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Abstract

In this paper we systematically study several channel assignment problems
in multi-hop ad-hoc wireless networks in the presence of several constraints.
Both regular grids and random topology models are considered in the ana-
lysis. We identify three fairness constraints (unfair, fair, and 1-fair), Signal
to Interference Ratio (SINR) constraint (to measure the link quality) and
balance constraint (for uniform assignment) and study their impact on the
complexity of the channel assignment problems. Note that these constraints
have an impact on the network capacity, lifetime and connectivity.

Although optimal channel assignment for links in a multi-hop wireless
network has been shown to be NP complete, the impact of fairness, link
quality and balance constraints on the hardness of channel assignment prob-
lems is not well studied. In this paper, we show that a class of unfair SINR
constrained channel assignment problems can be solved in polynomial time.
We show that when fairness is desired the channel assignment problems are
NP Complete. We propose two heuristic algorithms that provide 1-fair and
fair channel assignments, comment on their complexity and compare their
performance with optimal solutions.
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1 Introduction

Based on the number of wireless hops, wireless networks can be classified
into last-hop and multi-hop networks. Last hop networks refer to wired net-
works whose last hop is wireless. These types of networks are also called
infrastructure networks, the cellular network being an example. On the other
hand if all the hops of a wireless network are comprised of wireless links,
the network is called a multi-hop wireless network. An example for such
networks is the ad-hoc network. In this paper we concentrate on multi-hop
wireless networks.

As all the nodes in a multi-hop network share a common wireless commu-
nication medium, some type of coordination is desired to avoid collisions or
simultaneous channel access by two or more devices. Most of the literature on
medium sharing techniques can be classified into two types: random access
techniques and channel assignment techniques. Random access techniques,
as the name suggests, use some type of randomized protocols to access
the channel in such a way that collisions are minimized. Examples of ran-
dom access techniques include the well known Aloha protocol [11] and the
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). Chan-
nel assignment techniques on the other hand, use orthogonal sub-channels
as the key to achieving simultaneous communication and mitigate mutual
interference. This is used both in networks with global co-ordination and
distributed co-ordination. The channel assignment techniques in wide use
are Time Division Multiple Access (TDMA), Frequency Division Multiple
Access (FDMA), Code Division Multiple Access (CDMA), Orthogonal Fre-
quency Division Multiplexing (OFDM) and some combinations of these [11].
Therefore by the term channel we mean, a time frame in TDMA, a seg-
ment of allocated spectrum in FDMA, or a collection of orthogonal codes
in CDMA. The term sub-channel thus implies time slots of a time frame,
frequency channels within the segment of the spectrum or a code in the col-
lection of orthogonal codes. For the analysis in the paper we assume time slot
assignment.

Depending on what is being scheduled, channel assignment can be of
two types. When nodes are assigned to different sub-channels [4, 7, 10, 14],
it is referred to as node scheduling/assignment. Node scheduling is usually
referred to as broadcast scheduling. Similarly, link scheduling is when each
of the links in the network are assigned sub-channels. Link scheduling is also
referred to as point to point scheduling [1, 2, 6, 12]. Although node and link
scheduling problems differ in terms of number of elements to be scheduled
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Table 1 Notations used.
V Set of all nodes (vertices of G)
ei,j Link formed when node i transmits to node j

Note that the existence of ei,j does not imply ej,i

E Set of all possible links in the network (edges in G)
Et Set of links that are active at time t , where t > 0
SIR(ei,j , t) Signal to interference ratio of edge ei,j at time t

T Total number of active sub-channels (time-slots)
Si Set of sub-channels assigned to link ei

and computational complexity, in general a solution to link scheduling can
be transformed to node scheduling by transforming the nodes in the given
graph into links and by applying link scheduling on it. Some of the work
that propose algorithms to achieve both broadcast scheduling and point to
point scheduling are [13, 16]. In our current work we only consider link
scheduling problems. Hence in the rest of the paper by channel assignment we
refer to link scheduling. We identify three constraints in channel assignment:
(a) signal to interference noise ratio constraint, (b) fairness constraint, and
(c) balance constraint. A formal definition of these constraints are given in
later sections. We note that these constraints impact the network capacity,
connectivity, lifetime and traffic load. In addition to these we also discuss
atomic constraints that are dictated by the physical layer of the nodes.

2 Network Model

To formulate the channel assignment problem in a multi-hop wireless net-
work, we map a given wireless network to a graph G = (V ,E), where the
vertices, V , represent the wireless devices (nodes) and the edges, E, repres-
ent the transmission links between these devices. We capture the multi hop
wireless networks that occur in practice using graphs as described later in this
section. The network graphs used in the experimental section are generated
using this model. Some of the notations used in the rest of the paper are
summarized in Table 1.

