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Abstract

Beamspace MIMO (BS-MIMO) systems have been recently proposed as a
means to address the two key weaknesses of conventional MIMO systems:
the antenna size and the need for multiple RF chains. BS-MIMO transmission
is supported by the Electronically Steerable Passive Array Radiators (ESPAR)
with a single active and multiple parasitic elements. The main objective is to
develop efficient MIMO multiplexing schemes that use only one Radio Fre-
quency (RF) chain and simultaneously maintain extremely small antenna size.
Moreover, the recent research results have shown that BS-MIMO systems have
increased multiplexing and beamforming capabilities and for small antenna
sizes clearly outperform equivalent conventional systems in terms of system
capacity. Nevertheless, research on BS-MIMO has been focusing on the study
of the ESPAR antenna properties that facilitate beamspace transmission and
the theoretical analysis of the ergodic capacity provided by the aerial degrees of
freedom (aDoF) of the beamspace channel. Recently, the first steps have been
made to design and evaluate practical BS-MIMO systems. This paper presents
extended results of the first attempt to design practical and realistic BS-MIMO
transmission and reception schemes and it specifically focuses on channel
estimation techniques for BS-MIMO systems with adaptive pattern reconfig-
uration.Adaptation of the basic least-squares (LS) and minimum mean squared
error (MMSE) estimators for the beamspace radio channels is performed and
the algorithms are incorporated in an adaptive Singular Value Decomposition
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(SVD)-based system. Finally, fundamental results extracted by the developed
beamspace link level simulator are presented in order to evaluate and compare
BS-MIMO with equivalent conventional MIMO systems.

Keywords: beamspace, MIMO, BS-MIMO, channel estimation, ESPAR,
link level evaluation.

1 Introduction

Modern and future radio systems consider Multiple Input Multiple Out-
put (MIMO) transmission techniques as the means to significantly improve
spectral efficiency and system capacity. However, the conventional MIMO
transceivers require the use of multiple Radio-Frequency (RF) chains in order
to feed the elements of an antenna array causing a significant increase of the
development cost. Moreover, in order to obtain adequate spatial multiplex-
ing and/or beamforming properties, the antenna array of the MIMO systems
should have large physical dimension. The increased antenna size will ensure
decoupled elements and low spatial correlation at the transmitter/receiver.

The Single RF [1] BS-MIMO systems [2] transfer the MIMO operation
from the antenna elements to beamspace. Instead of using the voltages or
currents on the antenna elements to directly carry the transmitted symbols,
the data streams are mapped onto a selected set of radiation patterns that
constitute an orthonormal basis in the beamspace domain [2], [3] and through
beamspace multiplexing data are sent simultaneously to the wireless channel.
In contrast to the conventional technique, BS-MIMO multiplexing and beam-
forming capabilities are favoured by the use of compact antenna arrays with
closely spaced elements, since adaptive pattern reconfiguration is achieved
with the control of the currents that are induced on the parasitic elements
from the active element. The Electronically Steerable Passive Array Radiators
(ESPAR) [4] with one active and multiple parasitic elements is an excellent
choice able to support implementable BS-MIMO transceivers.

The multiplexing capabilities in the beamspace domain are quantified by
the aerial Degrees of Freedom (aDoF). In [5], it was proved that based on the
ESPAR antenna properties and assuming an ideally rich scattering radio chan-
nel, the ESPAR-based BS-MIMO system is able to simultaneously transmit M
orthogonal data streams, where M is the total number of antenna elements (i.e.
1 active and M − 1 parasitic elements). In order to maximize the exploitation
of the available system capacity for realistic beamspace channels, an adaptive
pattern reconfiguration scheme that is based on Singular Value Decomposition
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(SVD) was proposed in [6]. Perfect channel state information in both trans-
mitter and receiver was assumed introducing an adaptation scheme similar
with the SVD precoding in the conventional MIMO. Despite the fact that the
results on pattern reconfiguration with the use of ESPAR antennas [7] are quite
promising and that the achievable ergodic capacity in the beamspace domain
exceeds the equivalent results from conventional MIMO architectures, no
attempt to evaluate the link level performance of BS-MIMO transceivers with
the use of realistic reception algorithms and propagation conditions was made
until the work presented in [8].

This paper presents and extends the results of [8] provided for a 3-element
ESPAR system with the use of the more efficient and flexible 5-element ESPAR
antenna. An implementable beamspace transceiver chain is proposed and a
link-level simulator is developed. The main focus is given on the formula-
tion of channel estimation algorithms for BS-MIMO. The channel estimation
blocks together with the adaptive pattern reconfiguration procedures are incor-
porated in the transmission chain. The beamspace transmission system model
is presented and analysed in Sec. 2. Then, the estimation algorithms (least
squares - LS and minimum mean squared error - MMSE) are formulated
for the beamspace and the optimal training patterns are identified in Sec. 3.
Moreover, the concept of the interfering patterns is introduced. In Sec. 4,
the developed link level simulator is presented and extended simulation is
performed in order to evaluate the BS-MIMO performance compared to an
equivalent conventional MIMO system. The conclusions of Sec. 5 confirm
that BS-MIMO has the potential to provide significant advantages over the
conventional systems when compact antenna arrays are applied, and some
main issues are identified that should be addressed in order to implement a
fully functional and efficient BS-MIMO transceiver.

