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Abstract

In this paper we examine the history of using random numbers in computer
programs. Unfortunately, this history is sad because it is replete with disasters
ranging from one of the first pseudo-random number generators, RANDU,
being very bad to the most recent efforts by the NSA to undermine the pseudo-
random number generator in RSA’s BSAFE cryptographic library. Failures
in this area have been both intentional and unintentional, but unfortunately
the same sorts of mistakes are repeated. The repeated failures in getting our
“random numbers” correct suggests that there might be some systemic reasons
for these failures. In this paper we review some of these failures in more detail,
and the 2006 Debian OpenSSL Debacle in great detail. This last event left
users of Debian and its derivatives with seriously compromised cryptographic
capabilities for two years. We also illustrate how this failure can be exploited
in an attack. We also modify the concept of a system accident developed in
the work of Charles Perrow [1]. We identify some system failures in building
pseudo-random number generators and offer some suggestions to help develop
PRNGs and other code more securely.
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1 Introduction

In most cases, when something goes wrong, we look for someone to blame.
The underlying assumption is that someone must have been the direct cause
of each particular mishap. In [1], Charles Perrow introduced the concept of a
system accident, something he also called a normal accident. The basic idea
is that while a serious accident might include a number of smaller events
the serious accident occurred because the system allowed the smaller events
to interact in a manner that combined their contributions. While his analysis
targets physical systems, his emphasis on looking at the various components
of a system is valuable for virtual systems as well. In this paper, we develop
a modified version of a system accident that we think is easier to apply to
software systems. We will apply it to a number of incidents involving pseudo-
random numbers generators and examine it in detail in the analysis of a little
known incident that occurred in 2006 in which the Debian SSL library was
compromised. It took two years before someone noticed that the library had
been compromised during which time SSL and other services that use the SSL
libraries, like SSH, were vulnerable. We conclude with some suggestions on
improving the system. This article is a much expanded version of [2].

2 Randomness

People in general are not comfortable with the concept of randomness. People
like to feel that things happen for a reason. Sentiments such as these date back
to the earliest writings and are found in the theological writings of all people.
It is widely stated and believed that “God has a plan for everyone” and things
happen for a reason. These ideas were incorporated into modern science as
the following quotations illustrate.

We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at a certain
moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intellect
were also vast enough to submit these data to analysis, it would
embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like the past would
be present before its eyes.

— Pierre Simon Laplace, A Philosophical Essay on Probabilities
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As I have said so many times, God doesn’t play dice with the world.

— Albert Einstein

Not surprisingly, these sentiments have found themselves into our
literature.

What object is served by this circle of misery and violence and fear?
It must tend to some end, or else our universe is ruled by chance,
which is unthinkable.

— Sherlock Holmes, The Cardboard Box

Fortunately, for the human race some people decided to explore random-
ness and chance and see if there might be some “laws” or principles that govern
it. Some of the earliest efforts to understand chance and randomness were
inspired by gamblers. Girolamo Cardan (1501–1576) studied the questions
associated with games of chance at the behest of gamblers. Other early
contributors to the theory of probability were Fermat, Pascal and Descartes.

Another early effort to understand chance in the affairs of humans came
when John Graunt (1620–1674) published Natural and Political Observations
Made Upon The Bills of Mortality in London in 1662. He made the very
surprising observation that while he could not tell who would die in a given
year and how they would die, he could very accurately predict how many
people would die in a “normal” year, and even how many people would die
from what cause.

These observations from gambling and population studies fueled the
development of probability and statistics and gave people some confidence that
randomness followed some laws. The science of thermodynamics contributed
significantly to the development of probability and statistics.

The birth of quantum mechanics in the twentieth century made randomness
a central feature of science and caused Einstein to utter the famous quote
presented earlier in this paper. Despite all efforts to remove randomness as a
central feature of quantum mechanics, randomness appears to be at the center
of the physical universe and to some extent, the Universe is ruled by chance.