2.1 Random Network Model

In this case, the nodes are randomly placed in a given network area. A fixed
power level is allocated to each of the nodes. We define the parameter Rmax

of the network as the length of the longest active edge. Similarly Rmin is the
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Figure 1 Example of random network with area A = 100 × 100 square meters, 49 nodes and
range Rmax = 20 meters, Rmin = 1.362 meters.

length of the smallest active edge in the network. An example of random
network model is shown in Figure 1.

2.2 Grid Based Network Model

In the grid based network model we assume that the nodes are placed on a
rectangular grid. In this model all the edges formed are of same length and all
transmitting nodes have same range. Hence the maximum transmission range
Rmax is same as the minimum transmission range Rmin. An example of grid
based network model for a 49 node network is shown in Figure 2. This type
of model is also used in, for example, [5].

3 Channel Assignment Constraints

3.1 Atomic Constraint

An atomic constraint is a symmetric relationship between two vertices or
two edges in a graph [13]. Two vertices/edges that are mutually constrained
cannot be scheduled in the same sub-channel. In [13], the author identifies
atomic constraints and models scheduling/assignment problems as a con-
straint set, Ac, over the atomic constraints. For the sake of clarity, in Table 2
we summarize the 3 atomic link constraints that are relevant to our work.
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Figure 2 Example of grid network with area A = 100 × 100 square meters, 49 nodes and
range Rmin = Rmax = 20 meters.

Table 2 Atomic Link Constraints
Constraint Implication
(E, 0, t t) �ei,j , ei,k s.t. {ei,j , ei,k} ⊆ Et , t ∈ {1, . . . , T }
(E, 0, rr) �ej,i , ek,i s.t. {ej,i , ek,i} ⊆ Et , t ∈ {1, . . . , T }
(E, 0, tr) �ei,j , ek,i s.t. {ei,j , ek,i} ⊆ Et , t ∈ {1, . . . , T }

For example the TDMA link scheduling/assignment problem can be
modeled as a constraint set Ac(T DMA) = {(E, 0, tt), (E, 0, rr)}. (E, 0, tt)

means that in any time slot a node cannot perform multiple simultaneous
direct transmissions to more than one receiving node. (E, 0, rr) means that
a receiving node cannot directly receive simultaneously from two different
transmitting nodes in a given time slot.

3.2 SINR Constraint

Although link schedules that satisfy atomic constraints avoid collisions in the
wireless network, they do not impose any kind of guarantee on the quality of
received signal at each receiver. To assure a minimum quality at each receiver
in the network, we define a constraint on the signal to interference plus noise
ratio (SINR). The SINR constraint simply says that the assignment should
guarantee a desired minimum SINR requirement (say γth) for all the links
assigned in all of its sub-channels. While the optimal assignment of links
and power control to satisfy this constraint requires the consideration of the
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“physical model” of the system, a simplified analysis can be carried out with a
conservative approach leading to the so called “protocol model” [5]. We now
define the SINR constraint in the physical model which is then simplified to
distance constraint in the protocol model.

Let Et be the set of all links assigned to the sub-channel t , then under
the physical model the scheduling/assignment is said to satisfy the minimum
SINR constraint if

SINR(eij , t) ≥ γth,∀t ∈ {1, . . . , T }, ∀eij ∈ Et (1)

3.3 Distance Constraint

While the physical model simply states the constraint, the protocol model
discussed below provides a simplified method to impose the constraint.

If link ei is assigned sub-channel t (Figure 3) i.e., ei ∈ Et , then it is said
to satisfy the minimum distance ratio constraint [5], if ∀ej ∈ Et − ei ,

d(T x(ej ), Rx(ei)) ≥ (1 + δth)Rmax, (2)

where Rmax is the maximum transmission radius in the network, T x(ej ) de-
notes the transmitter of link ej and Rx(ei) is the receiver of link ei . That is,
the distance between the receiver of the given link and the transmitters of
other active links sharing the same sub-channel t should be larger by a factor
of 1+δth compared to the maximum transmission radius of the network. Note
that for the grid based network model Rmax = Rmin = R.

3.4 Fairness

Depending on how many sub-channels each link is assigned to, channel as-
signment can be classified as unfair, 1-fair and fair. A channel assignment
is called unfair if there is at least one link that is not assigned to any of the
sub-channels. This leads to the following definition.

Definition 1 Let Si be the set of sub-channels assigned to link ei , then Si is
represented as

Si = {t, ei ∈ Et ∀t ∈ {1, . . . , T }} (3)

An assignment is said to be unfair if

∃ i ∈ {1, . . . , |E|} s.t. |Si| = 0 (4)
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Figure 3 Pairwise distance constraints between two given links ei and ej in a wireless
network, with distance ratio constraint of δ.

Under such a channel assignment the node degree will reduce and the con-
nectivity of the graph may be lost, thus making routing between some source
destination pairs impossible. Nevertheless, a network that prefers “maximum
overall throughput” regardless of fairness may adopt an unfair policy.

