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Abstract

We present a bio-inspired method for large-scale fuzzing to detect vulner-
abilities in binary executables. In our approach we deploy small groups of
feedback-driven explorers that guide colonies of high throughput fuzzers to
promising regions in input space. We achieve this by applying the biological
concept of chemotaxis: The explorer fuzzers mark test case regions that drive
the target binary to previously undiscovered execution paths with an attrac-
tant. This allows us to construct a force of attraction that draws the trailing
fuzzers to high-quality test cases. By introducing hierarchies of explorers we
construct a colony of fuzzers that is divided into multiple subgroups. Each
subgroup is guiding a trailing group and simultaneously drawn itself by the
traces of their respective explorers. We implement a prototype and evaluate
our presented algorithm to show the feasibility of our approach.

Keywords: Fuzzing, Random Testing, Vulnerability Detection.

1 Introduction

The constant proliferation of serious software vulnerabilities states a major
threat against the technologies that surround us. As critical infrastructures of
modern society increasingly depend on the functioning of software we face the
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severe challenge to harden our core systems. This often boils down to finding
vulnerabilities before the adversary does. Undisclosed security-critical bugs
known as zero-days will continue to emerge on the surface of black markets
to attract players of a variety of backgrounds. A common strategy to decrease
the risk of being successfully attacked is to increase the effort it takes to
compromise our assets. This points us to research automated methods that
allow us to systematically perform vulnerability analysis of software. The
nowadays most effective way to proceed in this direction is random testing
of target binaries, also called fuzzing. State-of-the-art fuzzing frameworks all
share one overall goal: Generating and pitching suitable program inputs (also
called test cases) into the target in order to eventually trigger an exploitable
bug. For suchlike bug hunting there is a straight forward track: The more
input we generate to test a binary target the more code coverage we achieve
during program execution and the more likely we will find what we are looking
for. This results in parallel large-scale testing by running distributed fuzzer
instances on a computer cluster.

However, state-of-the-art in distributed large-scale fuzzing basically
reduces to pure parallelization. Recent research focuses on advancing single
fuzzers [2, 11, 15] and optimal scheduling of fuzzers, test case corpora,
and targets during fuzzing campaigns [19]. But how can we optimize the
interaction between fuzzers? How can we transform a cluster of isolated
fuzzers into a colony that works together and collectively adapts to the binary
under test?

Inspired by biology two observations in particular guide our research
presented in this paper: Colonies with dedicated explorers and the concept
of chemotaxis.

1.1 Colonies with Explorers

Several species such as honeybees, ants, rats, and bats reveal dedicated
exploring behavior of colony individuals that primarily function as scouts.
Investigation of the environment by just a small fraction of explorers seems
to be an efficient way for some colonies to gain information regarding the
surrounding territory. In case the explorer found an interesting spot (for
example a source of food during foraging) it reports its findings back to the
colony. The famous dance of the honeybees [13] is just one example for this
behavior. Hence we define dedicated subgroups of explorer fuzzers that guide
higher throughput worker fuzzers. In fact, we can divide modern fuzzing
frameworks into two categories, namely (1) feedback fuzzers that instrument
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their targets in order to gain runtime information during program execution
and (2) black-box fuzzers that are blind to what happens during execution and
only see program crashes in case of a triggered bug. While fuzzers of the first
category (including white-box and evolutionary fuzzers) are relatively slow
they nowadays achieve similar levels of code coverage compared to traditional
fast executing black-box fuzzers. Both categories, the relatively slow feedback
driven explorers as well as the fast and efficient black-box worker fuzzers have
their right to exist in modern fuzzing campaigns and both provide comparable
results. Inspired by colony behavior in biology, is there a way to combine
the explorer sight into runtime (gained by dynamic instrumentation) with the
speed of black-box worker fuzzers? How can we achieve guidance by the
explorers and transfer information to the blind black-box fuzzers? This brings
us to the second observation found in biology.

