
Detecting Targeted Attacks by Multilayer
Deception

Wei Wang, Jeffrey Bickford, Ilona Murynets, Ramesh Subbaraman,
Andrea G. Forte and Gokul Singaraju

AT&T Security Research Center, New York, USA;
e-mail: {wei.wang.2, jbickford, ilona, ramesh.subbaraman, forte,
gokul.singaraju}@att.com

Received 15 May 2013; Accepted 15 July 2013

Abstract

Over the past few years, enterprises are facing a growing number of highly
customized and targeted attacks that use sophisticated techniques and seek
after important company assets, such as customer data and intellectual prop-
erty. Unlike conventional attacks, targeted attacks are operated by experts
who use multiple steps to gain access to sensitive assets, and most of time,
leave very few network traces behind for detection. In this paper, we propose
a multi-layer deception system that provides an in depth defense against such
sophisticated targeted attacks. Specifically, based on previous knowledge and
patterns of such attacks, we model the attacker as trying to compromising an
enterprise network via multiple stages of penetration and propose defenses
at each of these layers using deception based detection. Due to multiple lay-
ers of deception, the probability of detecting such an attack will be greatly
enhanced. We present a proof of concept implementation of one of the key
deception methods proposed. Due to various financial constraints of an enter-
prise, we also model the design of the deception system as an optimization
problem in order to minimize the total expected loss due to system deploy-
ment and asset compromise. We find that there is an optimal solution to
deploy deception entities, and even over spending budget on more entities
will only increase the total expected loss to the enterprise. Such a system

Journal of Cyber Security and Mobility, Vol. 2, 175–199.

c© 2013 River Publishers. All rights reserved.
doi 10.13052/jcsm2245-1439.224

176 W. Wang et al.

Figure 1 A multi-stage attack with layers of penetration.

can be coupled with existing detection techniques to protect enterprises from
sophisticated attacks.

Keywords: Deception, honeypot, honeynet, optimization.

1 Introduction

Recent trends indicate that enterprises today face a growing threat of sophist-
icated attackers who seek to steal or compromise proprietary information and
assets [19, 11, 2, 1]. These attacks are executed in multiple stages and each
stage is highly customized for each targeted enterprise. Attackers typically
leave few network and system level footprints in attempts to evade detection.
They exploit zero-day vulnerabilities to deliver malware using a single event,
such as a carefully crafted spear-phishing email, as the entry point into an
enterprise network. Detecting such events by leveraging existing techniques
is difficult, especially when social engineering techniques are used to infilt-
rate the target organization. Once an attacker has infiltrated an organization,
detecting other phases of an attack, such as data exfiltration, is a very difficult
process which requires correlation between multiple events, such as firewall,
IDS and DNS logs. As attackers customize their attacks for individual targets,
prior knowledge such as blacklists of malicious domain names, drop servers
IPs and malware signatures may not be useful for the attack. Therefore, rapid
detection is technically difficult and stopping an attack in the early stage is
challenging.

Figure 1 illustrates a multi-stage attack with layers of penetration as an
attack example of such. A typical pattern observed in these attacks is that
an attacker first studies the targeted enterprise during a “reconnaissance”

Detecting Targeted Attacks by Multilayer Deception 177

phase, gathering information such as the organization background, resources
and individual employees to initially target to launch the attack. By using
social engineering techniques, such as a spear-phishing email, the attacker
attempts to “infiltrate” into the enterprise by using a particular employee
as the entry point. This typically requires an employee to fall victim to the
social engineering attack, for example by following a web link or opening
an attachment that contains some exploit and malicious payload. During this
phase of “exploitation”, the attacker penetrates a level deeper by gaining con-
trol of the employee’s personal assets (such as email and personal computer).
This may then be used to penetrate another level deeper into the enterprise
through manual “exploration” of remote servers (hosting databases, propri-
etary algorithms, intellectual properties etc.), or to launch additional social
engineering attacks against other employees who have access to the inform-
ation that the attacker seeks to obtain. Some attacks may exploit and gain
control of many different servers and machines during the exploration phase
to gain a persistent foothold in the enterprise. Once an asset has been ob-
tained, the attacker finally “exfiltrates” the data out of the enterprise network
and the attack can be considered successful.

This pattern, as mentioned above, reveals that there are three layers of
penetration – a human layer, a local asset layer, and a global asset layer. Each
layer of penetration brings the attacker closer to the targeted information as-
sets. The human layer is the information of an enterprise employee, which is
researched and gained by an attacker in the reconnaissance activity. The local
asset layer refers to the employee’s local machine containing immediate as-
sets and the global asset layer represents the assets hosted on servers accessed
and shared by multiple users. To address this problem, we propose to apply a
multilayer deception system in order to protect important assets within an en-
terprise network. That is, our proposed multilayer deception system provides
detection via deception at these three layers. By detection via deception, we
are referring to the idea of placing bogus facilities and resources within a
network or file system such that when accessed, an alarm is triggered and
the attackers presence is discovered. In order to trick an attacker to access the
item, these bogus resources are generated to appear as valuable as normal. By
providing deception at each stage of an attack, the proposed system greatly
enhances the chance of detecting intrusions in an early stage.