In order to preserve the connectivity of the underlying communication
graph, we need every link to be assigned to at least one sub-channel. This
gives rise to the following definition of 1-fairness.

Definition 2 A channel assignment is said to satisfy the 1-fairness constraint
if

|Si| ≥ 1, ∀i ∈ {1, . . . , |E|} (5)

Although 1-fair assignment preserves the connectivity of the graph it can
be biased. Some of the links could be assigned more sub-channels. Hence,
when every link is assigned to exactly same number of sub-channels, such an
assignment achieves fairness.

Definition 3 A channel assignment is said to be fair if,

|Si| = d, ∀i ∈ {1, .., |E|} (6)
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where d ≥ 1 is a constant.

3.5 Balance

Unfair, 1-fair and fair assignments need not be balanced over sub-channels;
some of the sub-channels may be assigned more number of links than the
others. To achieve an ideally balanced assignment, it is necessary that every
sub-channel contains exactly the same number of active links. That is,

|Et1 | = |Et2 |,∀t1, t2 ∈ {1, . . . , T } (7)

otherwise, the channel assignment is said to be unbalanced. Balanced as-
signment will help in maintaining an acceptable level of load per time
slot.

It is easy to see that ideally balanced assignment is not always feasible;
one example is when the number of links in the network is prime. Hence, we
define a channel assignment to be εth unbalanced if the maximum absolute
difference in the number of active links between two sub-channels is not
greater than εth. That is,

max(abs(|Et1 | − |Et2 |)) ≤ εth, t1, t2 ∈ {1, . . . , T } (8)

Note that εth is upper bounded by |E|.

4 Link Scheduling/Sub-Channel Assignment Problems

Definition 4 A Channel Assignment Problem (CAP) is represented as a two-
tuple (G,C), where

1. G is a two-tuple (G, P) representing the wireless network with,

• G being a set of graph representations G of the wireless network.
• P being a set of network parameters such as geographical area

A, set of link gains {h} as well as the presence/absence of “power
control”.

2. C is a four-tuple (A, F, D, E) that represents the set of all constraints

• A is a finite set of possible atomic constraint sets {Ac}
• F is a finite set {unfair, 1-fair, fair} of possible fairness constraints
• D is a set of quality constraints such as distance constraint δth ≥ 0

or minimum SINR constraint
• E is a set of all balance constraints εth ≥ 0.
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Table 3 Channel assignment problems.
F E Channel Assignment Problem
unfair – unfair distance constrained assignment
1-fair |E| 1-fair distance constrained assignment
fair |E| fair distance constrained assignment
fair εth fair, balanced and distance constrained assignment

The channel assignment algorithms (CAA) have two basic objectives:

• maximize the number of links in every sub-channel (maximized total link
capacity),

• minimize the total number of sub-channels used subject to all the
constraints (minimizes total delay).

The sub-channels we consider are the time slots in a time frame. Depending
on fairness, distance and balance constraints we may classify various channel
assignment problems as shown in Table 3.

We will now formulate the two different objectives (as given in Defin-
ition 4) of a CAA. In doing so, we identify the correspondence of these
problems to other well known problems to get an idea on the complexity.
Henceforth, we call the problem of maximizing the number of links assigned
to a given sub-channel as the sub-channel assignment problem and the prob-
lem of minimizing the number of sub-channels used in channel assignment
as the sub-channel minimization problem.

4.1 Sub-Channel Assignment Problem (SAP)

Given a multi-hop wireless network G=(V ,E), if a subset of edges {e} ⊆ E

satisfies Ac and δth, this set is called a transmission set [1]. A naive way to
enumerate all the transmission sets for G is to take all possible combinations
of edges in E and test to see if they satisfy the specified constraints. The
complexity of this algorithm is

|E|∑

i=1

(|E|
i

)
(9)

which is exponential in |E|. The objective of SAP is to find out the largest
possible transmission set for a given sub-channel.

Problem 1 The objective of SAP is to assign maximum number of links to a
given sub-channel subject to the specified atomic and distance constraints Ac

and δth, respectively.
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To analyze the complexity of SAP, we compare it with the well known Max-
Clique problem [3]. Given is an instance of SAP, (G, c), where c ∈ C is a set
of given constraints. Algorithm SAP-to-MaxClique transforms the objective
of SAP to that of finding maximum clique in a graph. Note that in the graph

Algorithm 1 SAP-to-MaxClique
Input: (G, c) of SAP

Output: H = (Va,Ea) an instance of MaxClique

1: H(Va) ← G(E)

2: for vi = 1 : Va do
3: for vj = 1 : Va do
4: if Edges vi and vj in G are not mutually constrained by any constraint in c then
5: H(Ea) ← H(Ea) ∪ (vi , vj )

6: end if
7: end for
8: end for

H = (Va,Ea), vertices of H represent edges of G and any two edges in G

that are mutually constrained in c ∈ C do not have an edge in H between the
corresponding vertices.