1.2 Chemotaxis

Regardless if we look at bacteria, mold fungus, termites, ciliates, or algae,
all those species have one thing in common: They make use of chemical
substances to transmit information between individuals of the colony in
order to trigger collective behavior. The movement of organisms responding
to chemical stimuli is called chemotaxis. Positive chemotaxis causes the
individuals to move towards regions of higher concentration of an attractant.
Ant colonies [16] coordinating their foraging behavior using attracting trail
pheromones impressively illustrate the power of chemo-taxis. Can we mimic
social behavior of biological colonies using the concept of chemotaxis?

In this paper, we construct an algorithm for distributed large-scale fuzzing
that equips feedback-driven explorer fuzzers with the ability to attract high
throughput fuzzers by marking regions in the input space with an attractant.
First, we develop the main idea on a single subgroup of explorers guiding
a single subgroup of workers: By controlling the attractant concentration
among promising test case regions the seeing feedback-driven explorers guide
the colony of blind (but fast) black-box fuzzers in order to maximize code
coverage. Second, we generalize this approach to multiple hierarchies of
fuzzers: We introduce multiple hierarchies of explorers by further subdividing
our scouts according to their overall test case throughput.

In summary, we make the following contributions:

e We introduce a novel method for distributed large-scale fuzzing in
computer clusters based on the biological concept of chemotaxis in order
to maximize coverage of execution paths in the target under test.
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e We construct a mechanism for distributing attractants in input space and
define the resulting force field of attraction exerted on high throughput
fuzzers.

e We implement and evaluate our presented algorithm to show the
feasibility of our approach.

The remainder of this paper is organized as follows. In Section 2 we discuss
related work. In Section 3 we present our algorithm for guided fuzzing. We
implement and evaluate our approach in Section 4 and discuss properties,
modifications, and expansions of the proposed algorithm in Section 5. The
paper concludes with a short outlook in Section 6.

2 Related Work

This paper is an extension of Guiding a Colony of Black-box Fuzzers
with Chemotaxis [3]. The fuzzing discipline has evolved from its very
beginnings [9] in 1990 to an active area of research providing advanced
testing frameworks [1, 2, 11, 14, 15]. Beyond generational (format-aware)
and mutational (format-blind) fuzzers we can generally distinguish between
feedback-driven and black-box fuzzers. The first category makes use of
instrumentation frameworks (such as Pin, Valgrind, DynamoRIO, Dyninst,
DTrace, QEMU, and the like) to gain detailed information regarding pro-
gram execution. For example, the fully self-adaptive fuzzer presented in
[2] and [1] adjusts its parameters according to code coverage feedback
from dynamic instrumentation of the target binary. Further, evolutionary
and white-box fuzzers such as AFL, Driller (enhancing AFL with symbolic
execution), EFS, Sage, Choronzon, Honggfuzz, libFuzzer, Kasan, Kcov,
and BFF belong to this category. While binary instrumentation provides
advanced test case generation based on runtime feedback, it comes with
relatively high overhead (see [8] for a benchmark) and resulting moderate
test case throughput. In contrast, black-box fuzzers (such as zzuf, Peach,
and Radamsa) pitch test cases into the targeted binary without gathering
feedback from dynamic instrumentation, which makes them significantly
faster compared to feedback-driven fuzzers. We refer to [18] and [17] for a
detailed and comprehensive account on random testing. Attempts to optimize
black-box fuzzing [12, 19] often neglect the distributed nature of parallel
large-scale fuzzing campaigns. Up to now it is unclear how to effectively
organize and guide a large set of black-box fuzzers in order to maximize code
coverage.
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3 Guided Fuzzing

In this section we present the overall algorithm for collective random testing
of binary targets by a colony of fuzzers guided by dedicated explorers.

Our final goal is to optimize massively parallel large-scale fuzzing in
computer clusters to find vulnerabilities in a binary target. Let F denote the
set of feedback-driven fuzzers and F the set of fast non-instrumenting black-
box fuzzers, respectively. Inspired by biology we refer to I as the explorers
and to F as the worker individuals. The explorers receive information from
dynamic instrumentation (e.g. regarding code coverage) and therefore see
what happens during execution of the target. As motivated in the introduction
we present a guidance mechanism that enables the seeing explorers to transfer
information to the blind black-box worker fuzzers by mimicking the concept
of chemotaxis. We achieve this by constructing explorer traces in the target
input space to attract the workers F. In the following we first formalize how
to construct such traces and then define the force of attractivity and resulting
colony movement analog to chemotaxis.

