moved to the cloud. Unfortunately, no efficient constructions for reusable
garbled circuits are known.

5 Discussion

Applications following the Internet of Things paradigm have increased
rapidly, even to the extent that the security, trust and privacy related to the
applications have not been able to keep up with the progress. Especially,
privacy preservation seems to be one of the hottest topics related to the Internet
of Things. One application that is regarded as privacy violating is electronic
surveillance, at least in the private premises such as homes. On the other hand,
there is a need to monitor private homes in order to track emergencies and
protect the customers from various threats. We are confronting the challenging
task of creating a privacy preserving electronic surveillance system.

In this paper, we have presented a novel way of using garbling schemes
to achieve privacy preservation in electronic surveillance. We illustrated the
power of garbling with an example scenario. An elderly person living alone
is subscribing to a security service that includes electronic surveillance. The
surveillance data is analyzed by a security company that has outsourced its
data services onto a third-party cloud. Garbling allows the private analysis of
the surveillance data on cloud – the cloud learns neither the surveillance data
nor the analytics tool.

The example scenario is not the only possible application for garbling.
As another related example, a monitoring system can be installed in the ho-
mes of people using the services for assisted living. The party monitoring the

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 59

data should not learn the habits of the person using the system beyond the
situations in which the person needs help. In this scenario, the security
company may provide the monitoring services to the company providing the
services for assisted living. This makes the privacy preservation even more
complex task.

Avariant of our example scenario presented in this paper is that the security
company does not use third-party cloud services and instead does all the analy-
sis itself. The operation of the parties present in this variant scenario resembles
the operation of the same parties in the example scenario. However, there is
one fundamental difference: the party possessing the analytics algorithms is
the same as the party evaluating the analytics algorithms. This means that
the security company first garbles the analytics algorithm as before, but then
evaluates the garbled analytics algorithms on the garbled data received from
the client.

In this case, the garbled evaluation might directly give the final analysis
result y as hiding the result from the security company itself is useless.
Moreover, the garbling of the analytics tool is not essential since the same party
(the security company) both possesses the analytics tools and is responsible for
the evaluation. Hence, the variant scenario is more efficient than the original
scenario. However, moving the computation load from the cloud to the security
company requires that the computational resources on the security company
side should increase.

To conclude, we have found a novel solution to provide privacy preser-
vation in an electronic surveillance system utilizing the Internet of Things
paradigm. The biggest advantage in our solution is that garbling provides
flexibility in the system. The surveillance analytics tool can be almost any-
thing, from comparisons to complex machine learning algorithms. Moreover,
the function f can be changed without need to reconfigure the whole system,
easing the system maintenance.

The biggest obstacles for implementing the described system we have
described is related to the implementation of efficient garbling schemes. There
exist efficient garbling schemes (see Section 4.3) that support one-time use
of the garbling scheme. But regarbling the analytics tool again for every
surveillance data entry is not optimal from practical point-of-view. Reusable
garbled circuits would solve this problem – however efficient garbling
schemes supporting reusable garbled circuits are not known.

Future research may solve the problem of efficient reusable garbled
circuits. Moreover, exploring further targets for innovative use of garbling in
the context of IoT is important. An interesting target would be larger and more

60 T. Meskanen et al.

complex systems having more parties, for example a scenario where a person
uses services for assisted living. In this scenario, we would have four
parties – the client, the assisted living service provider, the security service
provider (providing the devices for monitoring the client) and the third-party
cloud service provider.

Acknowledgments

Authors would like to thank anonymous referees for valuable suggestions that
have improved the paper quality significantly. This work was supported by
the Academy of Finland project “Cloud Security Services” which is greatly
appreciated.

References

[1] JustGarble. http://cseweb.ucsd.edu/groups/justgarble/. Accessed: 2014-
10-13.

[2] H. Abie and I. Balasingham. Risk-based Adaptive Security for Smart
IoT in eHealth. In Proceedings of the 7th International Conference on
Body Area Networks, BodyNets’12, pages 269–275, ICST, Brussels,
Belgium, Belgium, 2012. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[3] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A Survey.
Computer Networks, 54(15): 2787–2805, 2010.

[4] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient
garbling from a fixed-key blockcipher. In Proc. of Symposium on
Security and Privacy 2013, pages 478–492. IEEE, 2013.

[5] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling
scheme with applications to one-time programs and secure outsourcing.
In Proc. of Asiacrypt 2012, volume 7685 of LNCS, pages 134–153.
Springer, 2012.

[6] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of Garbled
Circuits. In Proc. of ACM Computer and Communications Security
(CCS’12), pages 784–796. ACM, 2012.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey.
ACM Comput. Surv., 41(3): 15: 1–15: 58, July 2009.

[8] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for
Privacy Preserving Distributed Data Mining. SIGKDD Explor. Newsl.,
4(2): 28–34, Dec. 2002.

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 61

[9] T. Dunning and E. Friedman. Practical Machine Learning: A New Look
at Anomaly Detection. O’Reilly Media, 2014.

[10] S. Evdokimov, B. Fabian, O. Günther, L. Ivantysynova, and H. Ziekow.
RFID and the Internet of Things: Technology, Applications, and Security
Challenges. Foundations and Trends@in Technology, Information and
Operations Management, 4(2):105–185, 2011.