If our understanding of quantum mechanics and of other physical theories
is correct, then we should be able to get truly random numbers from a number
of physical processes. Knuth [3, p. 3] describes some devices that were
used to physically generate random numbers in the early days of computing.
There are a number recent systems that generate random numbers based
on physical phenomena. For example, Fourmilab [4] provides random bits
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derived from the radioactive decay of Cesium-137. Random.org [5] provides
random numbers based on atmospheric phenomena. A joint effort between
the Physics Department at Humboldt University (Germany) and PicoQuant
GmBH [6] has produced the PQRNG 150, a quantum mechanical random
number generating device that can be purchased [7]. One of the problems
with standard physical devices is that they produce random bits very slowly.
PicoQuant claims that the PQRNG 150 can produce more than 150 Mbits
per second of random bits. Another option that might help to produce large
quantities of truly random data is described in a paper by Gallego, Masasnes,
De La Torre, Dhara, Aolita and Acfin [8].

3 Pseudo-Random Number Generators

From the very beginning of computing, there was a need for random numbers.
Knuth [3, Chap. 3] provides a short history of the use of random numbers in
computing and a lot of technical information about random numbers that
should be more widely known. In 1946 John von Neumann first suggested
using computer programs to generate “random numbers” [3, p. 3]. He also
made the following statement about such programs.

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin.

— John von Neumann (1951) [3, p. 1]

As was noted from the beginning of modern computation, “random
numbers” generated by some sort of deterministic computation cannot be
truly random. They can, however, appear to be random. Such apparently
random number sequences are referred to as pseudo-random numbers and the
programs that generate them are known as pseudo-random number generators
or PRNGs. To be truly useful, pseudo-random number sequences need to pass
a wide variety of statistical tests. Knuth [3, Chap. 3] provides a good discussion
of these tests and how they can be implemented.

As history has shown and this paper will document, people have made
and continue to make serious mistakes in designing and running PRNGs. This
inspired Robert Coveyou to write a paper in 1970 entitled “Random Number
Generation Is Too Important to Be Left to Chance” [9]. In a similar vein,
Knuth [3, p. 6] states that “...random numbers should not be generated with a
method chosen at random.
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We will now give a very general description of how PRNGs work.
Generally, there is a finite set, S, of some sort. S is often a set of integers
or real numbers. The PRNG can be thought of as a (deterministic) function
f : S → S. In general, S should be a large set and f should be a function
that is easy to calculate, but whose inverse should be difficult to calculate.
We start at some value a in S, called the seed and generate the sequence
a, f(a), f(f(a)), f(f(f(a))), .... If we have done our work well, the sequence
will appear to be random and pass whatever statistical tests we can devise.

Figure 1 shows the general structure of a PRNG. To understand this
figure note that the sequence a, f(a), f2(a), f3(a), ..., where f2(a) =
f(f(a)), f3(a) = f(f(f(a))), etc must repeat since S is finite. Suppose i is
the smallest integer such that f i(a) = f j(a) for some i < j. Note that the
sequence a, f(a), ..., f i(a) consists of distinct values. The value i is called the
index of f. Pick the smallest value for j such that i < j and f i(a) = f j(a).
The value j − i is called the period of f and we will denote it by p. Note that
f q(a) = f q+tp(a) for all q ≥ i and all integers t. Generally, the function f is
supplemented by a projection function π which converts the values f q(a) into
whatever form is desired. For example, we might want to generate a pseudo-
random sequences of 0s and 1s and π would convert the values f q(a) into
0s and 1s. Note that Figure 1 would remain the same regardless of whether

Figure 1 The Structure of a PRNG
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f is an injective function or not. For some bounds on index and period, see
Markowsky [10].

In general, the index is of little interest to PRNG designers and is often 0.
Of great interest is the value of the period. In general, values for the PRNG
are constrained to values that appear on the cycle. If the period is small, say
less than 100,000, the PRNG is not very good for security purposes because
an attacker can use a brute-force approach to compromising security. Just as
2 character passwords are not very secure because an attacker can try all of
them, PRNGs with small periods are not very secure.

