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Abstract

We present quantitative techniques to assess the performance of mobile ad
hoc network (MANET) nodes with respect to uniform distribution, the total
terrain covered by the communication areas of all nodes, and distance traveled
by each node before a desired network topology is reached. Our uniformity
metrics exploit information from a Voronoi tessellation generated by nodes
in a deployment territory. Since movement is one of the most power con-
suming tasks that mobile nodes execute, the average distance traveled by
each node (ADT) before the network reaches its final distribution provides an
important performance assessment tool for power-aware MANETs. Another
performance metric, network area coverage (NAC) achieved by all nodes, can
demonstrate how efficient the MANET nodes are in maximizing the area of
operation. Using these metrics, we evaluate our node-spreading bio-inspired
game (BioGame), that combines our force-based genetic algorithm (FGA)
and game theory to guide autonomous mobile nodes in making movement
decisions. Our simulation experiments demonstrate that these performance
evaluation metrics are good indicators for assessing the efficiency of node
distribution methods.
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1 Introduction

Mobile ad hoc networks (MANETs) are useful for many commercial and mil-
itary applications where network coverage is needed over a terrain without
an established infrastructure. Autonomous topology control algorithms aim
to provide a method to deploy mobile assets without a centralized controller
such that MANETs are scalable and robust to node failures. In this context, it is
advantageous when the MANET topology has reduced sensing overshadows,
limited blind spots, enhanced spectrum utilization, and simplified routing
procedures while lowering power consumed by each node. Achieving these
objectives necessitate that autonomous nodes in MANETs (a) place them-
selves over an unknown geographical terrain in order to obtain a uniform
network distribution, (b) reduce the total distance traveled before overall
network objectives are reached, and (c) preserve network connectivity while
attaining positions that ensure a high coverage of the area by all nodes. In this
article, we present quantitative methods to evaluate performance of node self-
positioning techniques with respect to uniformity of distribution of nodes,
average distance traveled (ADT) by each autonomous vehicle, and the total
area coverage (NAC) obtained by all nodes.

The uniform distribution of mobile nodes is often a desired network to-
pology that helps to prolong network lifespan by ensuring that nodes deplete
their energy resources evenly. When MANET nodes are uniformly distributed,
they are able to equally share sensing and communication tasks, hence the
likelihood that a single node ceases to function much earlier than expected
due to power exhaustion is reduced. In order to gauge the performance of a
MANET with respect to its uniform distribution, we define metrics based on
Voronoi regions generated by the nodes.

Since a node’s movement is typically the most energy-consuming oper-
ation performed by autonomous vehicles, reducing the distance that nodes
travel is an important objective. ADT provides a realistic metric for evalu-
ating self-spreading algorithms where preserving scarce energy resources is
imperative.

Gathering information about operational environments to provide
mission-critical data is often the main motivation for deployment of MANETs.
In order to adequately utilize the communication coverage of deployed nodes,
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network topologies that increase NAC while preserving connectivity are often
needed. Consequently, NAC provides an intuitive metric to assess how well
existing communication coverage resources are utilized.

Our metrics offer design-aiding techniques for power-aware MANETs
where balancing desired network performance with power-limiting con-
straints are imperative to maximize the utilization of deployable resources.
We demonstrate the practicality of Voronoi-based uniformity, ADT, and NAC

metrics by applying them to our node-spreading bio-inspired game (Bio-
Game). BioGame combines our force-based genetic algorithm (FGA) and
game theory (GT) concepts to guide autonomous mobile nodes in selecting
locations that improve uniformity, and network coverage while limiting the
distance that nodes travel. In this paper, we present a formal definition of
our BioGame and compare its simulation results to the outcomes attained by
mobile nodes guided by our FGA alone.

The rest of this article is organized as follows. A brief overview of the
related research is presented in Section 2. Section 3 formally introduces
our uniformity metrics as well as ADT and NAC evaluation techniques. In
Sections 4 and 5, we define our BioGame and analyze its performance by
conducting simulation experiments, respectively.