In this paper, we introduce concepts of honey people, honey files, honey
servers, and honey activity to defend the human, local, and global assets
layers respectively. Honey activity can be considered as fake file system or
network activity intended to prevent a sophisticated attacker from evading

178 W. Wang et al.

bogus resources by observing actual user behaviors. We integrate all of these
into a complete system that work cooperatively together to provide an in
depth solution against targeted attacks. We also present an optimization based
method to design a budget conscious defense solution which minimizes the
expected loss due to asset compromise.

The following features of our work represent significant contributions
towards the goal of detecting multi-stage attacks:

• Multiple layers of deception are designed specifically for each layer
of penetration, so that each deception layer can increase the chance of
detecting attacks at an early stage.

• By estimating the cost of deploying deception entities and asset values,
proposed optimization model can find an optimal solution to intelli-
gently allocate the budget on necessary deployment to minimize the
overall expected loss. To our knowledge, this is the first proposal for
an optimal system design based on the cost of deception.

The rest of the paper is organized as follows. Related work will be presen-
ted in Section 2. The details of our system are at described in Section 3. In

activity. Section 5 presents our deception system design method using optim-
ization and shows results for a specific example. Section 6 shows the future
work to enhance the system implementation in the cloud and further study on
system design optimization. Section 7 concludes our paper.

2 Related Work

This basic concept of deception has a long history of successfully being used
in security. Generally a deception system consists of resources that appear to
be a part of a network, but are actually isolated and monitored. The system
will seem, to the intruder, to contain information or a resource of value to
attackers, but such information is of no value in content. Because it is not
a real entity, any actions on this resource are suspicious by nature [21, 3].
The concept of deception was firstly introduced by Clifford in his book [22],
which described in detail how he hunted over months for a computer hacker
who broke into a computer at the Lawrence Berkeley National Laboratory.
By trapping the hacker in the decoy system, the hacker’s actions were recor-
ded and his behavior was successfully revealed and studied. By dedicating
a chapter on “Traps, Lures, and Honey Pots” in their book [10], Cheswick
and Bellovin discussed how to use unused services as decoys on firewalls and

Section 4, we describe a prototype implementation of honey files with honey

Detecting Targeted Attacks by Multilayer Deception 179

during another chapter “An Evening with Berferd” they logged and interacted
with a hacker in order to understand an attempted attack into their network.

The use of fake files as bait to detect malicious file accesses was first
proposed in [25,26]. Such files can be set up by users and only those who are
intimately familiar with file system can potentially avoid such a trap. Along
the same line, Fiedler [13] proposed honeypots for database protection, where
he described basic honeypot architecture to secure a SQL database server.
This SQL database provides a honeypot trap for the intruder while still allow-
ing the web application to run as normal. Alternatively, Bruce [20] proposed
to embed macros in fake word or pdf documents to trigger alerts when files
are opened. Younghee et al. [17] proposed a software-based decoy system
that generates believable Java source code which, to an adversary, appears to
be entirely valuable and proprietary. A honeynet is used to monitor a large
and/or more diverse networks in which one honeypot may not be sufficient
[7]. A honeynet can be utilized as a part of the network intrusion detection
system. Instead of utilizing a variety of physical systems, Honeynet Project
introduced virtual Honeynets to run honeypots on a single computer [18].
By using virtualization techniques, the Honeynet project runs several honey-
pots of multiple operating systems types on a single computer for analysis
purposes. Project Honey Pot [15] employed a web based honeypot network
which uses software embedded in web sites to collect information about IPs
harvesting e-mail addresses for spam, bulk mailing and fraud. Most recently
on the mobile communications front, Collin [16] implemented HoneyDroid,
a smartphone honeypot for the Android operating system to catch attacks
originating from the Internet, mobile networks, as well as through malicious
applications; while Wang [24] introduced fake contacts on mobile devices to
quickly detect messaging-based malware propagation in cellular networks.
Brian et al. [8] proposed trap-based defense mechanisms and a deployment
platform for addressing the problem of insiders attempting to exfiltrate and
use sensitive information. Malek et al. [5] modelled user search patterns
as well as touch interactions with decoy documents to detect deviations,
indicating an attack.

Unlike all previous work that considers one flavor of honeypot as a sys-
tem, we propose multiple layers of deception that work cooperatively. We
focus on sophisticated and highly customized attacks against enterprises tar-
geting their most valuable information assets via three levels of penetration.
For each layer of penetration, we propose related methods of deception to
detect such penetration. By considering multiple deception layers as one in-
tegrated system, we model the enterprise’s expected losses when assets are

180 W. Wang et al.

compromised, and formulate the problem of minimizing the overall expec-
ted loss using our deception system while meeting the budget constraints as
an optimization problem. There is no previous work that considered such a
systematic design.

