Dynamic AES - Extending the Lifetime?

Henrik Tange! and Birger Andersen?

LAalborg University, Frederik Bajers Vej 7, DK-9220 Aalborg, Denmark,
het@es.aau.dk

2Center for Wireless Systems and Applications / CTIF-Copenhagen, Technical
University of Denmark, DTU Ballerup Campus, DK-2750 Ballerup, Denmark,
birad@dtu.dk

Received 15 October 2013; Accepted 6 December 2013;
Publication 23 January 2014

Abstract

AES (Advanced Encryption Standard) is a worldwide used standard for
symmetric encryption and decryption. AES is for instance used in LTE
(Long-Term Evolution) and in Wi-Fi. AES is based on operations of per-
mutations and substitutions. Furthermore, AES is using a key scheduling
algorithm. It has been proven that AES is vulnerable to side-channel
attacks, related sub-key attacks and biclicque attacks. This paper introduces
a new dynamic version of AES where the main flow is depending on the
TNAF (7-adic Non-Adjacent Form) value. This new approach can prevent
side-channel attacks, related sub-key attacks and biclique attacks.

Keywords: AES, side-channel attacks, attack countermeasures, TNAF, ECC,
related sub-key attacks, biclique attacks.

1 Introduction

The Rijndael algorithm was in 2001 selected by NIST to be the successor to
DES (Data Encryption Standard) as AES [1]. The AES algorithm is based on
finite mathematics, but there exists no mathematical proof. The AES was until
recently considered secure.

The AES algorithm uses a fixed block size of 128 bits and different key
sizes of 128, 192 or 256 bits [1, p.14]. Internally AES is using a state array

Journal of Cyber Security, Vol. 2 No. 3 & 4, 243-264.
doi: 10.13052/jcsm2245-1439.233
(© 2014 River Publishers. All rights reserved.



244 Henrik Tange and Birger Andersen

on 4 x 4 bytes. AES is a Non-Feistel network [2, p.8]. A Non-Feistel net-
work is using the two different operations for encryption and decryption.
In AES a reverse algorithm for decryption is used. The four encryption
operations are: AddRoundKey, SubBytes, ShiftRows and MixColumns. The
four reverse operations are: AddRoundKey, InvSubBytes, InvShiftRows and
InvMixColumns. The use of four encryption operations follows a well-known
described scheme in the main algorithm consisting of rounds: In the initial
round AddRoundKey is performed. In the following rounds (let’s call them
center-rounds) SubBytes, ShiftRows, MixColumns and AddRoundKey are
performed. In the last round only SubBytes, ShiftRows and AddRoundKey
are performed. In the decryption algorithm the order is: InvMixColumn,
AddRoundKey, InvSubBytes and InvShiftRow. In both the encryption algo-
rithm and the decryption algorithm the state array is containing the result from
each operation. If the key size is 128 bits 10 center-rounds are executed; if the
key size is 192 bits, the number of center-rounds is 12 and finally, if the key
size is 256 bits, the number of center-rounds is 14.

The implementation of AES is fairly simple. It only requires table lookups
(S-Box, an inverse S-Box and a Galois field multiplication array), shift oper-
ations and XOR operations. The AES algorithm can thereby be considered as
a mix of substitutions and permutations.

A side-channel attack can be defined as an attack exploiting emitted
information which is not intended to be used in the main operation [3, p.1].

A related sub-key attack can be performed by for instance a boomerang
attack. A boomerang distinguisher can be found by searching for a local
collision in the cipher [6, p.3].

A biclique attack is considered 3 to 5 times faster than a brute force attack
[7, p.3]. A biclique attack can be based on the meet-in-the-middle principle.
The attacker chooses an internal variable in the transform of data as a function
of a plaintext and a key identical for all keys in a row and as a function of a
ciphertext and a key identical for all keys in a column.

In the following subsections, A-C, we are further defining and discussing
these three types of attacks.

In section II we are discussing related work and in section III we
are presenting our contribution which is the extension of AES into a
dynamic AES by introducing dependency on the TNAF value. This way
we are addressing the three types of attacks. In section IV we shortly
describe an implementation of dynamic AES, whereas section V presents
tests and results. Finally, we analyze results in section VI and conclude in
section VII.