The complexity of algorithm SAP-to-MaxClique is �(|E|2), which is
polynomial in E. As none of the vertices in any complete subgraph of H

are mutually constrained by any of the constraints specified by c, they all can
be scheduled in the same sub-channel. This makes every complete subgraph
of H a transmission set of G. Hence the sub-channel allocation problem is to
determine the maximum clique of H . The decision version of this problem is
to determine whether a clique of a given size J exists in the graph.

Problem 2 MaxClique decision problem.
Instance: A graph H=(V ,E) and a positive integer J ≤ |V |.
Question: Does H contain a clique of size J or larger, that is, is there a subset
V ′ ⊆ V such that |V ′| ≥ J and every two vertices in V ′ are joined by an edge
in E?

If J is not a constant significantly smaller than |V |, this problem and the
corresponding optimization problem are known to be NP complete [15]. Note
that a naive way to solve SAP is to enumerate all possible sub-graphs of H

and determine if the size of largest complete subgraph is J . The running time
of the naive algorithm (Naive-MC) to solve the MaxClique is �(J 2

(|V |
J

)
)),

which is polynomial if J is a constant [3].
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4.2 Sub-Channel Minimization Problem (SMP)

Given a multi-hop wireless network G = (V ,E), the number of transmis-
sion sets is upper bounded by (9). However, for given constraints c ∈ C the
number of feasible transmission sets may be reduced. The objective of the
sub-channel minimization problem is to find a collection of minimum number
of transmission sets such that every edge in the network appears in at least
one transmission set.

Problem 3 The sub-channel minimization problem (SMP) is to find a 1-fair
or fair assignment that minimizes the number of sub-channels, T , subject to
the specified atomic, distance and balance constraints Ac, δth, εth respect-
ively. In other words, minimize T, such that

⋃T
t=1 Et = E, Ac, (2) and (8)

hold.

To analyze the complexity of SMP we compare it with the minimum cover
problem. Given a channel assignment problem, algorithm SMP-to-MinCover
transforms this problem to a family of sets F such that any set s ∈ F is a
transmission set. Then the objective of SMP can be seen to be the objective
of finding a minimum cover for F .

Algorithm 2 SMP-to-MinCover
Input: (G, c) of SAP

Output: F , an instance of MinCover Problem

1: H(Va, Ea) ← SAP-to-MaxClique(G, c)

2: F ← All complete subgraphs of H

The complexity of algorithm SMP-to-MinCover is equivalent to that of
SAP with the same set of constraints. To solve SMP , we need to find a
minimum cover of F . The decision version of the minimum cover problem is
to determine if a cover of size T or less exists given a family of sets F , where
the cardinality of every set in F is upper bounded by k.

Problem 4 Minimum k-cover problem.
Instance: Family F of subsets over E such that ∀s ∈ F, |s| ≤ k, and a
positive integer T .
Question: Does F contain a cover for E of size T or less, that is, is there a
subset F ′ ⊆ F with |F ′| ≤ T and such that

⋃
e∈F ′ e = E?

This problem is proved to be NP complete in [15] by reducing it to the
exact cover problem, which is a known NP complete problem. However, if



172 C. Nanjunda Mathur et al.

the maximum cardinality of sets in F is two (i.e. k=2), then the problem of
finding minimum cover can be solved in polynomial time.

5 Complexity of Channel Assignment Problems

In this section we analyze the complexity of the sub-channel assignment
(further referred to as channel assignment) problems presented in Table 3.
Note that all these problems belong to the class NP [15] in general. However,
in the remaining of the section, for each of the channel assignment problems
we either show that it can be solved in polynomial time or we prove that it is
NP hard under certain conditions.

5.1 Unfair and Distance Constrained Channel Assignment

The unfair and distance constrained channel assignment problem can be
stated as follows.

Problem 5 unfair-δ-CAP.
Given a channel assignment problem instance (G, c) with
c=(Ac, unf air, δth, |E|) and k, a positive integer, is there a solution to
unfair-CAP of size k i.e., is there a subset Et ⊆ E with |Et | ≥ k such that all
the constraints in c are satisfied?

To determine the complexity of solving this problem, we explore the im-
plication of distance constraint on NP completeness of the unfair channel
assignment problem. Our first step in this direction is to arrive at an upper
bound on the number of simultaneous transmissions that are possible for a
wireless network spread over a geographical area A with distance constraint
δth and maximum transmission radius Rmax. It can shown following the work
in [5] that under the protocol model the number of simultaneous transmis-
sions J is upper bounded by 4c

πδ2
thr2

max
, where 0 < c < 1 is a suitable constant

and rmax = Rmax√
A

is the normalized maximum transmission radius.