Notation: Bold lowercase letters represent vectors and bold capital letters
matrices. (·)H is used to describe the matrix conjugate transpose, while [·]i,j is
used to describe the (i, j)-element of the included matrix. ‖·‖F is the Frobenius
norm. Function Tr calculates the trace of a matrix. The bs superscripts or
subscripts are used to illustrate that a specific matrix or quantity is provided
in the beamspace.

2 BS MIMO System Model and Pattern Adaptation

The common input-output relationship for conventional MIMO systems
through a flat fading channel with Additive White Gaussian Noise (AWGN)
is given by:
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y = Hx + n (1)

where y, x and n are the received (Rx) signal, transmitted (Tx) signal and noise
vectors respectively, while H is the channel matrix. In conventional MIMO, all
the antenna elements are active terminated to a 50 Ohm load. The data signal
x physically represent the voltages or equivalently the currents that flow on
the antenna elements. The multiplexing capability of the MIMO channel, i.e.
its ability to support parallel transmission of data stream is represented by
the available Degrees of Freedom (DoF). For a given channel, the DoF of
the system are calculated through the SVD of the channel matrix. For small
sized arrays the DoF are significantly reduced due to the high values of spatial
correlation between the antenna elements of the transmitter and/or the receiver,
that also increases the correlation between the elements of H. The Tx spatial
correlation for a Uniform Linear Array (ULA) antenna is given by [9]:

[Rhh]i,j =
[
E
(
hmhH

m

)]
i,j

=
1

M2
T

J0

(
2πd |i − j|

λ

)
(2)

where hH
m the m−th line of H, J0 the zeroth-order Bessel function, d the

interelement distance, λ the wavelength and MT (MR) the Tx (Rx) antenna
elements. In this paper a 3-element and a 5-element ULA with interelement
distance d = λ/16 is considered for the equivalent conventional MIMO
system. Assuming a normalized MIMO matrix H (‖H‖2

F = 1) and using
(2) for the 5-element ULA:

[Rhh]1,1...5 =
[

1 0.96 0.85 0.68 0.47
]
/25 (3)

It is clear that heavy correlation among H elements is introduced. Thus, it
is statistically expected that DoF < 5 reducing the overall system capacity.
For realistic channels that vary considerably from the ideally rich scattering
environment, it is possible that despite the fact that 3 or 5 antennas are used,
the MIMO system will degenerate to Single Input Single Output (SISO) i.e.
DoF = 1

In BS-MIMO, multiplexing is performed in the beamspace domain. The
information for all the parallel streams in a given instance is carried by the
radiated pattern that is shaped using a parasitic array with a single active
element. Initially, a set of orthonormal basis patterns is defined. Beamspace
multiplexing is achieved with the transmission of the pattern that is resulted by
the linear combination of the basis patterns with the information symbols. The
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Figure 1 Illustration of BS-MIMO transmission using a 5-element ESPAR antenna

Tx pattern that carries the symbol set at a specific time sample n is provided
by [5]:

P (ϕ, n) = [B0 (ϕ) . . . BMT −1 (ϕ)] xbs (n) (4)

where Bi is the i−th basis pattern and xbs(n) the data vector at time sample
n. For simplicity, azimuth plane propagation only is assumed (angle φ).

The ESPAR antenna should be able to adapt the Tx pattern per sym-
bol period using one active and (MT − 1) parasitic elements. BS-MIMO
transmission is implemented, if the ESPAR antenna transmits the desired
pattern P (ϕ, n). This is achieved with proper readjustment of the variable
reactance values (varactors) of the parasitic element loads χi=1...MT −1. In
order to determine the varactor values that produce the desired pattern, the
following relationship is used [2]:

P (ϕ, n) = a(ϕ)Ti = a(ϕ)Tvs (n) (Z + X (n))−1[ 1 0 . . . 0
]T

(5)

where Z is the MT × MT matrix of the mutual coupling among the antenna
elements, a (ϕ) the array manifold vector, i the vector of the currents that
flow on the active and parasitic elements, vs(n) the excitation signal of the
active element and X (n) the diagonal matrix that contains the vararctor values
jχi=1...MT −1 of the parasitic elements during the n−th symbol. The specific
algebraic representation assumes that the active element is placed in the first
line of matrix X (n), thus [X]1,1 = 50 Ohm since the active element is
terminated to a 50 Ohm resistance. Calculation of desired load values can
be performed by (5) with the use of a stohastic [7] or a genetic [10] algorithm.
Assuming for simplicity that MT = MR = M , the reception is implemented
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with the sequential alternation of the basis patterns during a symbol period
(with an M -times oversampling rate).