3.1 Attractant Trace Generation

We assume the inputs of the target binary under test to be bit strings of length
N and denote the input space as Z = {0,...,2"}. Each fuzzer provides a
corpus C' C 7 of current test cases. During a fuzzing campaign the individual
fuzzers constantly update their set of current test cases, which generates a trace
in input space for each fuzzer. Inspired by chemotaxis we want the explorers
to leave behind an attractant on their way through input space. More formally,
assume we have ng explorers F" each starting with a set of seed inputs C’to
After some time ¢; of fuzzing, each F' has updated its initial seed inputs to the
current working corpus C’Z During the fuzzing campalgn the F" generate
corpora C’t’1 , C’§2, ...,C Z. To construct a trace of F'in T, we calculate the
center of each intermediate corpus of test cases and then mark these centers
with an attractant.

3.1.1 Trace generation

We first need to define the center of a corpus C' C Z of test cases. Instead of
the arithmetical mean we are interested in the bit string ¢ that is most similar
to all of the strings in C. This choice is justified by the following example:
Consider a corpus C of bit strings each of which respects the input format of a
given target. The arithmetical mean of C might be a bit string with corrupted
file format including wrong headers and metadata. Therefore, we define the
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center ¢ of C' to be the string of length N that coincides with the majority of
inputs in C in each bit position. The complexity of this calculation is bound by
O(n?). Periodically extracting the corpus of current test cases of the explorers
F; and calculating their centers ¢ yields a trace

T" = (&")rer = (&, ¢ ,EL,,..) (1)

where 7 = {79, 71, T2, ...} indicates the extraction times during the fuzzing
campaign.

3.1.2 Attractant spraying

Now that we have a trace T for each explorer F we can spray this trace with
an attractant in order to draw the black-box worker fuzzers F. In this step we
augment each center of trace 7" with an attractant concentration that decreases
over time. Naturally, the most recently generated corpus of an explorer should
have a higher concentration of attractant than a previously generated corpus.
This correlates to diffusivity and resulting fall in concentration of real chemical
attractants in biological chemotaxis. To realize this we define a monotonically
decreasing function f: R>o — R>( to yield the sprayed trace

Ti:: ((é;—oaf(t_TO))v(éfrpf(t_7_1))7"-) (2)
= (@&, (=), er )
for: = 1,...,ng, where t denotes the current time of the fuzzing campaign. In

our implementation (see Section 4) we generate the sprayed traces periodically
after a fixed amount of time so we can assume without loss of generality
the discrete time indexing set 7 = N. The choice of spraying function f
determines attractant concentration of explorer traces over time. If f decays
fast, the explorers will leave only a short attracting trace in time, whereas a
slower decay yields longer attracting traces. To avoid persistent attraction of
already extensively explored regions we must construct f such that attractant
concentration decays to zero after some time, i.e. lim; .~ f(t) = 0. Moreover
to keep computing complexity in subsequent steps low we define f to map
identical to zero after time ¢, i.e.

Vt>t,: f(t)=0. 4)

We discuss different choices of f and resulting attracting behavior of the
black-box worker fuzzers in Section 4.
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3.2 Positive Chemotaxis

Next, we construct an attraction mechanism for the sprayed traces T° left
behind by the explorers F’(z = 1,...,ng). The traces T* should attract
the black-box worker fuzzers F7(j = 1,...,ny ). Again, we refer to the
position of an F as the center ¢ € I of its current corpus of test cases
C' C Z. Mathematical modeling of chemotaxis usually makes use of partial
differential equations [7, 10], which describes movement and emerging spatial
pattern formation accurately in terms of biology. Since we are more interested
in computational efficiency than in biological accuracy, instead of simulating
our colony of fuzzers with partial differential equations we define a lightweight
attracting function g that acts as a force of gravity on the corpora of black-
box fuzzers F7. While f (as described above) determines the distribution and
decay of attractant concentration of traces in input space Z, g determines the
force of attraction dependent on both the distance and the concentration of
the attractant. Therefore, g: R2, — [0, 1] is a function of two variables. We
discuss and evaluate different choices of g and resulting attracting behavior
in Section 4.