Theorem 1 For a given distance constraint δth, radius rmax, and area A of
the wireless network, the unfair channel assignment problem can be solved
in polynomial time, if |E|  J .

Proof. To show that this problem is polynomial time solvable, we propose
an algorithm unfair-δ-CAP that solves every instance of the given problem
and prove that the algorithm runs in polynomial time.
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Algorithm 3 unfair-δ-CAP
Input: (G, c), rmax.

Output: E1, set of links assigned to the first sub-channel.

1: J = 4c

πδ2
thr2

max

2: if |E|  J then
3: H(Va,Ea) ← SAP-to-MaxClique(G, c)

4: MaxClique(Vmc,Emc) ← Naive-MC(H, J )

5: E1 ← MaxClique(Vmc)

6: end if

We know that SAP-to-MaxClique(G) runs in �(|E|2). Note that J � |E|
here is a constant independent of E which implies that J remains constant
with respect to an increase in the number of edges E. Using this fact we can
compute the complexity of Naive-MC algorithm as

Naive-MC(G, J ) ∼= �(

J∑

i=1

(|E|
i

)
)

∼= �(|E|J ),∀J � |E|

The complexity of unfair-δ-CAP algorithm is O(|E|J ), which is polyno-
mial in |E|. �

5.2 1-Fair and Distance Constrained Channel Assignment

The 1-fair distance constrained channel assignment is defined as follows:

Problem 6 1-fair-δ-CAP.
Instance: A channel assignment problem instance (G, c) with c =
{Ac, δth, |E|} such that |E|  J a positive integer T , a set of positive integers
{k1, . . . , kT }.
Question: Is there an 1-f air-δ constrained channel assignment for G with
total number of sub-channels lesser or equal to T and each sub-channel of
size k? That is, is there a channel assignment {Et}, with |{Et}| ≤ T and
∀Eti ∈ {Et }, |Eti | ≥ ki such that all the constraints in c are satisfied ?

In the following lemma we show a special class of 1-fair-δ-CAP for which,
every input instance of the 1-fair-δ-CAP can be represented as a family F
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of feasible transmission sets with the cardinality of F polynomial in |E|. In
the related corollary we show that the above transformation of 1-fair-δ-CAP
input instance to family F can be done in polynomial time.

Lemma 1 Given an instance of 1-fair-δ-CAP in a wireless network with
area A, maximum radius rmax and constraint δth, the number of feasible
transmission sets is polynomial in |E| if |E|  J .

Proof. Follows from Theorem 1. �
Corollary 1 Transformation π :1-fair-δ-CAP → F can be done in polyno-
mial time for a given wireless network with area A, maximum radius rmax

and constraint δth when |E|  J .

Proof. Follows from Theorem 1, using Naive-MC algorithm. �

The optimal channel assignment {Et} of 1-fair-δ-CAP is a collection of trans-
mission sets. Since F is the set of all feasible transmission sets given the
constraints c, we have {Et} ⊆ F .

Lemma 2 If two sets si, sj ∈ F s.t si ⊂ sj then si �∈ {Et }, where {Et } is the
optimal 1-fair-δ-CAP solution.

Proof. Assume si ∈ {Et}. This implies sj ∈ {Et}, since 1-fair-δ-CAP
outputs sets with maximum cardinality. Since {Et } is optimal, si �∈ {Et}, a
contradiction. �

We can hence represent the family F by its maximal feasible sets Fmax

such that it is not possible to have two sets si, sj such that si ⊂ sj ;
and si, sj ∈ Fmax. Note that any optimal solution on F will be completely
contained in Fmax. However the use of Fmax instead of F may reduce the
search complexity.

Theorem 2 1-fair-δ-CAP is NP-complete.

Proof. The maximum cardinality of a transmission set in the family Fmax

can be upper bounded by J (from Lemma 1). The objective of 1-fair-δ-CAP
will then be to pick a subset f ⊆ F such that every edge in E is covered
by f . For k = J and {Et} = f , the well known k-Set Cover problem (see
Definition4) and 1-fair-δ-CAP are equivalent (from Lemma 1 and Corol-
lary 1). Hence for J ≥ 3 this problem is NP complete and for J ≤ 2 optimal
solutions can be found in polynomial time using matching techniques [8, 9].
�
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5.3 Fair Distance Constrained Channel Assignment

The fair distance constrained channel assignment can be defined as follows.

Problem 7 fair-δ-CAP.
Instance: A channel assignment problem instance (G, c) with c =
{Ac, f air, δth, |E|} such that |E|  J a positive integer T , a set of positive
integers K={k1, . . . , kT }.
Question: Is there an fair-δ-CAP for G with number of sub-channels lesser
or equal to T and each sub-channel of size K? That is, is there a channel
assignment {Et}, with |{Et}| ≤ T , ∀Eti , Etj ∈ {Et}, Eti ∩ Etj = φ with
|Eti | ≥ ki such that all other constraints in c are satisfied?