2 Related Work

In this section, we present background to Voronoi tessellation and topology
control methods as well as our earlier research. An interested reader can
find an extensive analysis of GT in the work by Fudenberg and Tirole [8].
Holland [13] and Mitchell [21] present the essentials of genetic algorithms
(GAs).

2.1 Background

Voronoi tessellation has been applied to analyze biological cell models and
the territorial behavior exhibited by animals [3, 10]. Lu et al. [19], use
centroidal Voronoi tessellation for the efficient placement of vertices when
rendering surfaces in computer graphics. Voronoi diagrams can also be ap-
plied to facial recognition algorithms, as demonstrated by Abbas et al. [1].
Bash and Desnoyers [2] present a distributed method for nodes in a sensor
network that use Voronoi region boundaries to assist in achieving improved
load balancing and energy conservation. Other Voronoi-based applications
include quality measures for point distribution in an area, as presented by
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Nguyen et al. [22], and optimal distribution of resources through applications
of a centroidal Voronoi tessellation method, examined by Du et al. in [7].

Topology control of mobile nodes in MANETs has been studied in various
contexts. In [29] and [4], nodes with a fixed configuration in a MANET dy-
namically adjust their power levels to achieve k-connectivity. Garro et al. [9]
present a bio-inspired algorithm that allows mobile nodes to find unobstructed
paths to predefined targets. Differential evolution (DE) has been successfully
applied to decentralized robotic applications. In [28], Vahdat et al. present DE

and particle swarm optimization that are applied to the global localization of
mobile robots. In [26], DE is used for MANETs to improve the performance of
routing protocols. DE is used as the mechanism for MANET nodes to choose
cluster heads, as shown in [5]. Managing the movement of nodes in network
models where each node is capable of changing its own spatial location has
been approached by employing concepts of potential fields [14], a Lloyd-
based algorithm [6], and various GA-based decentralized topology control
mechanisms [24].

2.2 Our Earlier Research

In our earlier work [11,17], we presented three distinct methods for autonom-
ous MANET nodes to position themselves over unknown deployment areas
using various GT, evolutionary GT, and FGA concepts. We introduced a force-
based genetic algorithm topology control approach for uniform deployment
of autonomous vehicles over a two-dimensional unknown area in [25, 27].
In [12], we introduced a differential evolution-based topology control mech-
anism, called TCM-DE, which we modeled as an inhomogeneous Markov
chain to demonstrate its convergence towards an adequately separated final
distribution of mobile nodes. We studied models that combine various GT

and genetic algorithms concepts for autonomous MANET nodes positioning
themselves over an unknown deployment areas in [15, 16, 30].

2.3 Contribution of This Paper

The initial concepts used to evaluate the performance metrics of self-
positioning autonomous MANET nodes were introduced in [11, 18]. In this
paper, we introduce the formal definition of our BioGame. Then, using our
performance metrics, we formally analyze the performance of our BioGame
and FGA with respect to the average distance traveled, uniform distribution
of nodes, and area coverage. We verify formal analysis results with simu-
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lation experiments and show that both BioGame and FGA can be effective
in providing uniform node distribution. However, BioGame, which utilizes
game theory, can make better informed decisions and at the same time reduce
traveling distance for nodes. This paper presents a formal definition of our
BioGame together with its convergence properties. Since the nodes running
BioGame base their decisions not only on the expected improvement of their
own locations but also on the possible movements of their near neighbors, we
are able to demonstrate that BioGame provides better informed movement
decisions for the mobile nodes. Using simulation experiments, we verify that
the performance of MANET nodes guided by BioGame is better than by our
FGA alone.

3 Performance Evaluation Methods for MANETs

In this section, we present quantitative methods for assessing performance of
MANETs with respect to the uniform distribution of mobile nodes, NAC, and
ADT.

3.1 Uniformity Metrics

Equally distanced and connected mobile nodes are necessary to achieve
many network goals. A uniform distribution of mobile nodes helps to sim-
plify high-level network communication and routing operations as well as
provide adequate area coverage for environment-sensing purposes. Further-
more, since the lifespan of a MANET under limited-power conditions often
depends on the continuous operation of all nodes, it is important to ensure
that the nodes deplete their energy resources evenly and to limit the num-
ber of nodes that cease to function prematurely. In uniformly distributed
networks, where each node has the same sensing area and distance to its
neighbors, power utilized by every mobile node to perform its tasks is similar
and, consequently, prolonged uninterrupted operation of a MANET can be
accomplished.