Dynamic AES — Extending the Lifetime? 245

1.1 Side-Channel Attacks on AES

The side-channel attack investigates the state array given a plaintext or a
ciphertext, also called a known-plaintext attack and known-ciphertext attack,
and a key. Another variant is to extract the key without knowledge about the
plaintext or ciphertext. A practical attack can be done by having access to the
data bus or specialized hardware making it possible to read the cache. In 2005
it succeeded for Osvik, Shamir and Tromer (OST) to perform a side-channel
attack using the CPU memory cache [4]. This attack is possible since there is
memory access to all tables in AES including the state array.

A type of a side-channel attack is a timing attack. This kind of attack has
been shown by Joseph Bonneau and Ilya Mironov [5]. They show a model
for attacking AES using timing effects of cache collisions. Cache is a near
memory area between the CPU and the main memory. A cache collision is
defined as when two separate lookups /;, [; where [; = ;. If [; # [; it will
result in a cache miss [5, p.206]. The assumption is therefore that the average
time when [; # [; is higher than the case when /; = [; because it will cost a
second cache lookup [5, p.205].

In afirst round attack the attacker analyzes table lookups where the indices
:1:? = p; @ k; where p is a plaintext byte and k; is a key byte. The bytes {:U8,
29, 23, 29,} is a family of four bytes and are used as an index into table Tp.
Three other families of bytes share the tables T, 7,73 in round one. The
attacker will have four sets of equations for each table, where each table will
consist of a redundant set of six equations. However, there is no way to gain
the exact key information. The attacker has to guess a value for one complete
byte in each table family. The attack has succeeded with an average of 246
timing samples [5, p.207].

A final round attack is using the algorithm fact that the MixColumn func-
tion is omitted in the final round. Thereby the equation is creating the ciphertext
C by a simple lookup in AES S-box. The non-linearity in the AES S-box is
the reason that this attack will succeed [5, p.208].

The main goal in a final round attack is to construct a guess at the final
16 bytes of the expanded key in the presence of noise [5, p.208]. Given the
final key bytes it is possible to reverse the key expansion algorithm to find the
original private key k.

1.2 Related Sub-key Attacks on AES

A related key attack is for instance performed by Alex Biryukow and Dmitry
Khovratowich [6]. In this attack type aboomerang switching technique is used.



246  Henrik Tange and Birger Andersen

The attacker uses a pair of plaintexts (Xg, X;) with a known difference o and
encrypts both. Then the two ciphertexts (Zy, Z;) are both added a difference §.
This results in two new plaintexts (X2, X3). The four plaintexts form a quartet
if Xo & X3 = «. Now the differences ¢ in the two pairs (Zy, Z3) and (Z1,
Z3) are converted to the difference  in the pairs (Y, Y2) and (Y7, Y3) with
probability ¢2. If Yy @ Y7 = [3 the intermediate texts also form a quartet.
Finally the pair (Y», Y3) is decrypted with difference v with the probability p.
A pair will result in a quartet with probability p?¢?. If p>¢g® > 27", where n is
the number of bits, a boomerang distinguisher exists.

The attack is possible since the key scheduling in AES is close to lin-
ear and therefore the subkeys can be viewed as a codeword of a linear
code [6, p.3].

1.3 Biclique Attacks on AES

A biclique attack is based on bipartite graph known from graph theory.
This attack was performed by Andrey Bogdanov, Dmitry Khovratovich, and
Christian Rechberger at Microsoft Research [7]. A biclique is formed by the
number of rounds and dimension. There exist two paradigms for key recovery
using biclique. The firstis called long biclique. A long biclique can for instance
be constructed as a local collision. The second paradigm is called independent
biclique. It is based on a high dimension for smaller b < r-m number of rounds,
where m is the meet-in-the-middle attack out of r rounds. The smaller number
of rounds makes it easier and with the use of simpler tools to construct a
biclique [7, p.3].

The biclique attack can be applied to all versions of AES [7, p.3]. This type
of attack can be up to a factor 5 faster for a key recovery of a round-reduced
AES variant compared to a brute force attack.

The simple biclique attack will only require one plaintext-ciphertext
data pair. In the meet-in-the-middle attack the attacker chooses a key space
partition and places it into groups of keys with cardinality 224, The key
is now indexed as an element into a 24 x 29 matrix: K/I, j]. From the
data transformation of the plaintext (P) a variable V can now be chosen
such that:

K[Z.v _]
f1

This is a function of the plaintext and a key identical for all keys in a row.

-V (1)



Dynamic AES — Extending the Lifetime? 247

As a function of the ciphertext (C) and a key, we get this:
K[_a j]
2

Ve C 2)

This function is identical for the ciphertext C and a key for all keys in a
column. The parts f1and f> correspond to the same parts of the ciphertext.