From Lemma 1 and Corollary 1 it follows that every input instance of f air-
δ-CAP can be represented as a family F of feasible transmission sets in
polynomial time. The objective of f air-δ-CAP is then to find a minimal
subcover f which has no overlap. This minimal subcover f will form the
optimal channel assignment {Et } satisfying all the constraints in c.

Theorem 3 fair-δ-CAP is NP complete.

Proof. For k = J and {Et } = f , the SET COVERING II problem [8] is
equivalent to f air-δ-CAP . Hence, for J ≥ 3 this problem is NP complete
and for J ≤ 2 optimal solutions can be found in polynomial time. �

5.4 Fair Distance Constrained and Balanced Channel
Assignment

The fair distance constrained and balanced channel assignment is defined as
follows:

Problem 8 fair-δ-Balanced-CAP.
Instance: A channel assignment problem instances (G, c) with c =
{Ac, f air, δth, εth} such that |E|  J a positive integer T , a set of positive
integers {k1, . . . , kT }.
Question: Is there fair-δ-Balanced-CAP for G with number of sub-channels
lesser or equal to T and each sub-channel of size k? That is, is there a channel
assignment {Et }, with |{Et }| ≤ T and ∀Eti , Etj ∈ {Et}, Eti ∩ Etj = φ with
|Eti | ≥ ki and εth balanced such that all other constraints in c are satisfied?

Theorem 4 fair-δ-Balanced-CAP is NP complete.
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Proof. Restrict to partition problem [15] by having T = 2, εth = 0 and
∀ei, s(ei) = 1. �

6 Algorithms to Solve Distance Constrained Unfair, 1-fair
and fair CAP

We have seen that algorithm SMP-to-MinCover transforms any given instance
of channel assignment problem into a set F of subsets {Et} of the edges E

of the wireless network. In this section we propose another algorithm called
Gen-Fmax which is similar to SMP-to-MinCover but with a huge reduction
in complexity. Here, instead of generating the entire family F , we gener-
ate only the maximal family Fmax using a novel tree pruning approach. For
any given CAP instance, Gen-Fmax constructs the corresponding maximal
family Fmax.

Algorithm 4 Gen-Fmax

1: i = 1
2: Fi = {{1} {2} . . . {|E|}}
3: Fi+1 = Extend-Family(Fi , (C))

4: while Fi+1 �= φ do

5: ∀fi ∈ Fi; Fmax
i = {fi : fi �⊆ ⋃|Fi+1|

k=1 Fi+1(k)}
6: i = i + 1
7: Fi+1 = Extend-Family(Fi, C)

8: end while
9: Fmax = ⋃

i Fmax
i

procedure Fext = Extend-Family(Forig, C)

1: Fext = {φ}
2: for i = 1 : length(Forig) do
3: for j = Forig(i, |Forig(i)|) + 1 : |E| do
4: if Satisfy({Forig(i)j}, C) then
5: Fext = Fext ∪ {Forig(i)j}
6: end if
7: end for
8: end for

An instance of Gen-Fmax on a six edge example network (Figure 4) is
shown in Figure 5. Initially every edge in the family is allocated to a singleton
set. Thus the initial family comprises of as many subsets as the number of
edges. For the given example, the initial family is { {1} {2} {3} {4} {5} {6}
{7} }. In the next and the following rounds two fundamental operations take
place. The first operation is expansion, where each of the subsets in the family
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Figure 4 Example network with six edges.

Figure 5 Instance of Gen-Fmax on a six edge example network.

is expanded by including one more unique edge. For the given example, the
family obtained after first expansion is { {1, 3} {1, 4} {1, 5} {2, 4} {2, 5} {2, 6}
{3, 5} {3, 6} {3, 7} {4, 6} {6, 7} {1} {2} {3} {4} {5} {6} {7} }. Here, we do
not see {1, 2},{1, 6},{2, 3}..etc as they do not satisfy the constraint set. The
second operation is pruning, where the subsets which are in-turn subsets of
larger sets are eliminated from the family. For the given example, the family
obtained after first pruning is { {1, 3} {1, 4} {1, 5} {2, 4} {2, 5} {2, 6} {3, 5}
{3, 6} {3, 7} {4, 6} {6, 7} }. These two operations are performed iteratively
until expansion stops. For the given example, the final family is { {1, 3, 5}
{2, 4, 6} {3, 6, 7} }.
Theorem 5 For any given instance of CAP , Algorithm Gen-Fmax constructs
a maximal family F max.

Proof. Follows by induction on
⋃i

1 Fi . �

The following lemma and theorem establish that the proposed pruning
algorithm has polynomial order complexity.
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Lemma 3 The probability α of co-existence of a pair of links is 1−πδ2
thr

2
max.