3 Multilayer Deception System

3.1 Multilayer Deception System

In this section, we describe the key concepts of our proposed multilayer de-
ception system consisting of Honey People (HP), Honey File with Honey
Activity (HFHA), and Honey Servers with Honey Activity (HSHA). The
framework can be naturally extended to more layers of deception if required,
such as Honey Smartphone Contacts and Honey Databases. Figure 2 illus-
trates our proposed system with these mutliple layers of deception. The
system is comprised of both real entities typically used by employees and
deception entities used to detect an intrusion within the network. The alerts
generated from accessing the deception entities will be sent to an analyst
server, where an analysis process will handle the alerts. Throughout the rest
of this paper we consider only three levels of deception, though in a full-
fledged deployment we would rely on previous implementations of additional
deception layers.

3.2 Honey People

The goal of Honey People is to protect employees against social engineering
attacks coming from outside the enterprise, such as spear phishing messages
containing a URL or malicious attachment. A HP is similar to the profile of
a real employee but contains bogus identity and/or contact information (e.g.
multiple email addresses). These HP can possibly be posted on public web-
sites (corporate web-page and popular social network sites1) and on physical
entities such as business cards, as shown in Figure 3. By this means, HP
confuses an attacker with fake information so that when the attacker chooses
a target to send a phishing message to, there is a probability that a HP is
chosen. A message sent to a HP is forwarded to the analyst server to ascertain
whether it was a penetration attempt. If not, the message can be forwarded to
the actual recipient. Detecting phishing messages is out of scope of this paper
but can be relied on existing techniques [6, 9].

1 Subject to terms and conditions of the sites.

Detecting Targeted Attacks by Multilayer Deception 181

Figure 2 A multilayer deception system (H represents honey entity and R represents real
entity).

The overhead at the analyst server is clearly dependent on the amount
of actual emails the person receives. We believe that internally within a
company, HP is not a scalable solution as employees will likely send each
other a lot of emails, which is why in our system, HP is only used to protect
against social engineering attempts from the outside. However, even then,
for a given employee, HP may or may not be a feasible solution, or only
be a partial solution depending on the employee’s level of public exposure
and the amount of external emails he receives. For example, a company’s
CEO’s identity may be well known, rendering a bogus identity useless, but
his email address may not, in which case HP via multiple email addresses
may be feasible. On the other hand, a manager may have both a well known
identity and contact address, so new clients can reach him, in which case HP
is not feasible as a solution at all. In our overall system design in Section 5,

182 W. Wang et al.

Figure 3 Honey people hosted on different publicly accessible medium. Mike is a real
employee and Alex is a deception entity.

we capture this aspect of HP by having different costs for a HP solution for
different employees.

3.3 Honey Files with Honey Activity

If the attacker manages to avoid HP defenses, an employee can potentially be
successfully social engineered and infected with malware. After the attacker
infiltrates the enterprise network and compromises a machine, he can begin
the next stage of an attack, where local emails, files, and folders are explored,
user name and password are sniffed, and even user daily activities are mon-
itored. In the attempt that the attacker starts to compromise the employee’s
local assets, we introduce another layer of deception which utilizes honey
files (HFs) with honey activity (HA) as a defense. Honey files are bogus
files and folders that, to the attacker, are indistinguishable from real files and
folders. Since the attacker, in our model, is extremely sophisticated, we as-
sume he can obtain complete access to a machine and hence has the ability to
monitor employee file and folder access behaviors. Thus, he can easily ignore
files and folders that the employee never accesses, defeating the purpose of
generic honey files. To obscure the view of the system, our honey files are
augmented with local honey activity which updates file meta data (such as
file size, name, date) to emulate actual employee accesses on real files.

In order to be convincingly realistic to the attacker, honey files should
be created in separate, as well as the same, directories as the ones employees
typically work with. Honey files should also be generated for files that contain
evidence of attacks, such as log files. These files are typically modified or
deleted by attackers in order to remove the evidence of their presence. Alerts

Detecting Targeted Attacks by Multilayer Deception 183

to the analyst server can be generated upon content related operations such
as read, open, move, copy, and delete. An implementation of honey files with
honey activity is described in Section 4.

3.4 Honey Server with Honey Activity

If the attacker is not caught while tinkering with an employee’s local assets,
he may then attack global assets that the employee has access to. At this layer,
our system uses honey servers with honey activity to detect the attacker’s
presence. A honey server is a bogus remote server mirroring real remote
servers in which the employee has access to. Again since we assume the
attacker is sophisticated enough to observe an employee’s remote access his-
tory, he can readily avoid traditional honey servers if they are never accessed.
Hence, we augment user machines with remote honey activity to emulate user
network behavior, such as connecting to a server with proprietary data.

Honey activity, with either honey files or honey servers, is a means to gen-
erate activities that appears to be generated by a regular user, and performs all
tasks that a real user would perform. Honey activities need to be completely
indistinguishable from a real user to avoid the possibility of malware distin-
guishing between HA and real user activities. There are two types of HA,
local and remote honey activities. The local HA generates activities staying
within the machine, such as creates, updates local honey files in order to make
them correlated with real files. The remote HA generates activities going out
of the machine which emulates user network behaviors such as connections
to data servers. In the case where an attacker follows the local HA to access
updated honey files, or remote HA to establish a SSH connection to a remote
server, an alert will be triggered.