To gauge the performance of MANETs with respect to the uniformity of
autonomous node distribution, we introduce metrics based on various quant-
ities associated with the Voronoi tessellation [23] of the deployment terrain.
Our Voronoi tessellation metric associates each node ni with a Voronoi region
Vi such that all locations that are closer to ni than to any of the other nodes
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Figure 1 The Voronoi tessellation of a rectangular area.

are parts of its Vi . The Voronoi region for each MANET node is defined as

Vi = {ω ∈ � : d(ni, ω) < d(nj , ω),∀nj ∈I\{ni}} (1)

where � represents the set of all positions in the deployment area, I is a set of
all players (nodes), and d(ni, ω) represents the Euclidean distance between
node ni and a location in the deployment area (i.e., (xi, yi) and (xω, yω)).
The Voronoi tessellation of a deployment terrain is a collection of all nodes’
Voronoi regions. Let the area of Vi be defined as Av,i and Ci be the center of
mass of region Vi . Figure 1 presents a tessellation of the rectangular constant
terrain depicting basic quantities associated with each Voronoi region.

In Figure 1, the darker region represents the area, Av,i of node ni’s Voro-
noi cell Vi . The parameter d(ni, Ci) denotes the distance to the center of mass
of generated by node ni’s Voronoi region. For clarity of presentation, Figure 1
does not depict any values associated with the other five nodes.

We introduce two methods for measuring the uniform distribution of
MANET nodes over a deployment terrain. The first metric, called UA, exploits
differences in sizes of the areas for Voronoi regions generated by the nodes.
We define UA as

UA = 1

Āv

√√√√ 1

|I |
∑

ni∈I

(Av,i − Āv)2 (2)
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Figure 2 Examples of node distributions and corresponding Voronoi tessellations obtained by
BioGame at step: (a) t = 5; (b) t = 15; and (c) t = 50. The center of mass for each Voronoi
region is marked by a black dot.
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where Āv is the arithmetic mean of Av,i for all ni ∈ I and |I | denotes a total
number of nodes in the network.

If mobile nodes are equally separated, the size of the Voronoi cell area
for each node located in the interior of the deployment terrain is equal. Slight
variations in Voronoi regions exist near the boundaries of the deployment
territory. Therefore, the tessellation of the deployment area that closely re-
sembles collection of congruent regular hexagons reflects a desirable node
distribution. The metric UA approaches zero as autonomous mobile agents
improve their locations towards a uniform network distribution, where nodes
cannot improve their positions any further.

Figure 2 shows three sample node distributions achieved by our BioGame
and the Voronoi tessellations associated with them. The center of mass for
each Voronoi region is marked by a black dot. The values of UA for the
topologies depicted in Figures 2(a), (b), and (c) are 1.6, 0.6, and 0.2, re-
spectively, which are consistent with improvement achieved by the network
at these steps.

Our second metric for network uniformity is based on the distance
between the location of a node ni and the center of mass of its Voronoi region
Ci . In a given topology, the center of mass Ci indicates the preferred location
for node ni in order to best monitor its surrounding. The distance between the
location of ni and Ci indicates how close its present position is to the ideal
position. The uniformity measure UC is defined as

UC = 1

|I |
∑

ni∈I

d(ni, Ci) (3)

where d(ni, Ci) is the Euclidean distance between the present position of ni

and the center of its Voronoi region Ci (Figure 1).
When a network converges to a uniform distribution, the separation

among neighboring nodes equalizes and for all ni ∈ I , and the distance
d(ni, Ci) approaches zero. For example, the uniformity measures UC for
the topologies depicted in Figures 2(a), (b), and (c), are 7.8, 3.1, and 0.9,
respectively. Consequently, in both of our metrics UA and UC , the smaller
value achieved by the network indicates the better placement of nodes.