Now having the pair (P, C) the attacker can now compute 24 possible
values of V< and —V from the plaintext part and the ciphertext part. The
meet-in-the-middle attack is more effective than the brute force attack with a
factor of 2.

The main idea of the biclique attack can be defined as follows: In AES a
number of keys K[I, j] will be calculated in the key schedule function. At any
time during encryption algorithm the state will have 29 internal states S. The
ciphertext C; can now be seen as a function of a key K[/, j] and a specific
state S;.[7, p.5]. The adversary forms a set of 224 keys from the key space
and regards the block ciphertext (BC) as a combination of two sub ciphertexts
where f follows g:

BC=fogy (3)
The data transform of a ciphertext is constructed of two parts:

1. The adversary constructs a structure of 29 ciphertext parts C; and also 24
intermediate states S; in connection with the key group K/1, j]. Then a
partial decryption of C; results in S; given K1, j].

2. The adversary uses an oracle to decrypt ciphertext C; with the key Kgecpet-
If Kseerer 1s found in K[1, j] the state S; maps to the plaintext P; which
propose a key candidate [7, p.5].

2 Related work

As a protection against Differential Power Analysis attacks, Ghellar and
Lubaszewski [10, p. 32] propose the addition of a mapping function to the
beginning of the AES algorithm followed by an inverse mapping function
as a final step of the algorithm. With 30 irreducible polynomials of degree
8 over GF(2) and 8 generator elements associated, 240 representation of
GF(2%) can be created. The proposed implementation adds a mapping function
to the original AES algorithm and through the selection of representation,
operation parameters are added to the SubBytes and MixColumn operations.
Also the RoundKey is added a mapping before performing the AddRoundKey



248  Henrik Tange and Birger Andersen

operation. In the end algorithm an inverse mapping is performed. The mapping
conversion is based on the change of base in linear algebra. A GF(28) element
is multiplied by an 8x8 binary matrix producing a new representation of the
GF(2®) element.

A new S-Box structure is proposed by Cui and Cao [12]. The S-Box con-
struction of AES is generally considered weak, because the construction has
a vulnerability of a simple algebraic expression [12, p.2]. The complexity is
increased by creation of APA (Affine-Power-Affine) structure. In the original
AES S-Box there are only n + 1 items at most in the algebraic expression of an
affine transformation of GF(n?). With the APA structure the number of items
is increased to 253 while the inverse S-Box keeps 255 items.

AES implementations can be placed in special dedicated processors or
embedded RISC processors. Tillich and GroZschiddl have been examined
three possible solutions to prevent side-channel attacks [11] on AES. The
first solution is to implement the security critical parts of the processor data
path using DPA (Differential Power Attack) resistant logic style. The second
solution is a strict software countermeasure using random pre-charging at
instruction level. This solution has an increase in execution time, but the use
of instruction set extensions helps the performance. The third solution is using
amask unit and is based on a combination of hardware and software solutions.
The security zone in this solution is using a storage for the mask and a mask
generator. The impact on performance is rather small.

3 TNAF-based Dynamic AES

The main idea in our approach is to modify parts of AES by taking advantage
of Elliptic Curve Cryptography (ECC) used as a public key system and in this
way address all the three types of attacks discussed above.

ECC can be implemented efficiently as Koblitz curves [8, p. 114] — also
called anomalous binary curves. In this version normally a 7-adic non-adjacent
form (TNAF) [8, p 116] is used in the ECC main algorithm. The TNAF
function [8, p.117] converts a private key to a unique sequence with length / of
{0, £1} depending on the private key value. The TNAF function guarantees
that the average density of nonzero digits is approximately 1/3 of the length /.

The dynamic TNAF-based AES main algorithm is mainly divided into
two parts: a) TNAF-based key schedule for AES and: b) TNAF-based main
algorithm for encryption and decryption. The main purpose of this approach is
to remove the linearity of the key scheduling mechanism and the predictability
after execution of a round in the main algorithm.



Dynamic AES — Extending the Lifetime? 249

The ECC provides a point Q(X, y) on a valid curve. AES can take advan-
tage of this to create a new key schedule as a part of a TNAF-based AES
main algorithm. In this way the key would be substantially longer and the
“industrial strength” will be improved, because the mix of a key sched-
ule based on Q(X, y) will be decided at runtime — and not as pre-decided
algorithm.