In order to differentiate between honey activity and an attacker’s activity
to a remote server, we need to define new algorithms. In particular, the honey
server and honey activity module could agree on what network patterns the
honey server expects to see as a result of the honey network activity. One
such agreement could be the time pattern by which the honey activity module
connects to the honey server. When an attacker tries to connect to the honey
server at the wrong time, the honey server will be able to identify this network
activity as originating from an attacker and thus trigger an alert to the analyst
server.

184 W. Wang et al.

3.5 Analyst Server

The Analyst Server is a center where alerts are received from different
deception entities and analysis is applied to confirm or remove alerts. As
we mentioned before, existing techniques can be applied to detect phishing
emails or messages [9,6]. Since we capture the suspicious emails or messages
with full content, a live sample of the malware can be potentially obtained
from either the attachment or drive-by-download link. In such a way, we can
analyze the malware itself. Different sophisticated detection schemes, such as
behavioral analysis, automated URL browsing, and content based detection
can be applied [4,12], to check whether a piece of malware is present on a web
page. Once a phishing message is confirmed, a signature can be generated and
applied in the network to block future delivery.

The analyst server is also a centralized place to correlate different alerts to
increase the knowledge of a penetration attempt. For example, if alerts happen
on honey file entities on two different machines, then it worth comparing host
applications, logs and network traffic from these machines to identifying the
cause of the similar anomalies. It also could be an alert that is triggered on a
honey file entity and later on anoreother alert on a honey people entity. With
some analysis, these two separate alerts could be correlated to the same attack
campaign.

3.6 False Positives

In general, reducing the false positives is one of the most challenging tasks in
deception systems. At one hand, deception entities should be indistinguish-
able from real entities in order to be convincingly realistic to the attacker. On
the other hand, convincingly realistic honey entities may confuse legitimate
users.

There are several ways to reduce false alerts triggered by legitimate opera-
tions on protected assets. Since people are creatures of various habits, normal
routine activity from a user typically follows a detectable access pattern. In
a case of an enterprise laptop, a user often goes to specific workspaces, use
known applications and creates new files and updates known files for his own
knowledge. Not so often, a user will go to an unknown folders and manipu-
late unknown files. Thus, one important aspect to help reduce false positives
is employee awareness. Employees would be educated on the system and
trained to not perform operations on unknown files, folders, and servers.

On the technical front, for honey files and folders, names can be differ-
entiators between honey entities and real entities. When a file is registered

Detecting Targeted Attacks by Multilayer Deception 185

with the deception system, it can generate multiple honey files associated
with a real file, with similar names for honey files but different identifiers. A
secondary channel (such as SMS) can be utilized to deliver the identifier of
the real file name. In the case of a machine being compromised, an attacker
will not know the real file name unless he compromises the secondary channel
at the same time. Automatic algorithms can also reduce false positives such
as the time pattern described between the honey activity and honey server.
A secondary channel can also be utilized to send alerts if honey entities are
accessed, legitimate users can remove alerts if they operate on honey entities.

4 Implementation

Developing the multilayer deception system is ongoing work and as an initial
proof of concept, we implement a system which can protect local assets using
our deception approach. More specifically, the prototype focuses on protect-
ing important files located on a user’s machine. Based on a set of important
documents (assets), typically located in various directories on a machine,
we generate multiple honey files corresponding to a single asset. These files
currently have the same name as the protected asset but with some identi-
fier at the end. For example, a file called secret.txt will be transformed
into multiple files e.g., secret-1.txt,secret-2.txt,secret-3.txt, etc.
with secret-2.txt being the real file. This is currently a manual process
and therefore the user must know which identifier corresponds to the actual
asset. We are looking at automating the honey file generation process and
maintaining a secondary channel in order for the user to identify the real
asset.

When a honey file is generated, it is registered with a system level service
which has the ability to monitor the file system and trigger alert events when
a honey file is accessed. Due to the ubiquitous nature of the Windows XP
operating system in enterprise corporations today, we built our prototype as
a system level Windows service using C# and the .NET framework. Figure 4
shows the implementation of our system. Our deception service runs with ad-
ministrator privileges and cannot be disabled by normal users. It is important
to note that malware which exploits a vulnerability and gains administrator
rights could disable our file monitoring service. If this occurs, the malware
could access all honey files without triggering an alert event. To protect
against these attacks, the deception service could be implemented using a
hypervisor-based approach if the highest level of security is required.

186 W. Wang et al.

Figure 4 Kernel level deception service implementation.

The DeceptionService registers honey files with a
FileSystemEventHandler, which invokes a handler function when
files are accessed. When a honey file is accessed, this handler function passes
the file off to an AccessHandler which maintains a queue of access events
to process. While there are files within this queue, the AccessHandler
thread currently logs the honey file access for later inspection. In practice,
the AccessHandler can perform any task the multilayer deception system
requires. In the full system implementation, we plan to notify the analyst
server that the specified honey file was accessed. At this point, since we
assume the user’s machine is compromised, we can validate if the honey file
was accessed accidentally or not through a secondary channel such as SMS.
If the user determines that they did not intentionally access the honey file,
the computer has been compromised and must be cleaned or replaced.