According to Wikipedia [11], the Mersenne Twister developed by Makoto
Matsumoto and Takuji Nishimura [12] is currently the most used PRNG.
It is based on the Mersenne prime 219937 − 1 and has a period of 219937 − 1.
It passes most, but not all, randomness tests, but in its native form is not good
for cybersecurity purposes in part because knowing 624 consecutive values
permits one to figure out exactly where the PRNG is on its cycle and to generate
all future outputs.

Besides Knuth’s volume [3] which we have mentioned several times, we
might also mention the article by Jerry Dwyer [13] that gives a more concise
overview of PRNGs along with code examples. Wikipedia also provides some
useful and current information about PRNGs.

4 RANDU

RANDU [14] is a PRNG that was introduced in the 1960s and used extensively
for more than a decade. RANDU fails most randomness tests and is a bad
PRNG. Knuth [3, p. 107] feels very strongly about its use as can be seen in
the following quote where line 12 refers to a table containing the test results
of RANDU and other PRNGs.

Line 12 was, alas, the generator actually used on such machines in
most of the world’s scientific computing centers for more than a
decade; its very name RANDU is enough to bring dismay into the
eyes and stomachs of many computer scientists! ... the generator
fails most three-dimensional criteria for randomness, and it should
never have been used.

RANDU is an important example for us of a system failure. It was used
by many people unfamiliar with the theory of PRNGs based on trust that a
PRNG would not be used without careful thought and reasoning. It was used
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in all sorts of simulations and designs including those of nuclear weapons and
reactors. One only hopes that RANDU’s weaknesses did not lead to serious
problems.

5 The Debian SSL Debacle

The discussion of the Debian SSL Debacle in this paper is based on papers by
Ahmad [15], blog entries by Cox [16] and Schneier [17], the video by Bello
and Bertacchini [18], and the video by Applebaum, Zovi and Nohl [19].

Ironically, the Debian SSL Debacle was caused by Debian developers
trying to do a good thing. As is well known, memory errors are a fertile
breeding ground for software failures of all types and often lead to breaches in
cybersecurity. The Open Source community has developed tools to help find
memory errors in software. In particular, “Valgrind” [20] is one such tool.

One of the developers running Valgrind on the Debian source code received
a message warning about the use of an uninitialized variable in the function
MD Update in two places. Normally, this is an error in programming, but in
this case the uninitialized variable was used together with other components
to increase the amount of randomness in the OpenSSL module of the Debian
operating system. In one location in the code, the use of MD Update brought in
other critically important sources of randomness in addition to the randomness
imported from the uninitialized variable. Removing this instance of the
MD Update function critically damaged the OpenSSL module.

The OpenSSL module is used to encrypt communication for the operating
system. For example, a person signing into a “secure” website is typically
dependent on the OpenSSLmodule for providing good cryptographic strength.
In general, the more randomness in a cryptographic system the better, so
reducing the amount of randomness is a serious error.

The developer discussed with other Debian developers and also corre-
sponded with OpenSSL developers. We shall examine the conversation in
more detail in Section 10. He received an ambiguous reply that he interpreted
as an approval to remove the lines in general, so he removed them from the
program by commenting them out. It may be that the reply was just approving
the removal of the lines in question just for debugging purposes, but the reply
is poorly constructed and it is easy to see how the reply might have been
interpreted as a blanket approval to remove those lines.

The main consequence of this action was to limit the PRNG so it would
produce only 32,768 distinct values. While this is a large number for manual
efforts, it is a relatively small number for a computerized “brute-force attack.”
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The lines were commented out in 2006, and it was not until 2008 that the error
was discovered and the weakness of the resulting cryptographic system was
established. Thus for about two years the cryptographic capabilities of Debian
Linux were severely compromised. Hence the title of Ahmad’s paper “Two
Years of Broken Crypto” [15].

6 PRNG Problems in Android

Ironically, after the 2006 Debian SSL Debacle, Google committed the same
sort of error in its PRNG for its Android operating system which is the most
widely used operating system for mobile phones. The error again was not using
all proper uses of entropy for the seed. The details are given in the following
post to Google’s Android Developers Blog [21] which appeared on August
14, 2013.

The Android security team has been investigating the root cause of
the compromise of a bitcoin transaction that led to the update of
multiple Bitcoin applications on August 11.