By using a mix of a key schedule based on Q(X, y) the key space is larger
and provides the possibility of changing the actual used key dynamically
during encryption and decryption.

If the actual combination of MixColumn, ShiftRows, SubBytes and
AddRoundKey is decided at runtime the AES is not any longer foresee-
able and attacks as described above will be impossible because they all
rely on knowledge of the static algorithm as described in FIPS-197 [1].
Because the security is based on the function itself and not the static path
in algorithm the security will be improved by the runtime decided function
execution.

As the prerequisite a public key exchange has been done. If for instance
the public key exchange is a normal Elliptic Curve Diffie-Hellman (ECDH)[8,
p-171] key exchange, the participants A and B ends up with a common share
in the form of a point Q(X, y). By using Secure Plain Diffie-Hellman (SPDH),
the man-in-the-middle problem can even be eliminated [9].

3.1 Attack Countermeasures in m-adic Dynamic AES

The dynamic TNAF-based solution will create the problem of a new side-
channel attack since the TNAF sequence is a function of the private key
k. If the TNAF sequence can be read by for instance measuring the power
consumption, the private key k can be calculated. This will now be solved.
A TNAF sequence could for instance be:

188181881 880000 1010100001001 BB00BNE-1 000 -1 0008 -1018-1881818-1888881010101010
I010-101000-10-10100-10000-1000-10-1001010100000000-101010108801000010-10-1080

1918880810-100001000-100010101 0100001 000010001 000010-101000-10000000-1 0010808100
B0 -100-10-1010-1000-10-100101010-10-100-1000-190101010-10-1000000000 1000010

1991091010101 080010-1001000010001010101 _

From this it can be seen that the length between +£1 and +1 vary from 1
zero up to 9 zeros. In all there are 318 digits {0, £ 1} with the following
distribution: 220 zeros, 58 ones and 40 minus one.

Removing the trailing zeros will make it practically impossible to recover
the original sequence.

Now the following algorithm can be applied:



250 Henrik Tange and Birger Andersen
Algorithm 1: Removing trailing zeros

INPUT: A byte array TNAF_RESULT = TNAF(k),
int counter = 0
OUTPUT: A byte array TNAF_TRAILING
For length of TNAF_RESULT do
if TNAF_RESULT [i] equals O
TNAF_TRAILING [counter] =0
while TNAF_RESULT [i + 1] equals O
i=i+1

else

TNAF_TRAILING [counter] = TNAF_RESULT [i]
counter = counter + 1
return TNAF_TRAILING

It must be clear that the point Q on the elliptic curve must be validated
before it is used. The domain parameters are public and well-known by the
participants and thereby the specific curve type is known. The validation can
be done by verifying that a point Q # 8 and also verifying that the point Q is
on the curve by calculating for instance:

E, : y2+:ny: 3+ az’+b. 4)
Algorithm 2: Validation of the ECC point

INPUT: A basepoint P(x, y), Domain parameters D
PARTICIPANTS: A

OUTPUT: Bool IsValid
A receives point P(x, y)
A calculates y? + zy = 2® + ax? + b according to D
if y2 + 2y = 23 + ax® + b equals 0
return True
else
return False



Dynamic AES — Extending the Lifetime? 251

If the value False is received, a new base point must be chosen or a new
calculation of point P(x, y) must be performed.

3.2 TNAF-based Key Schedule for AES

The dynamic TNAF-based key schedule for AES uses both the x and y coordi-
nate of the common share Q(x, y). First the trailing zeros are removed from the
TNAF values of Q(x, y) (algorithm 1) and the curve is validated (algorithm 2).
The creation of round keys is depending on TNAF value of the x coordinate
and the TNAF value of the y coordinate. Next issue is to place the keys for
key schedule in a common array which is done as follows:

Algorithm 3: TNAF-based key schedule for AES
INPUT: A common share Q(x, y)

VARIABLES: int i, int RKx[], int RKy[], int TNAFX[], int TNAFYT]
FUNCTIONS: function CalcRoundKey, function TNAF, function MixKeys

OUTPUT: TNAF-based Key expansion array TK[], mixed set of TNAF values
in MixTNAFValues|[]

A calculates TNAF(Q.x) into TNAFX]]

A removes trailing zeros from TNAFX]] (algorithm1)

A calculates TNAF(Q.y) into TNAFY(]

A removes trailing zeros from TNAFY[] (algorithm1)

RKXx[] = CalcRoundKey(Q.x)

RKy[] = CalcRoundKey(Q.y)

TK[] = MixKeys(RKx, RKy)

MixTNAFValues[] = MixKeys(TNAFX, TNAFY) (see algorithm 4)
return TK, MixXTNAFValues

The general TNAF algorithm guarantees that 2/3 of the TNAF values
are zeros. As explained above, in order to prevent new side-channels attacks
trailing zeros are removed from the TNAF sequence of Q(X, y). In this way the
key schedule is strengthened and the side-channel attacks and biclique attacks
mentioned above will be avoided.