The basis patterns are selected to form an orthonormal set of functions for
two main reasons. Firstly, in [2] a procedure that allows the use of the common
MIMO input-output relationship (1) to also describe BS-MIMO transmission
is presented. Assuming a channel with K discrete scatterers and Hg is the
K ×K complex, diagonal scattering matrix, then the beamspace transmission
can be modelled as:

ybs = Hbsxbs + nbs = BH
R HgBT xbs + nbs (6)

where the K × M matrices BT/R contain the values of the M basis patterns
in transmitter and receiver towards the direction of the scatterers (Angles of
Departure in the Tx and Angles of Arival in the Rx). It is emphasized that
in beamspace xbs and ybs are not directly related to the element currents but
their relationship with the currents is provided by (5). Thus, Hbs and H have
completely different structures due to the performed linear transformations
[2]. Investigation of (6) leads to the conclusion that conventional MIMO algo-
rithms can also be used for BS-MIMO systems with no significant changes.
Secondly, it is proved that the (Tx or Rx) correlation matrix for each MISO
cylindrically isotropic 2-D channel that describes the ideally rich scattering
propagation environment is given by:

Rhh =
(
1/M2) IM (7)

where IM is the M−identity matrix. Thus, the selection of the orthonormal
basis patterns leads to the best possible correlation properties for rich scatter-
ing environments. In [6], it was shown that the system maintains its strong
correlation properties in realistic radio channels. Therefore, it is expected that
matrix Hbs will provide aDoF that are statistically expected to approach M
regardless of the interelement distance d and thus the system will provide
better support for the transmission of multiple data streams.

The aDoF can be determined with the SVD of the channel matrix. More-
over, the result of the SVD can be used to develop and implement an adaptive
pattern reconfiguration scheme to maximize capacity and channel efficiency.
In [6], a pattern adaptation rule, similar with the conventional MIMO
SVD-based precoding, is proposed. If Hbs = UΣΣΣVH , then it is proved that
the beamspace channel can be exploited optimally with the use of adapted
basis patterns at Tx and Rx. More specifically, the new orthonormal bases are
given by:

B̄R = BRUaDoF , B̄T = BT VaDoF (8)
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The subscript of U and V defines that the first aDoF columns of the matri-
ces are used, reducing the used basis patterns, if necessary, with respect to
the supported aDoF. In order to practically implement and evaluate the pat-
tern adaptation scheme, it is necessary to extract accurate channel estimates.
Moreover optimization of the capacity can be performed with proper power
allocation among the patterns with the use of the waterfilling algorithm. More
specifically, the power per pattern is assigned with the following formula:

pi =
(

μ − σ2
n

σ2
i

)+

(9)

where σ2
n is the noise variance, σi is the i-th singular value of ΣΣΣ and

μ is a constant that depends on the total available transmitted power i.e.

Ptx =
M−1∑
i=0

(
μ − σ2

n

σ2
i

)+
. Superscipt + indicates that the expression is

valid for positive values of the argument (otherwise pi = 0). If W =
diag

[
p1 . . . paDoF

]
is the power allocation matrix, then the transmitted

pattern towards the scatterers is given by:

pT = BT VaDoF
√

Wxbs (10)

This paper assumes that sets of 3-element or 5-element ESPAR antennas
are used in Tx and Rx in order to evaluate BS-MIMO performance, while a
3-element or 5-element ULA with the same interelement distance d = λ/16 is
assumed for the equivalent conventional MIMO system. The initial channel-
unaware orthonormal basis patterns can be analytically extracted with the use
of a proper othogonalization algorithm e.g. Gram-Schmidt. The analytical
expressions for the 5-element ESPAR antenna can be found in [5] and for the
3-element ESPAR in [8].

3 Channel Estimation in BS-MIMO

The equivalence between the algebraic representations of BS-MIMO and
conventional MIMO systems can be exploited in order to transfer algorithms
from the conventional systems [11] to the beamspace domain. Moreover, the
presented channel estimation algorithms can be used for wideband, frequency
selective channels. The delay is introduced as the third dimension and there-
fore the channel is transformed in a 3-D matrix Hbs (k) with k = 0, 1..L,
where L is the maximum expected excess delay. In beamspace systems, each
element of the channel matrix represents the complex gain between beams,
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that are expressed in the angular domain through the basis patterns. Frequency
selectivity in a beamspace transmission is caused by energy from previously
transmitted patterns that spreads in time due to the different propagation paths
and corresponding delays of the radio channel. The delayed arrival of signals
at the receiver causes InterSymbol Interference (ISI). Wideband BS-MIMO
analysis is a subject for future work, however the presented channel estima-
tion algorithms can be applied to frequency selective channels. The specific
channel estimation algorithms assume that a training sequence (known to the
Rx) is used. The training sequence is carried by the initial channel-unaware
basis patterns forming the training patterns. Given the fact that M2(L + 1)
parameters are estimated, the training sequence length NT for each MISO
channel should be greater than M(L + 1) samples (MNT ≥ M2 (L + 2)).