Proof. The probability of co-existence of any pair of links in the network
is given by the probability that the receiving node of the second link is at least
δthrmax apart from the receiving node of the first link (see Figure 3). That is,
the probability the second receiving node being outside the circle with radius
δthrmax centered around the first receiving node. Clearly, this probability is
equal to α = 1 − πδ2

thr
2
max. �

Theorem 6 The expected number of feasible transmission sets is upper
bounded by (|E| − πδ2R2

maxno)
J , where J = 4c

πδ2
thr2

max
, rmax = Rmax/

√
A and

no is the edge density in the network.

Proof. The expected number of pairs of links in the network is α
(
n

2

)
,

where n = |E|. For any transmission set of cardinality k with k > 1, the
probability of coexistence is α(k

2). Therefore, the expected number of feasible
transmission sets is given by

E(|F |) =
J∑

k=2

α(k
2)

(
n

k

)
(10)

=
J∑

k=2

α
k(k−1)

2
n!

(n − k)!k! (11)

≤
J∑

k=2

αk2
nk (12)

≤
J∑

k=0

(αn)k (13)

if (αn) > 1, E(|F |) ∼= O( (αn)J+1−1
(αn)−1 )

if (αn) < 1, E(|F |) ∼= O( 1
1−(αn)

)

if (αn) = 1, E(|F |) ∼= O(J ).
The edge density of the network is given by no = |E|/A. Hence

from the above three cases we see that the upper bound of E(|F |) is
O( (αn)J+1−1

(αn)−1 ) ∼= O(αn)J = O(|E| − πδ2R2
maxno)

J . �

Since Gen-Fmax looks only at the feasible transmission sets, the running time
of Gen-Fmax is O(E(|F |)).
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6.1 Optimal unfair-CAA

An optimal unfair channel assignment algorithm is the following. Choose the
set with the largest cardinality in Fmax generated by Gen-Fmax. The solution
is optimal because, Gen-Fmax generates the family of all possible large trans-
mission sets. That is, there cannot be a transmission that is larger than the all
of the transmission sets in Fmax and satisfy all the specified constraints.

When |E|  J this algorithm produces optimal solution for unfair-CAP
and the running time is same as the Gen-Fmax algorithm.

6.2 Approximate 1-fair-CAA

We know that there can be no deterministic algorithm that solves 1-fair-CAP
in polynomial time. Heuristic algorithms [8] that solve minimum cover prob-
lem can be used on 1-fair-CAP. The input instances of heuristic algorithms
that solve minimum cover problem should be mapped from instances of
{Fmax, E} of 1-fair-CAP and the minimum cover output instances should
be mapped to channel assignment of 1-fair-CAP.

We use the greedy approximation algorithm discussed in [3]. This al-
gorithm works in a greedy fashion selecting the set that covers the maximum
number of uncovered elements in every iteration. The run time complexity of
this algorithm is O(

∑
s∈Fmax |s|). It is shown that this algorithm returns a set

cover that has an approximation ratio bound of H(max{|s| : s ∈ Fmax})
over the optimal solution, here H(d) denotes the dth harmonic number
H(d) = ∑d

i=1 1/i. From Section 5.1 we know that max{|s| : s ∈ Fmax} ≤ J

where J is independent of E. Hence the approximation ratio of greedy set
cover for this case is H(J ).

6.3 Approximate fair-CAA

By Theorem 5.3 fair distance constrained channel assignment problem is NP
complete. The greedy heuristic based on graph coloring [13] can be used
directly for the δth = 0 case. However, for distance constrained assignment
a slight modification to the unified algorithm given in [13] generates fair
channel assignment satisfying the distance constraints.
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7 Simulation Results

7.1 Performance Measures

To evaluate the effectiveness of the channel assignment algorithms proposed
in Section 6, we use the following performance measures.

7.1.1 Number of Sub-Channels
The total number of sub-channels (denoted by T) used by the assignment
technique is an important performance metric. In any protocol, there is some
overhead associated with each sub-channel and this overhead adds up for
every new sub-channel. When the sub-channels are in the form of time slots,
then more number of time slots directly translates to increased delay. Hence
it is generally preferable to have a schedule that uses least number of sub-
channels while maintaining high link capacities.

7.1.2 Capacity
We use two different notions of capacity. The first one is protocol capacity,
which is the average number of links scheduled to transmit per sub-channel.
That is,

C = 1

T

T∑

t=1

|Et | (14)

The second notion for capacity is the sum rate capacity, which is the sum
of Shannon’s capacity [11] for each link divided by the total number of sub-
channels used.

7.1.3 Imbalance
Imbalance is the maximum absolute difference in the number of links
between two sub-channels.

7.2 Performance of Proposed Channel Assignment Algorithms

We evaluate the performance of the unfair, 1-fair and fair channel assignment
algorithms for wireless networks with varying node densities. We use both the
grid network model and the random network model. The area of the network
used in the simulation is 100 × 100 square meters.