We have now determined that applications which use the
Java Cryptography Architecture (JCA) for key generation, signing,
or random number generation may not receive cryptographically
strong values on Android devices due to improper initialization of
the underlying PRNG. Applications that directly invoke the system-
provided OpenSSL PRNG without explicit initialization onAndroid
are also affected. Applications that establish TLS/SSL connections
using the HttpClient and java.net classes are not affected as those
classes do seed the OpenSSLPRNG with values from /dev/urandom.

Developers who use JCA for key generation, signing or random
number generation should update their applications to explicitly ini-
tialize the PRNG with entropy from /dev/urandom or /dev/random.
A suggested implementation is provided at the end of this blog
post.Also, developers should evaluate whether to regenerate crypto-
graphic keys or other random values previously generated using JCA
APIs such as SecureRandom, KeyGenerator, KeyPairGenerator,
KeyAgreement, and Signature.

In addition to this developer recommendation, Android has
developed patches that ensure that Androids OpenSSL PRNG is
initialized correctly. Those patches have been provided to OHA
partners.



The Sad History of Random Bits 9

We would like to thank Soo Hyeon Kim, Daewan Han of ETRI
and Dong Hoon Lee of Korea University who notified Google about
the improper initialization of OpenSSL PRNG.

7 The Bitcoin Compromise

As noted in Section 6, theAndroid PRNG was supposed to get a “random” seed
from /dev/urandom, a protected system root file. However, the programmers
did not reference this file in the code and left it to the user to pick a “random”
seed. Of course, most users were not aware that they needed to do anything
with the predictable result that a “random” seed was not picked in all cases.

So far there have been no verified consequences of the Debian OpenSSL
Debacle, but we have a documented instance of some serious consequences
of the Android failure. In particular, Goodin [22] describes the theft of $5,700
in bitcoins as a result of this flaw. It should be noted that the massive theft of
$100 million in bitcoins [23] appears to be unrelated to this flaw and seems to
be an instance of old fashioned, low tech fraud.

8 RSA, BSAFE and the NSA

The famous computer security firm RSAoffers a cryptography library certified
by NIST called BSAFE [24]. BSAFE can use a variety of PRNGs, but from
2004 to 2013 it made Dual EC DRBG the default PRNG for its library. This
was a curious choice because as noted by Matthew Green [25]:

Not only is Dual EC hilariously slow – which has real performance
implications – it was shown to be a just plain bad random number
generator all the way back in 2006.

In particular, Microsoft Researchers Dan Shumow and Niels Ferguson at
the Crypto 2007 rump session demonstrated that Dual EC DRBG might be
compromised by the existence of a backdoor in this PRNG [26]. Shumow and
Ferguson did not claim that a deliberate backdoor was placed in the PRNG,
but warned that there could be one. Despite warnings from cryptographers
about the dangers of using this PRNG, RSA continued to have use it as the
default PRNG for BSAFE.

The Snowden leaks [24, 27, 28] showed that the concern about a backdoor
were valid and that indeed such a backdoor was inserted into the PRNG
by the NSA. In December 2013 Joseph Menn [29] revealed that the NSA
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paid RSA $10 million to make Dual EC DRBG the default PRNG for
BSAFE.

This incident provides an example of the deliberate sabotage of a PRNG
to obtain information. RSA is now left with the task of dealing with the fallout
from this event. One embarrassing event was RSA warning its own customers
about using the defaults in its own package [30]. Another embarrassing event
was the withdrawal of a number of prominent cryptography experts from the
RSA Annual Conference [31].

9 System Accidents

Perrow’s book [1] contains detailed accounts of many industrial accidents
as well as accidents in various other areas. Among the most fascinating
accounts are those involving ships colliding in the ocean. A number of these
collisions start off with the ships on courses that would not lead to a collision.
Unfortunately, actions taken by the crew cause the collision. An example of
such a collision is shown in Figure 2 which is derived from [1, p. 210]. Clearly,
a collision is something both crews were eager to avoid, yet their actions led to
a collision. Clearly, there is something about the marine transportation system
that contributed to the collisions. There may, indeed, be failings on the part of
the crew, but there are system failures that contributed to the accident.