The MixKeys function algorithm looks like this:



252  Henrik Tange and Birger Andersen

Algorithm 4: MixKeys function of mixing round keys based on Q(x, y) or the
Q(x, y) based TNAF values

INPUT: int rounds, int w1[], int w2[]
VARIABLES: int indeX, int counter
OUTPUT: Reordered expansion key array or TNAF values in out []
int counter = 0 from index= 0 to rounds
out [counter++] = wl[index]
out [counter++] = w2[index]

return out

In the case of mixing the expansion keys the output is placed in a new
reordered array MixKeyRK and in the case of mixing the TNAF values, the
output is placed in another reordered array MixTNAFValues.

Now that the sequence of keys has been placed in the array MixKeyRK,
more flexibility can be added: It can be decided in the setup if the order in
MixKeyRK should be from start or reverse. It can even be decided if the order
is jumping after another pattern. The number of rounds is still supposed to
follow the original number: For the 128 bits AES the number of rounds is 10,
for the 192 bits AES the number of rounds are 12 and for the 256 bits AES
the number of rounds are 14. The same flexibility can be added in case of
MixTNAF Values.

3.3 TNAF-based Main Algorithm for Encryption and Decryption

The AES main algorithm can be further strengthen with a runtime decided
mix of AES operations. In this way attacks as SPA (Simple Power Analysis)
can be much harder to perform.

Since the ordinary AES is a simple combination of permutation and sub-
stitution the strength of the AES algorithm relies on the basic security of the
mix of AES operations not the order of operation execution.

The TNAF sequences of the keys x and y created for the key schedule
above is now used for the algorithm for encryption and decryption. The
TNAF value decides at runtime the mix of the execution of the MixCol-
umn, ShiftRows, SubBytes and AddRoundKey operations. Here follows the
TNAF-based main encryption and decryption algorithm:



Dynamic AES — Extending the Lifetime? 253

Algorithm 5: TNAF-based main encryption algorithm for AES

INPUT: Plaintext p, key schedule array MixKeyRK, a set of TNAF values in
MixTNAF Values, Q(x, y)

VARIABLES: len i, key» State array, Boolean XYOrder

FUNCTIONS: function CalcXYOrder, MixColumn, ShiftRows, SubBytes
and AddRoundKey

OUTPUT: Ciphertext C
p -> state

XYOrder = CalcXYOrder(Q(x, y)) (see algorithm 6)
if XYOrder is True
fromi=0to lenpsizkey
if MixTNAFValues [i] =0
ByteSub(state)
if MixXTNAFValues [i] = 1
ShiftRows(State)
if MixTNAFValues [i] = -1
MixColumn(State)
AddRoundKey(MixKeyRK [i]) (state)

if XYOrder is False
fromi=0tolenpysizriey
if MixTNAFValues [i] =0
ByteSub(State)
if MixTNAFValues [i] = 1
MixColumn(State)
if MixTNAFValues [i] = -1
ShiftRows(State)
AddRoundKey(MixKeyRK [i]) (state)
state -> C

return C



254  Henrik Tange and Birger Andersen

In the case of 128 bits AES Lenjy;; ey should have the size 30 (3 x 10).
Because the private key is based on the common share Q(x, y) another

security feature could be added to blur the calculation: A simple method to

reverse the encryption and decryption order decided at run-time can be added:

Algorithm 6: Run-time decided (X, y) order CalcXYOrder

INPUT: Secure common key Q(x, y,), int bitNumber
VARIABLES: BitString bitString
OUTPUT: Boolean bXyOrder
bitString = Add(Q.x, Q.y)
if bitString(bitNumber) = True
bXYOrder = True
else
bXYOrder = False
return bXYOrder

From this it can be seen that the order of the key schedule calculation of Q.x
and Q.y can vary dynamically with the subtraction (binary addition) of Q.x
and Q.y and afterwards test a bit in the resulting bit string.