For the grid networks, we fix 16 nodes on the network. Initially we do
not assume any distance ratio constraint. We then evaluate both the protocol
and the sum rate capacity for Unfair and 1-fair channel assignment. The same
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Figure 6 Capacity vs. distance ratio constraint for a grid network with area of 100 × 100
square meters.

experiment is performed for distance ratio constraints with δ equal to 1 and
2. The corresponding results are plotted in Figure 6. Note that Nil represents
the absence of distance ratio constraint. We can observe from the figure that
as the distance ratio constraint increases the capacity defined by protocol
model seems to decrease where as the sum rate capacity, which is the true
capacity of the network increases. We can further observe that there is a gain
of about 70% in sum rate capacity in 1-fair channel assignment when distance
ratio constraint is introduced. This suggests that SINR/distance constrained
protocols result in better channel assignments in terms of sum rate capacity.

For the random network model, we fixed the distance ratio constraint δth

to 3. The maximum transmission range of the network is fixed to 10 meters.
Figure 7 shows the comparison of the capacities of unfair, 1-fair and fair
channel assignment algorithms as a function of average number of edges
in the network. We can see that as the fairness constraint is relaxed from
exact fairness to unfair the capacity achieved increases. For example, Figure 7
shows that for a network with 80 edges, there is a 100% gain in capacity when
the fairness is relaxed from exact fairness to 1-fairness and 25% gain when
fairness constraint is relaxed from 1-fairness to unfair. The number of sub-
channels used to cover the network by 1-fair and fair are given in Figure 8.
We can observe that the heuristic based on covering and coloring result in
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Figure 7 Performance of unfair, 1-fair, and fair CAA in terms of average number of links per
sub-channel versus the number of edges, in a network with area 100 × 100 square meters,
distance constraint δth = 3 and maximum range = 10 meters.
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Figure 8 Performance of 1-fair and fair CAA in terms of the number of sub-channels used
versus the number of edges, in a network with area 100×100 square meters, distance constraint
δth = 3 and maximum range is 10 meters.
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Figure 9 Performance of 1-fair and fair CAA in terms of balance versus the number of edges,
in a network with area 100 × 100 square meters, distance constraint δth = 3 and maximum
range is 10 meters.

comparable performance over all networks considered. The imbalance of
1-fair and fair channel assignments over different sub-channels is given in
Figure 9. Here we can see that the maximum value of imbalance for 1-fair
CAA is equal to 2. This indicates that all the sub-channels have almost the
same number of edges.

To study the impact of distance constraint δth on the capacity of the chan-
nel assignment, we fix the number of edges in the network to 24 and vary the
distance constraint from 0 to 10. Figure 10 plots the reduction in capacity
due to increase in the distance constraint (δth). Here we can observe that
for smaller distance constraints 1-fair and unfair CAA perform comparably,
however as the distance constraint is increased 1-fair CAA performs poorly
compared to unfair CAA. We can also observe that exact fair channel assign-
ment quickly converges to the one link per sub-channel worst case behavior
compared to 1-fair and unfair assignments.

We also study the capacity of the assignment for networks with different
maximum transmission range, Rmax. We fix δth = 3, number of nodes to
30 and vary the maximum allowable transmission range from 1 to 20 meters.
Figure 11 plots the capacity versus increase in the maximum allowable range.
We can observe that the capacities of channel assignments increase up to a
point and then decreases. This is because at lower transmission range, the net-
work has very few edges and many disconnected nodes. As the transmission
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Figure 10 Performance of unfair, 1-fair, and fair CAA in terms of average number of links
per sub-channel versus the distance constraint δth, in a network with 24 edges, area 100×100
square meters and maximum range is 10 meters.
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Figure 11 Performance of unfair, 1-fair, and fair CAA in terms of average number of links per
sub-channel versus the maximum range, in a network with 30 nodes, area 100 × 100 square
meters and δth = 3.
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range increases the number of edges and hence the capacity also increases
and reaches the optimum. The decrease in capacity can be explained by the
bound J where rmax appears in the denominator.

8 Conclusion

In this paper we systematically studied the channel assignment problem in
presence of fairness, SINR and balance constraints. Both grid and random
models of wireless network were used. Several channel assignment problems
based on specific constraints were identified. We showed that a class of unfair
channel assignment problems can be optimally solved in polynomial time.
We also showed that with fair and 1-fair constraints the channel assignment
problem remains NP complete. Optimal unfair channel assignment algorithm,
approximate 1-fair channel assignment algorithm and approximate fair chan-
nel assignment algorithm were proposed. Simulation results revealed that
there is a gain in capacity of 100% when fairness constraint is relaxed from
exact fairness to 1-fairness and 25% when relaxed from 1-fairness to unfair.
It was observed that for smaller values of the distance constraint 1-fair and
unfair perform comparably. We also saw that 1-fair channel assignment was
more balanced than fair channel assignment.
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