The algorithms for conventional MIMO systems in [11] decompose the
channel estimation procedure in MISO channels. Îd’his decomposition is valid
when uncorrelated spatial reception is assumed. For small-sized antennas
the assumption of uncorrelated reception is false for conventional MIMO as
shown in (3), however it is 100% accurate for BS-MIMO systems. Thus, the
channel for each received beam hH

bs,i (k) (each line of the channel matrix) can
be extracted separately to form the estimate of Hbs (k). In order to mathemat-
ically define the estimators, the 3-D matrices are rearranged and the following
reshaped vector of parameters is defined for the i-th MISO channel:

gi =
[
hbs

i,0 (0) ...hbs
i,0 (L) |...|hbs

i,M−1 (0) ...hbs
i,M−1 (L)

]
(11)

The observation vector for each MISO channel used by the estimators is:

zi =
[

ybs,i (L) ... ybs,i (NT − 1)
]T

(12)

It is observed that the estimators ignore the L first incoming samples that are
affected from preceding symbols not contained in the training sequence.

3.1 Linear Least Squares (LS)

In compliance with the shape of the vectors defined in (11) and (12),
a ((NT − L) × M (L + 1)) matrix is defined that contains the training
sequences carried by the M basis patterns:

X =
[

X0 ... XM−1
]
,
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Xi =

⎡⎢⎢⎢⎣
xbs,i (L) . . . xbs,i (0)

xbs,i (L + 1) xbs,i (1)
...

...
xbs,i (NT − 1) . . . xbs,i (NT − L − 1)

⎤⎥⎥⎥⎦ (13)

The LS estimate is then given by:

ĝi,LS =
[
XHX

]−1
XHzi (14)

The resulted MISO mean squared estimation error is given by:

εLS,MISO = σ2
nTr
[(

XHX
)−1
]

(15)

where σ2
n is the noise variance. For zero-mean uncorrelated errors with equal

variances (since noise is generally assumed equal for all MISO channels), the
LS estimator is the best linear unbiased estimator.

3.2 Minimum Mean Square Error (MMSE)

The mean squared error of the estimation is minimized with the MMSE that
uses a priori information:

ĝi,MMSE =
1
σ2

n

[
R−1

hh +
XHX
σ2

n

]−1

XHzi (16)

A priori information is contained in the correlation matrix Rhh of vector gi,
i.e. the correlation matrix of the i-th wideband MISO channel. For L = 0 (flat
channel) and for rich scattering environments [13], the correlation matrix is
approximated by (7) since uncorrelated beamspace transmission is achieved.
In case of a wideband channel, each diagonal element is replaced by an (L +
1) × (L + 1) submatrix which is the correlation matrix for each beam in
the delay domain. Assuming channels with uncorrelated scattering, Rsub will
contain in its diagonal an estimate of the channel power delay profile per beam.
If this information is unavailable, various empirical rules can be applied:

Rsub =

⎡⎢⎣ 1/ (L + 1) 0
. . .

0 1/ (L + 1)

⎤⎥⎦
︸ ︷︷ ︸

Large Delay Spread

or

⎡⎢⎣ 1 0
0

0
. . .

⎤⎥⎦
︸ ︷︷ ︸
Small Delay Spread

(17)
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In these expressions the matrices are normalized to unit power. The first case
assumes uniform power delay profile and it should be used for channels with
large delay spread. The second case initially assumes flat fading. However,
the second approach results in a non-invertible matrix. In order to use this
approach, low-power noise should be added to the zero-valued elements of
the matrix diagonal.Although MMSE performs well using the aforementioned
empirical rules, in slow varying channels better results can be achieved when
the previous channel estimate is used to approximate the correlation matrix of
the current channel. Thus,

R̂hh = ĝi,oldĝH
i,old (18)

However, the specific approximation has been proven sensitive to phase noise
and it requires very low mobility. Better and stable performance is achieved
with the use of the previous channel estimate as an approximation of the
power delay profile, assuming uncorrelated scattering. In this case, R̂hh can
be written as: [

R̂hh

]
i,j

=

{ ∣∣∣[ĝi,old
]
i

∣∣∣2, if i = j

0, if i �= j
(19)

The procedure can be initialized using an empirical rule from (17).
The theoretically calculated estimated error is given by:

εMMSE
MISO = Tr

[(
R−1

hh +
XHX
σ2

n

)−1
]

= Tr

[(
M2IM +

XHX
σ2

n

)−1
]

︸ ︷︷ ︸
flat,rich scattering

(20)

where the result for a rich flat normalized channel is also provided.