Now we define the decryption algorithm:

Algorithm 7: TNAF-based main decryption algorithm for AES

INPUT: Ciphertext C, key schedule array MixKeyRK, MixTNAFValues
VARIABLES: Lenyixkey, state (array)

FUNCTIONS: function CalcXYOrder, InvMixColumn, InvShiftRows,
InvSubBytes and AddRoundKey

OUTPUT: Plaintext P
C -> State

XYOrder = CalcXYOrder(Q(x, y))



Dynamic AES — Extending the Lifetime? 255

IF XYOrder is True
from i= Lenpyiz key—1 down to zero

AddRoundKey(MixKeyRK [i]) (state)

if MixTNAFValues [i] =0
InvByteSub(state)

if MixXTNAFValues [i] = 1
InvShiftRows(state)

if MixTNAFValues [i] = -1

InvMixColumn(state)

if XYOrder is False
from i = Len iz i ey—1 down to zero
AddRoundKey(MixKeyRK [i]) (state)
if MixTNAFValues [i] =0
InvByteSub(state)
if MixTNAFValues [i] = 1
InvMixColumn(state)
if MixTNAFValues [i] = -1
InvShiftRows(state)
state -> P

return P

4 Implementation

The algorithms have been implemented in C++. The software contains
implementation of a Koblitz ECC with TNAF and a standard AES
implementation regarding the basic functions (AddRoundKey, MixColumn,
ShiftRows, ByteSub plus the inverse functions).

The ECC implementation is divided into three layers: A basic layer, a
field layer and an ECC main algorithm layer. The implementation is on the
basic layer using a BitString struct. The ECC part has been tested against the
main formula (4).



256  Henrik Tange and Birger Andersen
The TNAF algorithm is implemented the following way [8, p.117]:

Algorithm 8: TNAF algorithm

INPUT: k = ro+ m7 € Z|[7]
OUTPUT: TNAF(X)

i=0
while rg # 0 OR r; # 0 do
if rg is odd then
u;=2—(rgp—2r; mod4)

o =1Ip-U;
else

u; = 0
t=r1g
Io=r11 + pr0/2
ri=t2
i=i+1

return (u;_1, (Us_1,..., Uy, Ugp)

5 Tests and Results

Bob wants to send a message to Alice: “DYNAMIC AES”. In order to send this
secret message initially a normal Diffie-Hellman key exchange is performed
between the two participants Bob and Alice.

First a base point Q (163 bits) is chosen:

X: 5¢94eee8 dedeb6dSe aa07d793 Tbbellac fel3c053 2
Y: ccdaa3d9 0536d538 3211280 5d38ff58 89070fb0 2

The two participants Bob and Alice have each a private key:



Dynamic AES — Extending the Lifetime? 257

Bob: 3456abcd 50567367 ab568676 67556316 000000aa 00000001

Alice: 1562343 00567766 ab568863 34556668 23673ab7 00000002

Having the base point Q Bob and Alice calculate a common (secret) share C
using the Diffie-Hellmann algorithm:

X: flec692c 86527792 31d37422 cb346bdf fc76aef0 00000000
Y: beealcf7 b59£f099 28852977 e726d75d b06beabS 00000003

The common secret share is then tested (algorithm 1) to be on
the curve by placing it into the equation (4). This ends the normal
Diffie-Hellman key exchange. The output K(x, y) is now used as the symmetric
key in AES.

The original AES algorithm uses a 4 x 4 byte state array as internal working
array. Therefore one block of data to be encrypted or decrypted is of the size
of 16 bytes. This array is reused in the TNAF based algorithm.

In the proposed TNAF based encryption algorithm the internal working
process is:

1. Places the plaintext bytes in the state array

2. Perform key expansion of the private key (common share) (K.x and K.y)

3. Calculates TNAF values of the private key (common share) (K.x
and K.y)

. Removes trailing zeros from the TNAF sequences

. Perform the MixKeys functions

. Calculates the XY Order

. According to the TNAF values from the MixKey function (reordered
TNAF values) runs through SubBytes, MixColumn, ShiftRows and
AddRoundKey functions

The key expansion is reused from the original AES algorithm. Example
on calculating the TNAF values (before removing trailing zeros): From the
common secret share the TNAF values and the number of values in K.x and
K.y. An example of the distribution {0, -1}can be seen in Table 1.

Using the MixKey function the TNAF values from K.x and K.y are com-
bined into one sequence of TNAF values with trailing zeros removed from
TNAF (K.x) and TNAF (K.y).