3.2 Average Distance Traveled

Another important metric for assessing the performance of node self-
spreading algorithms is ADT. Let st

i represent a strategy of player ni at time t

that corresponds to the spatial coordinates of ni (i.e., st
i = (xt

i , y
t
i )). Further-
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more, for all t ≥ 0, let d(n0
i , n

t
i) denote the total distance traveled by ni up

to time t . We define ADT(t) as the average distance traveled by a node until
time t as

ADT(t) = 1

|I |
∑

ni∈I

d(n0
i , n

t
i) (4)

In our simulation experiments, as t increases, the value of ADT never
decreases (i.e., ADT is a monotonically increasing function). The rate that
ADT grows is an indicator of the dynamic nature of the network. As the
network reaches a uniform distribution, where nodes are not able to improve
their positions any further, the derivative of ADT is zero.

3.3 Network Area Coverage

NAC is defined as a ratio of the coverage achieved by the communication
areas of all nodes to the total deployment terrain. If any part of the region is
covered by more than one mobile node, the overlapped area is included in
NAC calculations only once. Also, only the part of node’s coverage area that
falls within the area of deployment counts towards NAC. Let AC, i denote the
area covered by node ni and Ac be the size of the area of deployment. We
formally define NAC as

NAC =
⋃

ni∈I AC,i

AC

(5)

where
⋃

represents the union of all coverage areas of subscribed nodes. A
NAC value of one implies that the entire area is fully covered. Hence, obtain-
ing the highest possible NAC by mobile agents is one of the goals for our
game-theoretic and bio-inspired node spreading techniques.

4 Our BioGame

In our BioGame, each mobile node makes movement decisions based solely
on local data. First, a node runs our novel FGA to find a set of preferred next
locations and evaluates them through the spatial game set up among itself
and its current neighbors. In BioGame, a set I of m players represents all
active nodes in the network and for all ni ∈ I , a set of strategies Si stands for
the possible locations into which player ni can move. Let Ni denote the set
of neighbors of node ni in its communication range RC , which defines ni’s
sensing and communication areas. Strategy profile s for player ni represents
strategies of all nodes in {ni ∪ Ni}.
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Our FGA exploits inherent characteristics of GAs, which can efficiently
explore multiple possible solutions in each evolutionary step providing a set
of desired solutions at the end of its computation. The fitness function used by
our FGA is based on the virtual forces envisioned to be inflicted on a mobile
node by its neighbors. The virtual force Fij exerted on node ni by node nj ∈
Ni is calculated according to the following equation

Fij =
{

γi

(
Rc − dij

)
if 0 < dij < dth

ε if dth ≤ dij ≤ RC

(6)

where dij is the distance between mobile nodes ni and nj , dth is the threshold
value to define the best separation among nodes, and ε < Rc − dth. The force
scaling factor γi is a function of the desired node degree μ and is defined as

γi = (|Ni| − μ)2 + 1

|Ni| (7)

The fitness of node ni located in si is influenced by its neighboring node
positions represented by s−i , where s−i is an element in the set of all possible
choices of ni’s opponents S̄−i . The fitness of ni is calculated as

fi(si, s−i) =
{∑

nj ∈Ni
Fij if Ni �= ∅

Fmax otherwise
(8)

where Fmax > (m × RC) is a large penalty for mobile nodes becoming
disconnected.

The fitness function in our FGA promotes a sparsely connected network
topology with nodes having a limited number of neighbors and reduced over-
lapping communication areas when the desired number of neighbors μ is
small. On the other hand, when the desired node degree is large, nodes run-
ning our BioGame will create a densely packed network, where each node
has multiple neighbors, hence redundant routing paths can be established.

Figure 3 shows the surface plot of the fitness function defined by Eq. (8)
for various degrees of node ni ∈ I and averaged distances to its neighbors in
range (0, Rc].

We can observe in Figure 3 that the fitness for node ni improves when its
number of neighbors approaches μ and the distance to them gets closer to RC

(i.e., nodes became spread farther apart). At any stage of the game, a player
may not have the entire landscape of possible solutions to choose from, as
neighbor positions may restrict it, but even a local improvement shifts the
node closer to a position with the minimal virtual force inflicted on it.
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Figure 3 Fitness landscape of our FGA. For clarity of presentation, this figure does not depict
the case where Ni = ∅, which results in fi(s) = Fmax.