To determine the force of attraction that an explorer trace exerts on a
black-box worker fuzzer F7(1, ..., ny ) we need the attractant concentration
of its trace as well as the distance between centers of the trace 7" and the
corpus C7 of 7. The individual centers ¢ € Z of explorer traces 1" have
already assigned a concentration as given in Equation (2). For the metric we

choose Hamming distance § in Z: Two bit strings z = (x1,...,2zy) and
x’ = (21, ..., 2y) then have distance
6(z,a") :==H{jel,...,Nlz; # )} Q)

For a single test sample z € 7 function g then gives the force of attraction
a € [0, 1] that a center ¢ exerts on x at time 7:

a:g(f(thi),(S(éi,x)). (6)

Now that we have defined the force a of attraction on x € Z, we construct
a movement of x analog to chemotaxis. We can move x towards ¢ in the
Hamming distance if we flip bits in x to match the corresponding bits in ¢.
Therefore, let a € [0, 1] be the fraction of bits in x that we flip to match bit
string ¢, where the bit positions to be flipped are randomly chosen among
1,..., N.For example, a = 1 causes all bits in the mutated version x’ of x to
match those in ¢’ resulting in §(¢', 2’) = 0. An attracting force of a = 0 on
the other hand leaves x unchanged.
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Finally, an explorer F' draws a black-box worker FJ by letting its trace
T* (i.e. all centers ¢ of its trace with nonzero attractant concentration)
simultaneously attract all test cases in the current corpus C7 C 7 of FY.

3.3 Guided Fuzzing Algorithm

The algorithm for guiding a dedicated colony of black-box fuzzers is depicted
in Figure 1.

Input: f, g, ng, nw, t’

for i=1,...,ng:
CZO + Seed() .
F* <« Initialize(C}))
for j=1,...,nw :
CJ, < Seed()
Fi + Initialize(Cth)

do:

for i=1,...,ng:
C'* + Corpus(F")
& < Center(C?)
T < Trace(&)
T? «+ Spray(T%, f)

for j=1,....nw:
C7 + Corpus(F7)

for ¢in T" :
CY + Attract(¢,CY, g)

for j=1,...,nw:
FJ + Initialize(C?)

Fuzz(t')

— while (true)

Figure 1 Algorithm for guided fuzzing with input functions f, g and parameters ng, nw
and t'.
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The first two loops initialize the n g explorers as well as the nyy black-box
worker fuzzers. The seed input corpora CZO, CZO C 7 are sets of bit strings
of length N. They can be generated randomly or alternatively may originate
from a previous fuzzing campaign, but we don’t assume any constraints on
them (e.g. validity regarding the input format).

Afterinitialization phase we enter the process of attractant trace generation,
positive chemotaxis, and fuzzing. This main iteration is repeated until a tester
stops the fuzzing campaign. The first loop in the main iteration extracts the
test case corpora C? of explorers I'%, calculates their centers ¢, appends them
to the respective traces 7" and sprays the traces with the attractant according
to the choice of f. Next, the centers ¢ of the sprayed traces 7" attract all
nyw test case corpora C7 of black-box worker fuzzers F7. This force of
attraction results in positive chemotaxis and is regulated by function g as given
in Equation (6).

Next, we reinitialize the black-box worker fuzzers F/ with the updated
respective test case corpora and let the whole colony of fuzzers perform
random testing for a fixed amount of time ¢'.