5 Deception System Design by Optimization

In practice, enterprises only have a finite budget to implement their security
solutions. The available budget must be utilized in the most effective way
possible. In this section we model the enterprise’s expected losses when assets
are compromised, and formulate the problem of minimizing the overall ex-
pected loss using our deception system while meeting the budget constraints
as an optimization problem. Here, we focus on two deception layers which
are honey people and honey files with honey activity, but the method can be
easily extended to more layers.

Detecting Targeted Attacks by Multilayer Deception 187

5.1 Model

Consider an enterprise that has NL local assets, NG global assets, and M

employees with different levels of direct access to these assets. Also, the
employees are connected to each other via a social network and consequently,
they have indirect access to all other employees’ assets. The probability psn

ik

represents the probability of user k being successfully compromised by the
direct social connection from i to k if user i is compromised. We attempt to
find the total probability Qsn

ik introduced by all paths from i to k in the social
network. Let node i be user i and the weight of a directed link from i to k be
psn

ik . We then formulate this as a reliability problem in graph theory, where the
objective is to calculate the reliability of node pairs in the graph, given every
link may fail with a probability. A modified version of Don’s algorithm [23]
is applied to calculate Qsn for all user pairs. Algorithm 2 recursively finds all
successful paths from user i to k, which is plugged in the main algorithm 1 to
calculate Qsn

ik .

Data: Adjacency matrix for the social network A

Result: Qsn
ik

from user i to k

Initialize an empty set L, the max hop hm;

while h not exceed max hop hm and Ah is not zero do
Find the paths between i and k by calculating Ah;
Store paths in set L;

end
Initialize Qsn

ik
= 0;

Initialize an empty successful path set W ;
if L is not empty then

Find the shortest path l in L;
Store path l in W ;
Execute algorithm SuccessPath(l,W, L);
for each path l in W do

Qsn
ik

+ =
∏

∀link∈l

probability(link is success/fail);

end
end

Algorithm 1: Calculate social impact Qsn
ik from user i to k.

Suppose that the attacker attacks employee i with probability Pi , gets ac-
cess to employee’s asset j with probability pua

ij and gains access to employee
k with probability psn

ik . Let Lij be the loss if the attacker accesses asset j of
employee i. Then the enterprise’s expected total loss is defined as a sum of

188 W. Wang et al.

Data: A path set l

Result: successful path set W

SuccessPath(l,W, L);
for each link lk in l do

Fail the link lk ;
Generate a new path set L′ from L by removing the failed link lk ;
if new path set L′ is not empty then

Find the shortest path ll in the new path set L′;
Store the shortest path ll and failed link lk in W ;

end
SuccessPath(ll,W, L′);

end

Algorithm 2: Function SuccessPath(l,W,L) to calculate the successful
path set W .

direct and indirect losses, TAL(i) = DAL(i) + IAL(i), where the direct loss is
represented as

DAL(i) = Pi

⎛

⎝
NL∑

j=1

pua
ij Lij +

NG∑

j=1

pua
ij Lij

⎞

⎠ (1)

and the indirect loss introduced by social connections is

IAL(i) = Pi

M∑

k=1,k �=i

⎛

⎝
NL∑

j=1

Qsn
ik pua

kj Lkj +
NG∑

j=1

Qsn
ik pua

kj Lkj

⎞

⎠ . (2)

Qsn
ik is the total probability of an attacker to compromise user k via all social

paths from user i to user k.
As described in the early section, if a honey entity is attacked in an attempt

to reach a real entity, an alert is raised revealing the attacker’s presence.
Thus, honey entities reduce the probability of an attacker compromising a
real entity. We also note that social engineering could be one of the ways
that an attacker can infiltrate an enterprise network. Thus, given that user i

is protected by xu
i (integer) number of honey people, the probability that the

attacker compromises user i reduces to P H
i (xu

i) = Pi(α1f (xu
i) + α2), where

α1 is the probability of being attacked via social engineering and α2 by other
ways (α1 + α2 = 1). Similarly if local asset j of a user i is protected by xa

ij

(integer) number of honey files with honey activity, the probability of asset j

being compromised reduces to puaH
ij (xa

ij) = pua
ij g(xa

ij), and for global assets

Detecting Targeted Attacks by Multilayer Deception 189

we have puaH
ij (xa

j) = pua
ij g(xa

j). Functions f () and g() should be decreasing
functions of their arguments to make sure that probabilities of compromise
decrease when when entities are protected by honey people and honey files.
Since the attacker is equally likely to pick any of the real corresponding honey
people/files, we assume that f (z) = g(z) = 1/(z + 1) hereafter.