The set of possible new locations S̄i for node ni consists of locations
computed by our FGA as well as ni’s current position. Node ni computes
expected payoff for each si ∈ S̄i as

ui(si, σ−i ) =
∑

s−i∈S̄−i

⎛

⎝
∏

nj ∈Ni

σj (sj )

⎞

⎠ fi(si, s−i) (9)

where σ−i is a probability distribution over s−i and a probability of node nj

choosing location sj is denoted by σj(sj ), which represents a probability of
sj being played.

Player ni finds the best location to move s∗
i by evaluating all elements of

S̄i using Eq. (9) and selecting

s∗
i ∈ argmin

si∈S̄i

ui(si, σ−i ) (10)

that minimizes possible forces inflicted on it.
This step replaces the stochastic roulette wheel or deterministic elitism

selection mechanisms in making a final decision for the new position of node
ni . However, contrary to the roulette wheel and elitism, our BioGame utilizes
additional information about neighbors in order to enhance FGA performance.
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In our BioGame, each node ni autonomously determines its new location that
is within RC distance from its current coordinates.

4.1 Formal Analysis of BioGame

Let us now demonstrate that BioGame can be used by autonomous mobile
nodes to efficiently disperse over an area of deployment while achieving uni-
form distribution and maintaining network connectivity. Let fi(s

t ) represent
the fitness of node ni resulted from the strategy st

i being played by it at time
(t). The following theorem shows that a mobile node moves to a new location
only if it does not lower its fitness.

Theorem 1. Node ni moves to a new location st+1
i if it is expected to be better

or at least as good as its present position st
i (i.e., fi(s

t+1) ≤ fi(s
t )).

Proof. Node ni computes expected payoffs (fitness) for all of its possible next
locations S̄i according to Eq. (9). From the expected payoffs, node ni selects
the best location to move, as presented in Eq. (10). If there is no element in S̄i

for which Eq. (9) attains a smaller (i.e., better) value than for st
i , then st

i = s∗
i

or ui(s
t
i , σ−i) = ui(s

∗
i , σ−i). Hence, either node ni remains in its current

position or moves to a location that gives it equally good or better expected
payoff.

If, on the other hand, st
i is not amongst the locations that provide the

minimum expected payoff for node ni , the new location s∗
i selected by

Eq. (10) must result in a better or equal expected payoff for ni than st
i (i.e.,

ui(s
t
i , σ−i ) > ui(s

∗
i , σ−i)).

Therefore, node ni moves to a new location if and only if it has at least as
good fitness as its current position.

We formalize the advantages of BioGame over FGA in the following
theorem.

Theorem 2. In BioGame, the decision to determine the next position for
player ni provides similar or better results than a position that is based on
the outcomes of FGA only.

Proof (sketch). Let us first assume that player ni is the only node intending
to change its location for a given moment and, consequently, no information
about eventual actions of the players in Ni provide additional information
for ni. Since S̄−i is a singleton and ∀nj ∈Ni

σj(s
t
j ) = 1, where st

j represents
the present location of player nj , Eq. (9) becomes equivalent to Eq. (8) and,
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hence, player ni selects the best new place for her to move, as ensured by
Eq. (10), as if it were by using the results of our FGA only.

If, on the other hand, there is at least one other player nj ∈ Ni at this
time intending to move according to her strategy σj , it is possible that this
information can improve ui selection process by using BioGame. Let ŝi be
the best strategy that FGA can find (either, as an outcome of elitism, roulette
wheel, or similar processes), then the expected payoff resulting from moving
into ŝi evaluated by Eq. (9) can be at most as good as the result of Eq. (10)
evaluated by our BioGame. Therefore, ui(ŝi , σ−i ) ≥ ui(s

∗
i , σ−i) must hold.

As a result, player ni can find the next best location to move by evaluat-
ing her future positions with respect to possible movements of all nj ∈ Ni

through evaluating our BioGame.

The following theorem illustrates that the mobile nodes running BioGame
make better informed movement decisions than the nodes that make their
choices regarding next positions based on FGA only.