Regarding computational complexity of the proposed algorithm we con-
structed each step to be efficient. The cost of center calculation is bound
by O(n?), which is tractable considering that we only process the working
set of current test cases of an explorer. Spraying the traces 7" with an
attractant as indicated by Equation (2) is a lightweight operation on a two-
dimensional array that holds for each calculated center ¢ the corresponding
attractant concentration given by f. Calculation of the force of attraction as
defined in Equation (6) requires computing the Hamming distance, which
requires low overhead. Further, we carefully bound the time for computing
the force of attraction that the explorer traces T%(i = 1,...,ng) exert on the
corpora CV(j = 1,...,ny) by limiting the number of centers with nonzero
attractant concentration, as guaranteed by Equation (4). Finally, we process
these steps that lead to repositioning of the corpora of F7 only once for each
time interval ¢'. During the fuzzing step (denoted by Fuzz(t') in Figure 1)
all fuzzer instances of both the explorers and the black-box workers run
unaffected.

3.4 Explorer Hierarchies

Next, we generalize the algorithm for guided fuzzing as depicted in Figure 1 to
multiple hierarchies of explorers by further subdividing our scouts according
to their overall test case throughput. This further distinction is motivated by the
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observation that there is a spectrum between feedback-driven fuzzers and
black-box fuzzers. For example, test frameworks enhanced with symbolic
execution functionality (such as [4—6]) are computationally more complex
than more efficient evolutionary fuzzers (see [14] for a recent benchmark),
but both categories make use of feedback from binary instrumentation.
Further, the efficiency of black-box fuzzers depends on the targeted input
format: In some cases (of complex input formats) it is useful to deploy a
grammar-based fuzzer that generates mostly valid test cases in order to feed
them as seed into feedback-driven fuzzers. In order to cover such situations
with our approach, we need to define multiple hierarchies of fuzzers. This
results in a colony of fuzzers divided into multiple subgroups each guiding a
trailing group and simultaneously drawn itself by the traces of their respective
explorers.

To achieve this, we divide the whole fuzzing colony into nx classes F*
and define a set of arrows A between those classes. An arrow (F*, F7) indicates
that fuzzers of class F* function as explorers for fuzzers in the class F7, i.e.
fuzzers in F' attract fuzzers in F7 according to the guidance algorithm as
depicted in Figure 1. This yields the directed graph

G= U 7.4 (7)

ie{lr"vnK}

For example, setting nx = 2 yields the previously described situation of a
single colony of explorers ' = Ujc(q, . ) F" attracting a single colony of
workers F = Uje{l,...,nW}Fj’ ie.

Go = (f' UF, (F, f)) . ®)

Such a graph definition is especially useful when distributing fuzzing instances
on actual computer clusters. If the fuzzing campaign is executed by a
heterogenous hardware infrastructure the graph should be adapted accor-
ding to bandwidth and latency of the respective interconnection network.
In particular, if two fuzzing classes in the graph are connected with an
arrow, they are suited to be placed in the same high bandwidth and low
latency interconnection network. Vice versa, if two fuzzer classes have a
large geodesic distance in the graph (i.e. a relatively high number of arrows
in the shortest path between them), they may be distributed accordingly in
computing clusters that are interconnected with lower bandwidth and higher
latency.
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3.5 Choices for f and ¢

In choosing the spraying function f and the attraction function g we are guided
by the following considerations. f determines the actual attracting fraction of
the explorer traces. As determined by Equation (2) a fast decay of f leads
to short attracting traces and vice versa. In the extreme, f distributes the
attractant nowhere on the explorer trace except on the most recently computed
center (corresponding to f(0) # 0 and f(¢) = O for all ¢ > 0). For
simultaneous strong force of attraction such a choice is almost equivalent
to direct corpus synchronization. However, we want the black-box workers
Fi(j = 1,...,nw) to be guided along the explorer paths for two reasons:
Close proximity to actually all regions roamed by the explorers and enough
time for black-box worker exploration. To be more precise, for large periods
t’ of pure fuzzing (as indicated in Figure 1) corpus extraction provides only
discrete snapshots of current explorer positions in time. During fuzzing for
time ¢’ the workers also diffuse their corpora through input space. Too high
attractivity of the most currently generated explorer corpus would tend to
ignore fuzzing the whole path between extracted corpus snapshots. Since
we want the black-box workers to follow the explorer paths as closely as
possible while simultaneously give them enough time to generate corner cases
not discovered by the explorers, we distribute the mass of f accordingly. As
shown in our evaluation in Section 4 we achieved good results with different
Gaussian functions for f. Regarding the attracting function g in Equation (6)
we borrow from the law of gravity and propose higher attraction forces for
higher concentrations and closer distances. We implement a sigmoid function
made of two logistic functions in Section 4.