3.3 Optimal Training Patterns

The training patterns are formed by sequential NT linear combinations of the
basis patterns with a properly selected training sequence. Since both LS and
MMSE estimators depend on the inverse of the product XHX, it is proved with
the use of Lagrange multipliers that for given power of the training sequence,
the errors are minimized when [18]:

XHX =
{

λLSI(L+1)M , for LS
λMMSEI(L+1)M − R−1

hh , for MMSE
(21)

where the constants λLS and λMMSE are selected to satisfy the power
constraints of the training sequence. For a flat, rich-scattering channel, or
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a wideband channel with large delay spread, the matrix Rhh is a scaled
identity matrix and thus the LS and MMSE estimators have a common min-
imum. In this case, since X is by definition a Toeplitz matrix, a training
sequence that diagonalizes XHX and minimizes the estimation error is the
Frank-Zadoff-Chu (FZC) sequence [11]. The sequence is placed in the 1st

column or row of X depending on which dimension is greater. The following
columns/rows are filled with circular rotation of the previous column/row by
an element. Thus, the FZC sequence size is either NT −L or M(L+1). Since
the sequence size must exceed the number of estimated parameters, an FZC
sequence of NT −L length is assumed. The FZC sequence is not a sequence of
modulated symbols (e.g. using the QAM modulation), however it is mapped
to the initial channel-unaware basis patterns with the same method as the data
streams, forming the optimal training patterns. It is noted that channel estima-
tion should always be made with the use of the channel-unaware patterns. The
use of channel adapted patterns during the estimation stage may lead to false
detection of the available aDoF, since the radio channel continuously changes
in time. The optimal training patterns are given by:

Ptrain (ϕ, k) =
M−1∑
i = 0

Bi (ϕ) f (k − (i + 1) L), k = 0...NT − 1

where: f (k) =

⎧⎨⎩ e
jπQk2

NT −L , if NT − L even

e
jπQk(k+1)

NT −L , if NT − L odd

(22)

where Q is a constant coprime to NT − L.
If Rhh is not a scalable identity matrix, the FZC sequences are not optimal

for the MMSE estimator. From [17], it can be proved that the optimal training
sequences can be found by linear transformation of the FZC. If Rhh = QΛΛΛQH

is the eigenvalue decomposition of the hermitian matrix Rhh and since Q is
an orthogonal matrix, then:

QHXHXQ = λI(L+1)M − ΛΛΛ−1 (23)

which is minimized when QHXHXQ is a diagonal matrix and based on the
previous analysis, when QHXHXQ + ΛΛΛ−1 is a FZC sequence.

In Fig. 2 and Fig. 3, mean squared estimation error results for a
5-element and a 3-element ESPAR antenna BS-MIMO system respectively
are presented. The interelement distance in both scenarios was d = λ/16 and
the WINNER II channel model [14] was used after proper modifications in
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Figure 2 : Channel Estimation Error vs SNR in BS-MIMO for flat fading B2 WINNER
channels and various training sequence lengths using a 5-element ESPAR antenna

order to support beamspace transmission [13]. The WINNER radio channels
were downsampled for narrowband transmission (flat fading channels). The
estimators had to determine M2 = 25 or 9 complex gains of Hbs. Training
was performed with FZC sequences. The term samples/parameter is used as a
measure of the training sequence length. If x training samples per parameter
are selected, then the training sequence length per MISO channel is given by
NT = Mx. Evaluation was performed with 10,000 flat ’B2’(bad urban micro-
cell environment) channels vs. SNR for various NT values. For the MMSE
estimator, the correlation matrix was set according to Rhh =

(
1/M2

)
IM .

The simulation results (lines) and the theoretic results (markers) from (15)
and (20) were identical, which also means that ’B2’ and ideally rich scattering
channels behave similarly in beamspace, as far as the estimation procedure is
concerned. MMSE and LS results are practically equal for high SNR, while
for low SNR MMSE performs better. The SNR value, where MMSE over-
comes the LS estimator depends on the length of the training sequence. The
investigation of the two Figures shows that the error values for e.g. 4 training
samples/parameter are lower in the 3-element ESPAR scenario. This happens
because for each MISO channel, the error is calculated as the sum of M error
terms from the M transmitted beams. Since for the 5-element ESPAR M
is greater, the error also increases. Accurate estimation at low SNR requires
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Figure 3 : Channel Estimation Error vs SNR in BS-MIMO for flat fading B2 WINNER
channels and various training sequence lengths using a 3-element ESPAR antenna

long training sequences. For example 30 samples/parameter produce error
approximately equal to ε = 0.02 @5dB SNR for 5-element ESPAR, while
the same error value is achieved with 20 symbols/parameter for the 3-element
ESPAR.