Perrow uses the term system accident or normal accident throughout his
book [1] but nowhere does he give a clear and concise definition. Furthermore,
his focus is on physical systems and some of the factors he focuses on are less

Figure 2 A Non-Collision Course Collision
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relevant to virtual systems. We will review the appropriate terms from [1] and
then propose how to interpret them for virtual systems.

First, Perrow spends a bit of time distinguishing between “incidents” and
“accidents.” Both of these “involve damage to a defined system that disrupts
the ongoing or future output of that system” [1, p. 64]. Furthermore, Perrow
divides systems into four levels: part, unit, subsystem and system. An incident
is an event that occurs at the first two levels and an accident is an event that
occurs at the last two levels. This leads Perrow to the follow formal definition
[1, p. 66]. Note that the acronym ESF stands for engineered safety feature.

We are ready for a formal definition. An accident is a failure in a
subsystem, or the system as a whole, that damages more than one
unit and in doing so disrupts the ongoing or future output of the
system. An incident involves damage that is limited to parts or a
unit, whether the failure disrupts the system or not. By disrupt we
mean the output ceases or decreases to the extent that prompt repairs
will be required. Since we have drawn a dividing line between the
unit and the subsystem, and since many of the ESFs are clustered
around that dividing line, it will often mean that an ESF will be one
of the components that fails.

There are many features of the preceding definition that do not apply to
the Debian OpenSSL Debacle. For example, the error that was introduced
never interfered with the operation of the Debian operating system. In fact,
the operating system ran without incident for two years before anyone noticed
the error. In addition, it is not clear who was damaged by this bug and to
what extent. We will address this issue further in Section 11. Clearly, the
potential was there for massive cybersecurity breaches but we have no easy
way to tell which security breaches were the result of this failure. In the case
of physical systems and accidents like factory explosions and ship collisions
it is often obvious what is damaged and to what extent. Of course, software
systems can also cease to function as a result of errors or attacks, but it is
not unusual for large software systems to have many errors and to function
adequately. Of course, many of the errors are often minor and occur in very
limited circumstances.

One of the major points that Perrow makes in [1] is that people, in particular
system owners, like to find a scapegoat so that they are not obligated to fix the
system. Often this is because system owners believe that it is cheaper to deal
with the occasional mishap rather than fix the system [1, p. 67]. Perrow also
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has some very interesting points to make about the complexity of systems and
the tight coupling of systems. There is no doubt that many software systems
such as operating systems are extremely complex. Furthermore, there are few
complex physical systems that do not depend on a complex software system
for control.

In 2008 Perrow wrote an unpublished paper [32] dealing with software
failures. While his analysis of technical issues leaves much to be desired, this
paper is a fascinating collection of software failures of varying severity and is
worth reading. The distinction between incident and accident is a valuable one
even for virtual systems. We will use the term incident to describe a failure
that has caused or is likely to be more of an inconvenience or nuisance than a
serious failure. We will reserve the term accident for a failure that has caused
or has the potential to cause serious damage or loss.

Perrow believes that serious accidents are often not just the result of one
person’s mistakes. Rather, they are often the result of a sequence of minor
mistakes which combine to produce the serious accident. In this, they are
aided by features of the relevant system that make the accident more likely. For
example, in [1] Perrow shows how the operator is often blamed even though
various safety devices did not work properly or gave misleading information.
He spends lot of time in his analysis of the Three Mile Island nuclear accident
[1, Chap. 1] showing how the operators were unable to get correct information
from some of the gauges, yet they were blamed entirely for the accident.

We want to make the concept of a booby trap central to our definition
of a system accident. A booby trap is designed to hurt someone who gets in
its way. Booby traps can be set deliberately or unintentionally. Booby traps
are often set by property owners to protect their property. Many polities have
laws or regulations against the setting of booby traps because the final result
of a booby trap is unpredictable and can be much worse than the consequence
of the crime the booby trap is designed to prevent. Many people realize that
booby traps such as wiring shotguns to doors are not intelligent things to
construct. In fact, it is not unusual for property owners to be killed by their
own booby traps [33].