We would like to find the optimal allocation of HP(s) and HF(s) with HA
that minimize the total loss in case of an attack. Therefore, the optimization
problem can be formulated as:

min
M∑

i=1

TAL(i) =

min
xa
ij ,xu

i ,xa
j

M∑

i=1

⎡

⎣P H
i (xu

i)

⎛

⎝
NL∑

j=1

puaH
ij (xa

ij)Lij +
NG∑

j=1

puaH
ij (xa

j)Lij

⎞

⎠

+P H
i (xu

i)

M∑

k=1,k �=i

Qsn
ik

⎛

⎝
N∑

j=1

puaH
kj (xa

kj)Lkj +
N∑

j=1

puaH
kj (xa

j)Lkj

⎞

⎠

⎤

⎦

(3)

subject to

M∑

i=1

Cu
i xu

i +
M∑

i=1

NL∑

j=1

Ca
ij x

a
ij +

NG∑

j=1

Ca
j xa

j ≤ B

Cu
i is the cost of deploying a single HP on user i, Ca

ij is the cost of deploying
HF on local asset j corresponding to user i’s direct access to j , Ca

j is the cost
of deploying a global honey asset and B is a budget on implementation of the
deception system. Due to implementation restrictions, the variables, xu

i , xa
ij ,

and xa
j , may need to satisfy additional constraints:

xu
i ∈ {0 . . . Su

i }, xa
ij ∈ {0 . . . Sa

ij }, xa
j ∈ {0 . . . Sa

j } ∀i, j

where Su
i , Sa

ij , and Sa
j are the (integer) upper bounds on the number of HPs

and HFs respectively.

5.2 Example

The following example demonstrates how the optimization model works. As-
sume a data analytics company have ten employees (M = 10), that is CEO,
manager, system administrator (SysAd) and seven data analysts (DAs) as in

190 W. Wang et al.

Figure 5 Local and global assets with social network connections.

Figure 5. Each employee has two local assets (NL = 2): a personal computer
and e-mail account. The company also has three global assets (NG = 3)
which are databases with different levels of access for different employees.
The database 1 (DB 1) is more valuable than database 2 (DB 2), which in turn
is more valuable than database 3 (DB 3). The employees have varying levels
of (direct) influence on other employees in the social network. The employees
and their (direct) access and (direct) influence profiles are described below.

• CEO has high value local assets; no access to global assets and among
employees communicates only with the manager.

• Manager has moderate value local assets; no access to global assets;
high social influence on other employees; and is highly influenced by
the CEO, System Administrator and Data Analyst 1, but not others.

• System Administrator has low value local assets; moderate access to all
global assets; high social influence on other employees, except CEO;
and moderately influenced by the Manager, but not others.

• Data analyst 1 has low value local assets; moderate access to all
global assets; high social influence on the Manager and some the
other Data Analysts; is highly influenced by the Manager and System

Detecting Targeted Attacks by Multilayer Deception 191

Figure 6 Local and global asset values with access probability pua
ij .

Administrator; and moderately influenced by some of the other Data
Analysts.

• Data analysts 2-7 have low value local assets; high access to some
global assets; high influence over some employees and highly influenced
by some employees.

Tables 1(a)–(f) show losses that an attacker causes by compromising
each of the company employees, social influence of employees by their
co-workers, attack probabilities and costs of honey people and honey files.
Figures 6 and 7 represent the graph view of the parameters and values in
the tables. The probability of attacks from social engineering is α1 = 0.25.
Here, honey emails accounts and honey databases can be implemented in the
system using honey files.

The optimal solution of the problem was found using Mathematica’s Dif-
ferential Evolution algorithm [14] for different budgets. This algorithm is
a stochastic optimization method that minimizes an objective function by
modelling the problem’s objectives while incorporating constraints. Simil-

192 W. Wang et al.

Figure 7 Social influence probability psn
ik .

arly to genetic algorithms, Differential Evolution algorithm is a population
based algorithm using crossover, mutation and selection operators. The main
steps of the Differential Evolution algorithm are initialization and evaluation
followed by recursively repeating mutation, recombination, evaluation and
selection steps until a termination criteria are met.

For practical reason, we limit the maximum number of honey email ac-
counts and HP to be five, which are two conditions applied to Equation 3.
There are several observations that we learn from the results.

1. If the company does not implement the deception system (B = 0), the
expected total loss in case of attack is $122 million. If there is a certain
amount of the budget available, for example, the budget of the company
on implementation of honey entities is B = $500,000, the deception
system decreases the expected loss from $122 million to $10 million.
The optimal allocation of HP is shown in Table 2(a). This solution has
the following explanation: the CEO, System Administrator and Manager

Detecting Targeted Attacks by Multilayer Deception 193

Table 1 (a) Losses in million dollars from employee compromise; (b) Probabilities that an
asset is compromised; (c) Matrix of (direct) social influence; (d) Attack probabilities; (e) Cost
of HP (f) Cost of HF.

have high probabilities of being attacked. That is why they are highly
protected by HP. The CEO and Manager’s e-mail account and PC are
highly protected, since they have very a high value for the company and
could be attacked. All the databases are protected by HFs.

2. If the company has more budget to implement more entities, the expec-
ted losses will decrease as seen in Figure 8(a). But if the company aims
at minimizing the total expected expenses, defined as the cost of imple-
mentation of the honey system as well as the expected losses in case of
attacks, the more protection does not mean less loss. If the budget of the
company on honey entities is B = $1,800,000, the expected loss drops to

194 W. Wang et al.

Table 2 Optimal solution for (a) $1,500,000 budget and (b) $1,800,000 budget.