Theorem 3. For any given two neighboring nodes ui and uj , both at non-
ideal locations, BioGame provides better informed movement decisions than
FGA.

Proof (sketch). Using Eq. (8), each node running FGA computes its next po-
sition regardless of possible actions of its neighbors. Therefore, it is possible
that two nodes ui and uj may move to new locations which improve their
own fitness but decrease the fitness and uniformity of the entire network.
This can happen because each node only selfishly considers the improvement
of its own location in its fitness calculation. Consider two nodes ui and uj ,
that are attempting to move and guided by FGA . It is possible that they may
choose the same location as their target st+1 (i.e., st+1 = st+1

i = st+1
j ) if

the location st+1 provides improvement for both nodes over their respective
current positions st

i and st
j . The nodes ui and uj will then have to fix their

positions at time (t+2), as FGA will guide them to better successive positions.
However, a node running BioGame takes into account the intended de-

cisions of neighboring nodes using Eq. (9). As long as the expected payoff
is better for one node to move to a given location than the expected payoff
of a node and its neighbors moving into the same location, nodes will not
move into the same location. Therefore, as long as σj (s

t+1)fi(s
t+1
i , st+1

j ) >

σj(s
t+1)fi(ŝ

t+1
i , st+1

j ), node ui will refrain from moving to st+1
i in favor of

moving to ŝt+1
i , as assured by Eq. (10).
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As a direct result of Theorem 3, we can state the following corollary
regarding the performance of our BioGame.

Corollary 1. BioGame achieves convergence faster than FGA for autonomous
mobile nodes spreading themselves to a desired network configuration.

Theorems 1, 2, 3, and Corollary 1 state that player ui can improve its
performance by executing BioGame to determine the best next position to
move and improve the network convergence time. This observation has been
further validated by the results of our simulation experiments presented in
Sect. 5 below.

5 Simulation Experiments

We developed a simulation platform for our BioGame using MASON [20].
Our software implementation provides a graphical user interface allowing
for a real-time visualization of ongoing network dynamics and collecting
data needed for further analysis. All of our experiments were performed for
MANETs with autonomous nodes determining their next locations by means
of BioGame and FGA alone. To reduce noise in the collected data, each
experiment was performed 20 times and the results were averaged.

For each experiment, we initially placed 40 nodes in the upper-left corner
of the 100 × 100 units deployment area (Figure 4(a)). For simplicity and
without loss of generality, all mobile agents have the same communication
radius of RC = 16. Our initial distribution imitates a realistic situation where
the nodes enter a terrain from a common point (e.g., initiating nodes into
a post-earthquake zone or a territory occupied by hostile forces) compared
to random or other initial node deployments we often see in the literature.
Deployed autonomous mobile nodes have no a priori knowledge of the un-
derlining area and locations of their neighbors. A typical final distribution of
40 nodes running BioGame for 100 steps is shown in Figure 4(b).

5.1 NAC Improvement for Networks Running BioGame and FGA

Figure 5 shows the improvement of NAC for networks where nodes are run-
ning BioGame and FGA. In Figure 5, the vertical axis represents the ratio of
the total deployment terrain covered by nodes and the horizontal axis rep-
resents the duration of the experiments. We can see in Figure 5 that mobile
nodes directed by our BioGame converge faster than when mobile nodes that
are directed by FGA. Also, it can be observed in Figure 5 that in the early
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Figure 4 A typical (a) initial and (b) final node distribution of 40 nodes and their commu-
nication areas (darker color) at the beginning and end of the BioGame experiments. To better
visualize BioGame performance, only the communication areas of a few selected nodes are
outlined.

Figure 5 NACs obtained by networks running BioGame and FGA.
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Figure 6 ADTs for a node running BioGame and FGA.

stages of the experiments, the NAC for BioGame and FGA have the highest
improvement rate, indicating that the nodes are able to disperse far from their
initial locations especially at the beginning of the experiments and showing
effectiveness of both BioGame and FGA in finding new positions.