The next step is to test the performance of the estimation algorithms in
wideband beamspace channels. The previous 5-element antenna setup was
considered. However, in this case the BS-MIMO system was assumed to
occupy 1.5 MHz of bandwidth, and thus it cannot be considered narrowband.
The training sequence length was 400 samples. Each signal frame contained
2,900 symbols (400 training samples + 2,500 data symbols) and the receiver
was considered mobile (pedestrian user with velocity 3m/sec). 2,000 ’B2’
WINNER channels were produced and the transmission of 30 frames of
data was simulated. The WINNER channels were downsampled in the signal
bandwidth (1.5 MHz). The maximum excess delay under these conditions
was L + 1 = 5. Therefore, the algorithms should estimate M2(L + 1) = 125
parameters. In Fig. 4, the results of the evaluation are presented for vari-
ous approximations of Rhh. It is seen that the MMSE algorithm despite the
approximations, performs better than the LS. For the specific channels, the
uniform power delay profile assumption (17) performs worse than the flat
channel approximation (with addition of noise). The generic Cluster Delay
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Figure 4 : Wideband Channel Estimation Error vs SNR in BS-MIMO for B2 WINNER
channels (L = 4) with training sequence length = 400 samples using a 5-element ESPAR
antenna

Line (CDL) profile of the WINNER ’B2’ channels [20] was also used in
the diagonal of Rhh and the estimation algorithm performance was slightly
improved. Finally the approximation of (19) was evaluated. During the first
frame, the flat approximation was used and then for the 29 succeeding frames,
the previous estimation was used. It is noted that the receiver is mobile, thus
the channel response varies from frame to frame. The estimation error was
further reduced. For comparison reasons, an ideal case is also presented in
Fig.4 where the MMSE operates with R̂hh = gig

H
i , which means that the

channel is actually known to the estimator.

3.4 Use of the Estimate for Pattern Reconfiguration

At the end of the estimation procedure, the channel matrix estimate Ĥbs

is available and it can be used for adaptive basis pattern reconfiguration
according to the scheme proposed in [6]. The first step is to perform SVD

decomposition Ĥbs = ÛΣ̂ΣΣV̂
H

. The overall estimation error is divided in the 3
matrices, however the errors of Û and V̂ are more crucial since the deviations
in ΣΣΣ can be compensated with an one-tap equalizer at the receiver. These
errors introduce interference between the transmitted parallel streams that
can be called inter-beam or inter-pattern interference at both transmitter and
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receiver. Let′ s consider the virtual matrix representation ([2],[12]) of Hbs

assuming an L-point uniform sampling (L = 2π/Δϕ) in the azimuth plane.
The basis patterns at the virtual directions are given by the (L × M) matrices
B̃T/R. The virtual channel matrix [12] is defined by the following equation:

Hbs = B̃
H
RHb B̃T (24)

If ΞΞΞu, ΞΞΞv are the estimation errors of Û and V̂ respectively then after pattern
adaptation using the channel estimate, the channel matrix is given by:

Û
H

HbsṼ = (U + ΞΞΞu)HB̃
H
RHbB̃T (V + ΞΞΞv) = ΣΣΣ+

+
(
ΞΞΞH

u B̃
H
R

)
HbB̃T V + UB̃

H
RHb

(
B̃TΞΞΞv

)
+ ΞΞΞH

u HbsΞΞΞv

(25)

For high SNR, the last term with the product of the error matrices can be omit-
ted as insignificant. The first error term expresses the inter-pattern interference
due to the Rx adaptation while the second term due to Tx pattern adaptation.
Therefore, the interfering patterns can be defined. The interfering patterns
are the estimation error terms from the singular vector matrices expressed in
the angular domain. If the adapted channel-aware basis patterns beamform
the signal towards different angles, physical compensation of the interfering
patterns is offered, since the interfering energy will be significantly reduced.
This means that in channels with big and discrete scatterer clusters, the effects
of the estimation error will be smaller due to the angle separation.

In Fig. 5a an example of the estimated reconfiguration patterns is pre-
sented compared with the ideal patterns that were calculated assuming perfect
channel knowledge for a ’B2’ channel of the 3-element ESPAR system. This
channel has 2 aDoF and thus provides 2 channel-adapted orthogonal patterns.
Estimation was performed with 13 dB mean MISO SNR. The SVD reallocates
the power resources in favour of the first pattern in terms of SNR. Thus, the
orthogonal path supported by the first pattern provides SNR = 16 dB while
the second pattern provides SNR = 5 dB. Fig.5a shows that the first pattern
is estimated perfectly. This is also true when mean MISO SNR is reduced to
7 dB, where the path supported from the first pattern achieves SNR=12dB.
However, the second pattern produces high error values in low SNR, which
is not quite clear by the investigation of the absolute values of the patterns in
Fig.5a. Fig.5c shows that the interfering pattern is actually more powerful than
the basis pattern itself due to significant random phase shifts. This is caused
as a mathematical reaction of the SVD in the presence of powerful noise.
Nevertheless the total squared error of Hbs will remain relatively low because
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Figure 5 : Pattern adaptation for a typical WINNER B2 channel: a) Adapted patterns, ideal
and via estimation (13, 7 dB SNR) b) Interfering patterns for the example (13 dB) c) Interfering
patterns for the example (7 dB), [8]
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the term ΞΞΞH
u HbsΞΞΞv of (25) has now significant power and opposes the error

increase. In Fig.5b, a typical case is presented where the second interfering
pattern does not aim towards the same direction with the first pattern and
therefore, the effect of the estimation error that occurs is practically zero.