HP HFEmail HFPC

CEO 2 5 9
Manager 4 5 8

Sys Admin 1 4 3
DA 1 5 2 1
DA 2 3 2 3
DA 3 4 2 3
DA 4 5 1 3
DA 5 5 0 4
DA 6 2 1 1
DA 7 5 1 3

HP HFEmail HFPC

CEO 5 5 21
Manager 4 5 23

Sys Admin 3 5 12
DA 1 3 5 24
DA 2 5 5 4
DA 3 5 5 7
DA 4 5 5 2
DA 5 5 5 10
DA 6 5 3 5
DA7 5 4 9

HFDB 1 HFDB 2 HFDB 3
14 12 8

HFDB 1 HFDB 2 HFDB 3
56 38 44

(a) (b)

$4.5 million. In fact, this budget minimizes the total expected expenses.
This optimal solution is shown in Table2(b). This budget protects local
assets and global databases even more, with highest level of protection
on email accounts for all employees.

3. For the budget exceeding the optimal number $1,800,000, the total ex-
pected expenses increase which means over deploying honey entities is
not necessary, since improvements in the expected loss will not cover
the additional budget spent as shown by Figure 8(b).

6 Future Work

As enterprises move their assets into cloud infrastructure, the ability to deploy
and manage a multi-layer deception approach becomes much more realistic.
We are currently looking at implementing a multi-layer deception approach
within a cloud-based enterprise network. The use of Virtual Desktop Infra-
structure (VDI) to access company assets, hosted on some managed shared
storage device, allows the possibility of implementing honey files from out-
side of the potentially infected desktop machine. In this case, honey files can
be created and monitored from the shared storage device itself or using virtual
machine introspection techniques to ensure that an attacker does not subvert
this layer of deception. This also leads to a single location for honey file
management instead of managing every individual employee machine located
within the enterprise.

Detecting Targeted Attacks by Multilayer Deception 195

Figure 8 (a) Expected loss as a function of budget (in dollar units), (b) Expected total
expenses as a function of budget (in dollar unit). The vertical line represents the optimal
budget.

196 W. Wang et al.

Within an enterprise cloud, honey servers can be easily implemented
using cloned virtual machines of servers hosting ligitimate services. In this
case, if an attacker scans the internal network for vulnerable servers, the
honey server would automatically have the same services and fingerprint of
the legitimate server. To the employees of the enterprise, these cloned servers
may have slightly different domain names such that the user never travels to
them.

In this type of implementation, the ease of spawning honey entities results
in a tunable meter for honey entity generation. For example, during normal
operation there may be a one to one mapping of honey servers throughout
the important server assets within the enterprise network. If at some point in
time one of the layers of deception is triggered, for a window of time after a
potential compromise, an increased number of honey entities could be easily
spawned throughout the other layers of deception in order to increase the
probability of catching the attacker. The cost of this approach and its impact
on employee productivity must be studied further during our future work.

Another piece of the future work is to better estimate the cost of deploying
honey entities and values of each asset within the enterprise network. A sur-
vey will be planed to estimate these values, and we will run the optimization
algorithm on a real world case to help validate our optimization result in this
paper.

7 Conclusion

In this paper, we propose a multilayer deception system that provides in depth
defense against sophisticated attacks. We propose defenses at each layer that
an attacker may target, via deception based detection. The fact that multiple
layers of deception are applied, the probability of detecting the presence of an
attacker early is greatly enhanced. Furthermore, a mathematical optimization
model is utilized to decide what deception entities should be deployed on
which assets to minimize the total expected loss if being attacked, given a
limited budget.

As future work, we plan to focus on system implementation in the cloud
environment, in particular, we will study interactions between honey activ-
ities and honey servers. Also, we will implement a secondary channel to
identify real file names and notify user to confirm alerts. In the optimization
work, we will study more scenarios with different assumptions on the targeted
assets.

Detecting Targeted Attacks by Multilayer Deception 197

References
[1] www.wired.com/threatlevel/2011/06/citi-credit-card-breach, 2011.
[2] Night dragon. blog.industrialdefender.com/?p=725, 2011.
[3] Edward G. Amoroso. Cyber Attacks: Protecting National Infrastructure. Elsevier Sci-

ence, 2010.
[4] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel.

A view on current malware behaviors. In Proceedings of the 2nd USENIX Conference
on Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More,
LEET’09, pages 8–8, Berkeley, CA, USA, USENIX Association, 2009.

[5] Malek ben Salem and Salvatore J. Stolfo. Modeling user search behavior for masquerade
detection. In Proceedings of the Fourteenth Symposium on Recent Advances in Intrusion
Detection, 2011.

[6] Andre Bergholz, Jan De Beer, Sebastian Glahn, Marie-Francine Moens, Gerhard Paass,
and Siehyun Strobel. New filtering approaches for phishing email. Journal of Computer
Security, 18:7–35, 2010.