[11] K. B. Frikken and M. J. Atallah. Privacy Preserving Electronic Surveil-
lance. In Proceedings of the 2003 ACM Workshop on Privacy in the
Electronic Society, WPES ’03, pages 45–52, New York, NY, USA, 2003.
ACM.

[12] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford University, 2009. crypto. stanford. edu/craig.

[13] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs.
Garbled RAM Revisited. In Proc. of 33rd Eurocrypt, volume 8441 of
LNCS, pages 405–422, 2014.

[14] S. Goldwasser, Y. Kalai, R. Popa, V. Vaikuntanathan, and N. Zeldovich.
How to Run Turing Machines on Encrypted Data. In Proc. of 33rd

CRYPTO, volume 8043 of LNCS, pages 536–553, 2013.
[15] S. Goldwasser,Y. Kalai, R.A. Popa, V. Vaikuntanathan, and N. Zeldovich.

Reusable Garbled Circuits and Succinct Functional Encryption. In Proc.
of the 45th STOC, pages 555–564. ACM, 2013.

[16] T. Graepel, K. Lauter, and M. Naehrig. ML Confidential: Machine
Learning on Encrypted Data. In International Conference on Information
Security and Cryptology – ICISC 2012, Lecture Notes in Computer
Science, to appear. Springer Verlag, December 2012.

[17] E. Haselsteiner and K. Breitfuß. Security in near field communication
(NFC). In Workshop on RFID security, pages 12–14, 2006.

[18] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and
K. Wehrle. Security Challenges in the IP-based Internet of Things. Wirel.
Pers. Commun., 61(3): 527–542, 2011.

[19] A. V. D. M. Kayem, S. G. Akl, and P. Martin. Timestamped Key
Management. In Adaptive Cryptographic Access Control, volume 48 of
Advances in Information Security, pages 61–74. Springer US, 2010.

[20] D. Kozlov, J. Veijalainen, and Y. Ali. Security and Privacy Threats
in IoT Architectures. In Proceedings of the 7th International Confer-
ence on Body Area Networks, BodyNets’12, pages 256–262, ICST,
Brussels, Belgium, Belgium, 2012. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

62 T. Meskanen et al.

[21] T. Meskanen, V. Niemi, and N. Nieminen. Classes of Garbled Schemes.
Infocommunications Journal, V(3): 8–16, 2013.

[22] T. Meskanen, V. Niemi, and N. Nieminen. Garbling in Reverse Order. In
The 13th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (IEEE TrustCom-14), 2014.

[23] T. Meskanen, V. Niemi, and N. Nieminen. Hierarchy for Classes of Gar-
bling Schemes. In Proc. of Central European Conference on Cryptology
(CECC’14), 2014.

[24] V. Oleshchuk. Internet of things and privacy preserving technologies.
In 1st International Conference on Wireless Communication, Vehicu-
lar Technology, Information Theory and Aerospace Electronic Systems
Technology, 2009. Wireless VITAE 2009., pages 336–340, 2009.

[25] M. O. Rabin. How to Exchange Secrets with Oblivious Transfer.
Technical report tr-81, Aiken Computation Lab, Harvard University,
1981.

[26] R. Roman, P. Najera, and J. Lopez. Securing the Internet of Things.
Computer, 44(9): 51–58, Sept 2011.

[27] O. Vermesan, M. Harrison, H. Vogt, K. Kalaboukas, M. Tomasella,
K. Wouters, S. Gusmeroli, and S. Haller. Vision and Challenges for
Realising the Internet of Things. European Commission, Information
Society and Media, 2010.

[28] R. H. Weber. Internet of Things – New security and privacy challenges.
Computer Law & Security Review, 26(1): 23–30, 2010.

[29] J. S. Winter. Surveillance in Ubiquitous Network Societies: Normative
Conflicts Related to the Consumer In-store Supermarket Experience in
the Context of the Internet of Things. Ethics and Inf. Technol., 161: 27–41,
2014.

[30] A. Yao. How to generate and exchange secrets. In Proc. of 27th FOCS,
1986., pages 162–167. IEEE, 1986.

[31] X. Zhu. Semi-Supervised Learning Literature Survey. http://pages.
cs.wisc.edu/∼jerryzhu/pub/ssl survey.pdf, July 2008.

How to Use Garbling for Privacy Preserving Electronic Surveillance Services 63

Biographies

T. Meskanen had his PhD in 2005. Since then he has been working as a
researcher and lecturer at University of Turku. His main research interests are
cryptography and public choice theory. His email address is tommes@utu.fi.

V. Niemi is a Professor of Mathematics at the University of Turku, Finland.
Between 1997 and 2012 he was with Nokia Research Center in various
positions, based in Finland and Switzerland. Niemi was also the chairman of
the security standardization group of 3GPP during 2003–2009. His research
interests include cryptography and mobile security. Valtteri can be contacted
at valtteri.niemi@utu.fi.

N. Nieminen is a doctoral student at Turku Centre for Computer Science,
Department of Mathematics and Statistics at the University of Turku. Her
research interests include cryptography and its applications. Contact her at
nmniem@utu.fi.