The result in (25) can be used to calculate the SNR degradation due to
the channel estimation error in a BS-MIMO system with adaptive pattern
reconfiguration. More particularly, if E is the M ×M matrix that contains the
inter-beam interference terms, given by:

E =
(
ΞΞΞH

u B̃
H
R

)
HbB̃T V + UB̃

H
R Hb

(
B̃TΞΞΞv

)
+ ΞΞΞH

u HbsΞΞΞv (26)

then the total BS-MIMO inter-pattern interference can be calculated by:

εMIMO = ‖E‖2
F − (Tr [E])2 (27)

and the inter-pattern interference caused at the i−th receiving beam (MISO
interference) is given by:

εi
MISO

=
M∑

k=1,k �=i

∣∣∣[E]i,k
∣∣∣2 (28)

It is noted that the results in (27) and (28) do not include self-inflicted distortion
that is expressed by the diagonal elements of E. This error, if detected, can be
removed by the system equalizer.

4 Evaluation of BS-MIMO through Simulation

In order to evaluate the performance of a BS-MIMO system that includes
pattern adaptation and realistic channel estimation algorithms through sim-
ulation, two equivalent pairs of systems were assumed: a conventional
MIMO system with 3-element or a 5-element ULA vs. the BS-MIMO sys-
tem with a 3-element or a 5-element ESPAR antenna. The inter-element
distance was set to d = λ/16 for all systems. Moreover, both systems
use SVD for precoding or pattern reconfiguration as well as a similar
channel estimation techniques (45 and 100 training samples for 3-element
and 5-element systems respectively) as described in [11] and Sec.3. The
systems use a simple coding rule that ensures BER < 10−4 in order to
achieve a certain level of adaptivity and exploit in a simple way the radio
resources. Convolutional coding was applied using the default MATLAB
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Trellis structure poly2trellis (7,[171 133],171). The applied automatic
modulation and coding rule is presented in Tab. 1. Each time an estimated
singular value indicates a channel with SNR<5.85 dB, the corresponding
pattern is rejected and DoF/aDoF are reduced. It is noted that optimiza-
tion of the adaptive coding and/or modulation rule was not an objective of
this study.

A set of 3,000 flat ’B2’channels was applied to both systems. Moreover, in
[19] it is stated that beamspace reception is performed in an M times oversam-
pling rate, thereby noise power is increased by M at the BS-MIMO receiver.

Noise power was defined from the target mean BS-MIMO SNR. Every
WINNER beamspace channel is normalized with its Forbenius norm: H̄bs =
Hbs/‖Hbs‖F . In order to compare equivalent systems, the respective conven-
tional MIMO matrix (that is produced by the same clusters of scatterers [13]) is
also normalized by the same factor multiplied by

√
M̄ (H̄ =

√
M̄H/‖Hbs‖F ),

where M̄ are the identified aDoF of the beamspace system. This means that,
sinceM̄ patterns are transmitted when adaptive pattern reconfiguration is used,
the oversampling rate at the BS-MIMO receiver will also be reduced from M
to M̄ . Consequently, the relative noise increase compared to the conventional
system will also be reduced.

The results of this section are provided vs. the mean SNR in the beamspace
per MISO channel. If P is the available transmitted power, then the mean
BS-MISO SNR is defined as:

SNRbs,MISO =
P

Mσ2
n

(29)

The SNR value of (29) is used as a reference and as the x-axis in the provided
figures of the section. Based on the above analysis, the corresponding SNR
for the conventional MIMO system is given by:

SNRconv,MISO =
M̄ × SNRbs,MISO ‖H‖2

F

‖Hbs‖2
F

(30)

Table 1 The Automatic Modulation and Coding rule.
SNR Range Modulation and Coding
SNR < 5.85 dB Stream unused
5.85 dB < SNR < 8.5 dB 1/2-Convolutional Coding and QPSK
8.5 dB < SNR < 11.5 dB 3/4-Convolutional Coding and QPSK
11.5 dB < SNR < 15.2 dB 1/2-Convolutional Coding and 16 QAM
15.2 dB < SNR < 20.5 dB 3/4-Convolutional Coding and 16 QAM
SNR > 20.5 dB 3/4-Convolutional Coding and 64 QAM
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During this study, a method to bypass the drawback of the BS-MIMO
noise level was identified through proper pulse shaping and filtering. However,
since it is work-in-progress, the current evaluation includes the M̄ -times noise
power increase in BS-MIMO.