~N O A



258 Henrik Tange and Birger Andersen

Table 1 TNAF values

0 1 -1 Total
K.x 208 58 53 319
Ky 207 50 64 321

In order to obtain the same minimum of function call (call to SubBytes,
MixColumn, ShiftRows and AddRoundKey) as in the original AES algorithm,
the number of calls for a 192 bit key is set to 44.

The XYOrder is in this case true. From this follows that the sequence is
as follows:

1. SubBytes(state)

2. ShiftRows(state)

3. MixColumns(state)

4. AddRoundKey(state, key_schedule);

The output ciphertext is:

0x 59926321 C28AC15ADDFEC75277B30D 54

The decryption algorithm is still performing the key expansion and the
MixKey function. Also the XY Order function is called to decide the order. The
decryption algorithm uses the original InverseSubBytes, InverseMixColumn
and the InverseShiftRows functions from the original AES algorithm. The
TNAF values are run through in reverse order. The functions above are called
in the same order as in encryption. The AddRoundKey function is called first,
so the calling sequence is as here:

1. AddRoundKey(state, RK [index]);
2. InverseSubBytes(state)

3. InverseShiftRows(state)

4. InverseMixColumns(state)

The output plaintext is “DYNAMIC AES”.
5.1 Test Setup

In order to test the Dynamic AES a full implementation of ECC and Dynamic
AES have setup. To give more precise time consumption for the specific parts
of Dynamic AES the algorithms have been run through 10000 times each.

To avoid any caching in memory, the encryption algorithm has encrypted
random generated data for each encryption block.



Dynamic AES — Extending the Lifetime? 259

The dynamic AES will result in the same number of rounds as in the
original AES in the main algorithm.

The TNAF-based AES along with ECC has been tested on an Intel(R)
Core™2 Duo CPU @ 2.4 GHz.

5.2 Time Consumption Measurements

The proposed key scheduling mechanism is more time consuming, since two
keys have to be scheduled and mixed combined with a calculation of two
sets of TNAF values and a mix of keys. The time used for key schedul-
ing has been measured in the implementation and the result is compared
to the basic key scheduling function in standard AES as it can be seen in
Table 2.

The proposed Dynamic TNAF-based AES is using the same basic
operations as the original AES in the main algorithm.

The main algorithm has been tested against a standard AES implementa-
tion. Table 3 shows the time consumption results of encryption and decryption
algorithms for Dynamic AES and standard AES.

We will now consider the expected throughput over a network using
the values in tables 2 and 3. We assume that we want to transfer a file of
10 Mb data:

10 Mb = 10,240,000 bytes = 81,920,000 bits

The encryption and decryption time plus key schedule is calculated for
a block of 16 bytes. The encryption operations can be done in 45.4501 sec
and the decryption operations can be done in 46.901 sec. This means that the
encryption flow is 1,802,416 bps and the decryption flow is 1,746,658 bps.

Table 2 Time Consumption Key Scheduling Mecahnism

Dynamic AES Standard AES
Key Key Schedule
Schedule

Time [mS] 10.094 0.0031

Table 3 Time Consumption Encryption /Decryption

Dynamic Standard Dynamic Standard
AES AES AES AES
Encryption Encryption Decryption Decryption

Time [mS] 0.071 0.044 0.072 0.045




260 Henrik Tange and Birger Andersen

6 Analysis of Results

Not surprisingly, the proposed key schedule algorithm, as it can be seen from
Table 2, is significantly more time consumable than the original key scheduling
algorithm of AES. However, normally this algorithm is only executed once
per session. The reason for this overhead is first of all the calculation of
TNAF values. Second, the trailing of zeros and third, the extended calcu-
lation of round keys which uses more time compared to the original AES
key schedule operation. Also the last operations, the MixKey operation and
calculation of the (X, y) order, will consume more time compared to the original
algorithm.

The encryption and decryption algorithms are also more time consumable
as it can be seen in Table 3, even though the original AES standard operations
are used. This is caused by the additional logic to decide which standard AES
operation is going to be performed at runtime. A future run-time optimization
of the Dynamic AES main loop instruction sequence is expected to remove
this problem.

When considering the transfer of a 10 Mb file over network using a
Dynamic AES session, the peak performance is expected to be limited more
by the network than by the algorithm for instance when considering HTTPS
(and Dynamic AES extended version hereof) over the Internet. As mentioned,
the Dynamic AES is well suited to be together with at public key system as
for instance elliptic curve cryptography. As it can be seen above the network
traffic time is not part of the test. If the network traffic time was included,
the time consumption difference between the standard AES and the Dynamic
AES would even be less important.