[7] Jagjit S. Bhatia, Rakesh Sehgal, Bharat Bhushan, and Harneet Kaur. Multi layer cy-
ber attack detection through honeynet. In New Technologies, Mobility and Security,
(NTMS’08), pages 1–5, 2008.

[8] Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, and Salvatore J. Stolfo.
Baiting inside attackers using decoy documents. 2009.

[9] Madhusudhanan Chandrasekaran, Krishnan Narayanan, and Shambhu Upadhyaya.
Phishing e-mail detection based on structural properties. In Proceedings NYS Cyber
Security Conference, 2006.

[10] William R. Cheswick. An evening with Berferd, in which a cracker is lured, endured,
and studied. In Proceedings of the USENIX, January 1992.

[11] Damballa. The command structure of the aurora botnet. http://www.damballa.com/
research/aurora/, March 2010.

[12] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on
automated dynamic malware-analysis techniques and tools. ACM Computing Surveys
(CSUR), 44(2):6, 2012.

[13] C. Fiedler. secure your database by building honeypot architecture using a sql database
firewall. http://archive.is/olTW.

[14] Yuelin Gao, Zaimin Ren, and Yang Gao. Modified differential evolution algorithm of
constrained nonlinear mixed integer programming problems. Information Technology
Journal, pages 2068–2075, 2011.

[15] Project HoneyPot. A web based honeypot network. projecthoneypot.org.
[16] Collin Mulliner, Steffen Liebergeld, and Matthias Lange. Honeydroid – Creating a

smartphone honeypot. Technical report, Technische Universität Berlin, 2011.
[17] Younghee Park and Salvatore J. Stolfo. Software decoys for insider threat. In 7th ACM

Symposium on Information, Computer and Communications Security, 2012.
[18] Honeynet Project. Know your enemy: Defining virtual honeynets. old.honeynet.org/

papers/virtual, 2003.
[19] RSA. RSA security brief: Mobilizing intelligent security operations for advanced

persistent threats, 2011.

198 W. Wang et al.

[20] Bruce Schneier. www.schneier.com/blog/archives/2011/11/fake_documents.
html.

[21] Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing,
Boston, MA, 2002.

[22] Clifford Stoll. The Cuckoo’s Egg. Doubleday, New York, 1989.
[23] Don Torrieri. An efficient algorithm for the calculation of node-pair reliability. In

Proceedings IEEE Military Communication Conference, 1991.
[24] Wei Wang, Ilona Murynets, Jeffrey Bickford, Christopher Van Wart, and Gang Xu. What

you see predicts what you get – Lightweight agent based malware detection. Wiley
Journal, Security and Communication Networks, 2012.

[25] J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles: Deceptive files for intrusion
detection. In Proceedings from the Fifth Annual IEEE SMC Information Assurance
Workshop, pages 116–122, 2004.

[26] Jim Yuill, Dorothy Denning, and Fred Feer. Using deception to hide things from hackers:
Processes, principles, and techniques, 2006.

Biography

Wei Wang finished her Ph.D. degree from Stevens Institute of Technology in
2010. Now she is a Member of Technical Staff in AT&T Security Research
Center. Her research interests are mainly in data analysis, intrusion detection
and prevention, and applying machine learning techniques in network
security, especially in mobile networks.

Jeffrey Bickford is a researcher with the Chief Security Office at AT&T. He
is currently completing his M.S. at the Rutgers University Department of
Computer Science. He is interested in mobile device security with a focus on
using virtualization techniques to create a secure and robust mobile platform.
Prior to joining the Security Research Lab he was a summer intern at AT&T
Research in Florham Park.

Ilona Murynets is a scientist at the Chief Security Office at AT&T.
She obtained her Ph.D. in Systems Engineering, Stevens Institute of
Technology. Ilona holds B.Sc. degree in Mathematics and M.S. degree in
Statistics, Financial & Actuarial Mathematics from Kiev National Taras
Shevchenko University, Ukraine. Ilona’s research is in the area of data
mining, optimization and statistical analysis in application to fraud detection,
malware propagation, mobile and network security.

Ramesh Subbaraman is a Member of Technical Staff at the AT&T Chief
Security Office’s Security Research Center. His research interests are in

Detecting Targeted Attacks by Multilayer Deception 199

communication network design and architecture, networking protocols
design & analysis, network data mining & analytics, and network security.
In addition to traditional approaches, he is very interested in using principles
from mathematical optimization, machine learning and mechanism design in
networking.

Andrea G. Forte is a Researcher within the Chief Security Office at
AT&T. He earned both his Master’s Degree and Bachelor’s Degree in
Telecommunications Engineering at the University of Rome “La Sapienza”
in Italy. The paper based on his dissertation work on fast handoffs for
real-time media in IEEE 802.11 wireless networks was commercialized
by SIPquest Inc. His research interests include mobility, real-time media,
location-based services, wireless networks and Internet of Things.

Gokul Singaraju is a developer in AT&T Chief Security Office. His previous
experience includes Motorola, NEC Laboratories America, Eulix Networks
Inc., Hughes Network Systems, Indotronix International Corp, and Texas In-
struments India Ltd. He received Masters in Technology (Computer Science)
Indian Statistical Institute, Kolkata 1994.