The instantaneous MISO SNR for each channel in SVD-based systems
varies significantly from the value in (29) depending on: a) the singular
value of the specific MISO channel and b) the power allocation rule (e.g.
waterfilling) and the power adaptation that ensures that Tx power will remain
equal to P when less than M DoF/aDoF are available. An iterative rule is
used to determine the available channels and the corresponding SNR. If the
SNR< SNRthres for the channel that corresponds to the smallest singular value
σmin, the channel is rejected and the power for the rest of the channels is
adjusted to: SNR → pσminM/(M − i)× SNR (i = 1). Then, the smallest
remaining singular value is checked and i → i+1, until all values are greater
than SNRthres(=5.85 dB for these scenarios). The algorithm is described in
Algorithm 1.

Anoise power estimation stage is also incorporated in the receiver allowing
the estimation of SNR degradation due to the channel estimation error. The
results in terms of spectral efficiency are presented in Fig. 6 for the 5-element
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Algorithm 1: DoF/aDoF and assignment of coding rule
Calculate SVD from Channel Estimate
Perform Power Allocation with Waterfilling and calculate pn

Determine SNR for every MISO Channel, q → 0, i → 0
While q = 0 & i < M DO

If SNR > SNRthres AND pσ > 0 for all M − i channels Then
aDoF = M − i, Set coding rule for each channel
q → 1

else
Drop the path σmin of the smallest singular value from the M − i channels
i → i + 1
increase SNR → pσminM/(M − i) × SNR

endif
endwhile

systems and in Fig. 7 for the 3-element systems. BS-MIMO outperforms the
conventional system, especially in high SNR. It is also noted that regardless
of the channel or the noise power the conventional system rarely exceeds the
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2 DoF. Moreover, in many cases the 3-element conventional system degen-
erates to SISO. BS-MIMO on the other hand manages to achieve parallel
transmission in the majority of the cases for high SNR. As noise power
increases, BS-MIMO converges to the conventional MIMO behaviour main-
taining a small advantage. At low SNR, both BS-MIMO and conventional
MIMO turn into SISO and are set to operate with the same rules, therefore
their performance is identical. Some steps or plateaus that can be seen in
the figures are the result of the used adaptive modulation and coding rule.
Another observation is that estimation appears to work less efficiently in the
BS-MIMO case since the deviation of bits per symbol from the respective
curve with perfect channel state information is higher. However, this is not
accurate. It is reminded that noise is increased byM in the training period of the
BS-MIMO system (regardless of the M̄ aDoF, since estimation is performed
for all M MISO channels) and therefore the difference in the performance
of the estimator is due to the increased mean squared error caused by the
inherent SNR degradation. In fact the performance of the estimator seems to
be adequate despite of the increased by 7 dB noise level for the 5-element
system and 4.77 dB for the 3-element system. Results for the 3-element
BS-MIMO are also provided in [8]. Nevertheless, it must be noted that: a) in
[8] only QPSK modulation is used, therefore the spectral efficiency remains
low, while in Fig. 7, a powerful channel may use up to 64-QAM, b) in [8] no
power allocation algorithm (waterfilling) is used and c) in [8] Eb/No is used
as the x-axis which compared with the MISO SNR leads to a shift of values
by 3dB for QPSK modulation.

It is also clear that if the BS-MIMO system was not subjected to the
increased noise level, the achieved bit rate would be even grater. In low SNR,
where aDoF → 1, the noise level remains the same for both systems since no
oversampling is required for the BS-MIMO receiver operation. However, in
high and mainly in medium SNR ranges, lower noise would mean more aDoF,
less coding redundancy and better estimation results. Noise reduction can be
achieved with proper pulse shaping of the transmitted pulses and with the use
of a filtered downsampling procedure in the receiver. This architecture will
limit the noise increase factor to a small value (e.g. 1.5 depending on the filter
transition bandwidth).

It is also noted that when perfect channel knowledge is assumed, the
BER target (10−4) was achieved for all cases. On the other hand, channel
estimation error and the consequent SNR degradation resulted in slightly
increased BER level, which means that in a limited number of cases the
BER threshold for both BS and conventional MIMO system was exceeded.
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Finally given the fact that the used adaptive modulation and coding scheme
is simple and not optimal, it is expected due to the existing theoretical
capacity results [6] that the BS-MIMO bit rate advantage can become even
grater.

5 Conclusions

This paper dealt with the subject of BS-MIMO channel estimation.Analysis of
MMSE and LS estimators was performed through simulation. It was concluded
that the estimation procedures are quite similar with conventional MIMO
algorithms. The concept of interfering patterns was introduced and its physical
meaning was presented. Finally, an attempt to evaluate BS-MIMO through
link level simulation was made. BS-MIMO transceivers with adaptive pattern
reconfiguration and practical, realistic reception algorithms that operate in
WINNER ’B2’ channels were assumed. It was confirmed that BS-MIMO sys-
tems outperform conventional MIMO for small interelement distances despite
the increase of noise power due to oversampling. Prevention of the noise level
increase is a subject for future work.
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