7 Conlusions and Discussions

The proposed Dynamic AES approach is based on the TNAF function used
in Koblitz curves in ECC. It will solve the problem of side-channel attacks,
related sub-key attacks and biclique attacks on AES. The proposed AES algo-
rithm is adding a dynamic approach to the key schedule mechanism and the
main algorithm of the original AES. The key scheduling algorithm of the
original AES algorithm has been improved with the combined use of ECC.
Any side-channel attack based on the use of TNAF algorithm is removed by
removing trailing zeros. The private key is now longer and the linearity has
been removed since two private keys belonging to the ECC algorithm can be
mixed. The main algorithm of AES has been improved by adding dynamic



Dynamic AES — Extending the Lifetime? 261

behavior instead of a static run through. With this enhancement, the content
of the state array in AES becomes unpredictable.

The TNAF-based Dynamic AES has been implemented in C++ along
with ECDH based on Koblitz curves. The new algorithm will differ slightly in
processing time primarily because the original AES key schedule is changed
but also the additions in the main algorithm will have a minor cost in terms of
performance.

In the future we will look into run-time code optimization of the
Dynamic AES.

8 References

[1] FIPS Pub 197, NIST, November 26, 2001

[2] Jaon Daemen, Vincent Rijmen, The Rijndael Block Cipher, csrc.nist.gov,
Sep. 1999

[3] Joseph Bonneau, Side-Channel Cryptoanalysis (Research students’ Lec-
tures), University of Cambridge Computer Laboratory, May 4, 2010.

[4] Dag Arne Osvik, Adi Shamir and Eran Tromer, Cache Attacks and
Countermeasures: the Case of AES, osvik.no / Department of Com-
puter Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel, 2005

[5] Joseph Bonneau and Ilya Mironov, Cache-Collision Timing Attacks
Against AES, Computer Science Department, Stanford University and
Microsoft Research, Silicon Valley Campus, 2006

[6] Alex Biryukow and Dmitry Khovratowich. Related-Key Cryptanalysis
of the Full AES-192 and AES-256, p.1-18, ASTACRYPT 2009

[7] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger,
K.U. Leuven, Belgium; Microsoft Research Redmond, USA; ENS Paris
and Chaire France Telecom, France, Biclique Cryptanalysis of the full
AES, ASTIACRYPT’11, August 31, 2011

[8] Hankerson, Menezes and Vanstone, “Guide to Elliptic Curve Cryptogra-
phy”, Springer, 2004.

[9] Henrik Tange, Birger Andersen, Secure Plain Diffie-Hellman algorithm,
Journal of Cyber Security and Mobility, 2012

[10] Felipe Ghellar, Marcelo Soares Lubaszewski, A Novel AES Crypoto-
graphic Core Highly Resistant to Differential Power Analysis Attcks,
Jorunal Integrated Circuits and Systems, 2009
[11] Stefan Tillich, Johann Grofschidl, Power Analysis Resistent AES

Implementation with Instruction Set Extensions, LNCS 4727, 2007



262  Henrik Tange and Birger Andersen

[12] Lingguo Cui, Yuanda Cao, ANew S-Box Structure Named Affine-Power-
Affine, ICIC International, 2007

Biographies

Henrik Tange received the B.Eng (export engineer) from the Copenhagen
University College of Engineering in 1999 and the M.Sc. in Communication
Network specializing in Security from Aalborg University in 2009. Since 2009
he has been a PhD student at Aalborg University. Since 2000 he has been
teaching at Copenhagen University College of Engineering which merged
into Technical University of Denmark.

Birger Andersen is a professor at Technical University of Denmark, Copen-
hagen, Denmark, and director of Center for Wireless Systems and Applications
(CWSA). He received his M.Sc. in computer science in 1988 from University
of Copenhagen, Denmark, and his Ph.D. in computer science in 1992 from
University of Copenhagen. He was an assistant professor at University of



Dynamic AES — Extending the Lifetime? 263

Copenhagen, a visiting professor at Universitit Kaiserslautern, Germany, and
an associate professor at Aalborg University. Later he joined the IT depart-
ment of Copenhagen Business School, Denmark, and finally Copenhagen
University College of Engineering which merged into Technical University
of Denmark. He is currently involved in research in wireless systems with a
focus at security