4 Implementation and Evaluation

To show the feasibility of our approach we implemented a prototype of the
algorithm as depicted in Figure 1 with one dedicated group of explorers
guiding a colony of high throughput worker fuzzers. In this section we first
present our choices for functions f and g, and subsequently evaluate our
method.
For spraying function f we implemented Gaussian functions
_ (z—c§)2
f(t) — J ce Zeg 0<t<t, 9)
0 t>t,
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parameterized by ¢y, ¢, cs € Rsg. While ¢; determines the total amount of
attractant, c3 controls the decomposition rate of attractant concentration on
the traces 7. A nonzero value of ¢o > 0 translates to an attractant that unfolds
its full attractive potential only with a time delay, but we set co = 0 for the
following benchmarks.

Function g assigns the force of attraction dependent on attractant concen-
tration and distance to the attractant. Shorter distance and higher concentration
should result in stronger attraction. We implemented g: RZ, — [0, 1]

9(7,6) (L4 arers=h) (1 4 dyeai=)) (10)

where (f,0) = (f(t — 7;),8(¢%,x)) denote attractant concentration and
distance, respectively, and a1, az, a3 € Ry .

As testing target we chose the command line tool d jpg for decompressing
JPEG files to image files (in BMP and GIF format). All explorers are slow
moving versions of the fuzzer presented in [2] and [1]. We initialized both the
explorers and black-box workers with seed corpora containing image files of
size 100kB. Then we measured the distance § between most recently generated
centers (corresponding to the end of trace T') of a selected explorer and the
respective corpus centers of a successfully attracted black-box worker.

Figure 2 depicts attraction behavior of a single explorer (ngp = 1). After
each of the first 100 iterations of the do-while loop of our algorithm (as depicted
in Figure 1) we indicate distance § on the z-axis. After 100 iterations we stop
the fuzzing campaign and increase the force of attraction by increasing da.
After 10 fuzzing campaigns (da = 4, ..., 14) we receive the surface depicted
in Figure 2. For strong forces of attraction (corresponding to high values
of dg) the single explorer successfully attracts all workers and reduces the
mean distance ¢ from averaged 400 kbit to 330 bit. Weak forces of attraction
(corresponding to low values of d2) do not lead to attraction. This is due to the
diffusivity of worker corpora in input space: With a black-box fuzzer mutation
rate of 7 = 4 x 107° the workers diffuse their test case corpora stronger than
the explorer attracts them.

In a second experiment we increase the number of explorers to
ng = 5 as well as the black-box mutation ratio to r = 8 x 104, The resulting
benchmark is depicted in Figure 3. Analog to the previous setting we measure
distance 9 (on the z-axis) in each of the first 100 iterations for 10 fuzzing
campaigns with respectively increasing force of attraction do = 4,...,14.
After successful initial attraction the distance ¢ reaches an equilibrium state
depending on the force of attraction. We can successfully reduce the distance
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80 6
100 4

Figure 2 Attraction of a single explorer (ng = 1) within the first 100 iterations, resulting in
a decrease of 0 from averaged 400 kbit down to 330 bit, where mutation ratio for the measured
black-box fuzzer is 7 = 4 x 107°. Increasing do from 4 to 14 causes a significant stronger
attraction.