5.2 Average Distance Traveled by each Node

When illustrating changes in ADT for our experiments, the vertical axis rep-
resents the average total distance traveled by a node up to the time indicated
in the horizontal axis. Figure 6 compares ADT for nodes running BioGame
and FGA in a network consisting of 40 mobile agents. As we could observe
in Figure 5, the area covered by mobile agents running FGA and BioGame
are very similar. However, Figure 6 shows that the average distance traveled
by a node running FGA is almost twice of that for BioGame. Specifically,
Figure 6 shows that at step 35, ADT by a node running FGA is approxim-
ately 300 whereas it is about 160 for a node running BioGame. At step 50,
when FGA and BioGame networks approach their maximum area coverages
for this example (Figure 5), a node selecting its next location based on FGA

traveled more than twice the distance of a node using BioGame (Figure 6).
Conversely, by the time BioGame achieves 98% of coverage by traveling
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distance of approximately 160, FGA has only achieved 78% of area coverage
(i.e., Figure 6, shows that FGA network ADT is 160 at step 15). The ability
of BioGame to significantly reduce the required distance that nodes have to
travel to accomplish predefined coverage objectives assures its practical value
for all realistic implementations for which power is a scarce resource.

Another observation that we can make from Figure 6 is that ADT con-
tinues to increase throughout the experiment when mobile nodes use FGA

to guide their movements. This observation shows that the nodes running
FGA need more time to attain a uniform network topology than the BioGame
nodes. One reason for the lower performance of FGA is that multiple nodes
simultaneously may attempt to move to the same location, and delay uniform
node distribution. These types of inefficient movements are greatly reduced
by BioGame, since each node considers its own decisions and future actions
of its near neighbors.

5.3 BioGame and FGA Uniformity Evaluation

We demonstrate the improvement in network uniformity when mobile nodes
utilize BioGame and FGA to evolve towards their final distributions by using
the metrics UA and UC , which were presented in Sect. 3.1. Figure 7 shows the
improvement of UA and UC as simulation experiments progress. We can see
in Figure 7 that both BioGame and FGA converge rapidly towards a uniform
distribution over the area of deployment. The largest improvement occurs
during the initial iterations of the simulations showing the effectiveness of
our approaches in finding new locations when the space is not constrained.
However, as ADT results demonstrated, BioGame provides a more efficient
method for spreading autonomous mobile agents over an unknown terrain
since the nodes utilizing BioGame move less while providing better results
with respect to NAC and appropriate separation among the mobile nodes
(Figure 7).

6 Concluding Remarks

We presented quantitative techniques for gauging the performance of MANET

nodes with respect to the uniform distribution of mobile assets, total terrain
covered by communication areas of all nodes (NAC), and the distance that
each node travels before a desired network topology is reached (ADT). A uni-
form distribution of mobile agents prolongs network’s lifespan by ensuring
even depletion of energy resources available to each node. We demonstrated
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Figure 7 The improvement of uniformities (a) UA and (b) UC for MANETs running BioGame
and FGA.
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uniformity metrics that exploit Voronoi tessellations of a deployment territory
to evaluate regularity in the placement of nodes. ADT can be used to measure
power-efficiency of a node distribution, as movement of the nodes is one
of the most power-consuming tasks. In order to adequately utilize existing
mobile agents, an autonomous node self-positioning method should strive to
maximize the total area covered by all nodes while preserving network con-
nectivity. We define NAC metric as a ratio of area covered by all nodes with
respect to the deployment territory. Each performance metric gives a valuable
insight into the mobile network performance and collective examination of
their respective results provides a comprehensive assessment of MANETs.

We present a node-spreading bio-inspired game (BioGame) combining
our force-based genetic algorithm (FGA) and game theory to guide autonom-
ous mobile agents in modeling movement decisions. Using our MANET

evaluation metrics, we compare the performance of BioGame and FGA.
Experimental results show that both BioGame and FGA can provide prom-
ising levels of area coverage with near uniform node distributions. However,
BioGame can achieve a network topology where nodes uniformly cover
the deployment terrain while traveling less than half of the distance than
mobile nodes running FGA to achieve similar uniformity and NAC results.
Furthermore, simulation results demonstrate that the presented metrics are
useful for evaluating the performance autonomous mobile node deployment
mechanisms.
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