20
10

0 14 12

Figure3 Attraction for ng = 5 within the first 100 iterations and increasing ds = 4, ..., 14,

causing a decrease of ¢ from averaged 400 kbit down to 190 kbit, where mutation ratio is
r=8x10""
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and guarantee proximity of the workers to the explorer traces by increasing the
force of attraction. The equilibrium of distance between an attracted worker
and its explorer guide is caused by three antagonizing forces: Attraction by its
guide, attraction by all competing explorers, and mutation ratio of the worker.
Increasing the force of attraction simultaneously for all explorers binds the
worker further to its guide (because of the sigmoid form of g as defined in
Equation (10) and additionally overcomes even high mutation ratios.

5 Discussion

In this section we discuss characteristics, possible modifications, and expan-
sions of our approach.

As shown in our evaluation once a black-box worker fuzzer has joined
an explorer it will remain there most probably for the rest of the fuzzing
campaign. However, the attraction mechanism of the group of explorers after
each period of time ¢’ brings in a small fraction of valuable fresh input from
the surrounding explorers. This is due to the construction of our attraction
mechanism as described in Section 3.2, where actual attraction is lowering
the Hamming distance by flipping bits to match the attracting center (which
is the test case that matches the majority of test cases of a current explorer
corpus regarding the bit string). Therefore, we achieve mixing of test cases
between essentially isolated explorers.

Further, attraction of the trace of an explorer as sprayed by f according
to Equation (2) guarantees optimal post-processing of input regions toughed
by the explorers. As discussed in Section 3 trace attraction gives two vital
advantages compared to simple corpus synchronization: Close proximity to
actually all regions roamed by the explorers and enough time for black-
box worker exploration. Since black-box workers are significantly faster and
provide different mutation engines, their concentration around explorer traces
often reveals new side paths and corner cases that the explorers did not
discover.

We put much emphasis on out-of-the-box deployment of existing fuzzing
frameworks to avoid any possibly time-consuming or (in case of closed source
fuzzers) impossible modifications. However, access to information inside the
explorer fuzzers would allow us to adapt attraction behavior for each explorer
individually. Our presented spraying mechanism as determined by function
f in Equation (2) treats each explorer equally: It assumes the explorer has
found a region of quality test cases (e.g. regarding code coverage), sprays
the corpus center, and lets the concentration descent over time. If an explorer
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discovers significantly more new basic blocks than all other explorers, we
should be able to assign a higher force of attraction to respective test cases.
In other words, comparing the numbers of newly discovered basic blocks
found by the individual explorers would allow us to allocate higher attractant
concentrations to centers of higher quality corpora, enabling strongest attrac-
tion to the currently best performing explorer. Further, we could introduce
a repellent inducing negative chemotaxis for test cases that for example
consume too much time to process or enter code regions that are not relevant
for testing.

So far we do not provide any feedback from the black-box fuzzers back
to the explorers. This is motivated by the nature of basically blind black-box
fuzzers which do not obtain any information from the targeted binary during
runtime, except a program crash. But especially this crash information could
be used to mark the corresponding test case as attractive. Such modifications
could improve the overall fuzzing campaign.

6 Conclusion

Inspired by insect and animal colonies that reveal a rich diversity of scouts and
explorers we introduce the first framework for large-scale random testing of
binary executables based on the concept of chemotaxis. In order to maximize
coverage of execution paths in the target under test we draw fast and efficient
(but blind regarding runtime information) black-box workers to regions in
input space discovered by feedback-driven explorers. We realize this by
constructing a mechanism for distributing attractants in input space and
defining the resulting force field of attraction exerted on black-box fuzzers.
This approach combines the best of both worlds: The sight into runtime
information from dynamic instrumentation by the explorers and the speed
of black-box worker fuzzers. Next, we generalize this approach to multiple
hierarchies of fuzzers to capture their attraction network in a graph. Such
a graph definition is especially useful when distributing fuzzing instances
on actual computing clusters, as we can adjust the graph of attraction to the
hardware infrastructure. We show the feasibility of our approach by evaluating
it on a real-world target with different parameter settings. Further, we discuss
modifications and expansions of our algorithm. Especially customized testing
frameworks would allow us to distribute attractant concentration significantly
more fine-grained, which probably results in faster code coverage and is
subject to future work.
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