For software systems we define a booby trap as some feature that makes it
more likely that a user will make an error. One famous example of a software
booby trap is the famous loss of the Mars Climate Orbiter spacecraft in
1999 [34]. The problem was that the two engineering teams that worked on the
software for this system used different systems of measurement. In particular,
one team used the metric system and the other team used the imperial system
for measurements. As one would expect, at some point someone forgot to
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make the proper conversion and as a result a $125 million satellite was lost.
It is clear that having two teams working with two different measurement
systems is a booby trap. While one can try to blame “operator error” for
the accident, it was clearly a system accident because the system was set up
to make such an accident extremely likely. Despite this costly error, NASA
continues to use both measurement systems for projects, although in 2007 it
made the commitment to use the metric system for all operations on the lunar
surface [35].

We propose the following definition: a software failure will be considered
a system accident if it has serious consequences or the potential of having
serious consequences and was caused by one or more booby traps. Our primary
purpose is to identify booby traps in the software creation system, because even
if they lead to minor errors in one situation, they can lead to more serious
consequences in other situations.

10 The Debian SSL Debacle Revisited

In this section we will revisit the Debian OpenSSL Debacle from the point
of view of finding booby traps in the open source development system that
might be present in other systems as well. For convenient reference we will
use DOD to refer to the Debian OpenSSL Debacle.

The first point to consider is the common lack of proper commenting in
code. Many programmers either do not know how, don’t have the time, or are
too lazy write proper comments that really explain their reasoning and what
the code does. They also tend not to point out booby traps in their code. This
problem affects all types of software both proprietary and open source. This
is Booby Trap 1. This booby trap was sprung in the DOD as illustrated by the
fact that the developers who were fixing the “bug” did not properly understand
the nature of the code they were working on.

Closely related to Booby Trap 1, is the fact that the programmers making
the fix did not really understand the nature of what they were doing. To some
extent this is Booby Trap 2, the lack of proper education. We view this as a
system failure because the type of material found in Knuth [3, Chap. 3] is not
generally taught in the computer science curriculum. Most computer science
students have to take some sort of coursework in probability and statistics, but
these courses typically do not talk about the problem of generating random
numbers.

Closely related to the preceding booby traps, is the writing of overly clever
code. This is code which does something in a very efficient and elegant manner
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and often combines multiple operations into one. Such code needs a lot of
commenting and is often hard to understand for other programmers. It is
often hard to understand for the programmer who wrote it once the creative
insight passes. We call this Booby Trap 3 and it was sprung in the DOD as
discussed below.

While being proactive and finding errors in software before they manifest
themselves is a good thing, there is a fundamental danger in using automated
tools because these tools do not understand the logic of programs and perform
their analysis at a very low level. Such tools can report errors, which are not
truly errors. This is Booby Trap 4, and it was sprung in the DOD as seen from
in the correspondence between Debian developers [36].

Valgrind has the property that once it finds an “error” it will track the effects
of that error as they propagate through the entire software system. On the one
hand this seems like a good idea, but in practice it leads to a large number
of error messages. Experience shows that providing humans with too many
warnings tends to make them ignore the warnings or even shut the system
down. Perrow [1] describes many instances where safety systems were shut
down before accidents because they were overwhelming the operators. This
is Booby Trap 5. It was sprung in the DOD as illustrated in [36].

There is another booby trap associated with the use of powerful software
testing tools. This is the potential to lead developers to venture into parts
of the code that they do not understand well. This is Booby Trap 6. It was
sprung in the DOD as illustrated in [36]. In this correspondence one of the
developers notes that two lines in particular are the cause of the Valgrind error
messages. He also notes that the function of these lines is to add “uninitialized
numbers to the pool to create random numbers.” Unfortunately, this developer
did not fully understand that other sources of randomness were involved as
well. The rest of the discussion in [36] turned into a technical discussion about
using Valgrind, and the key point about contributing entropy was buried in the
other discussion. One of the developers in the discussion was not completely
comfortable with the discussion and realized that he was out of his depth in
accessing the entropy issue and he contacted the OpenSSL developers [37].
In his note he made the statements shown in Figure 3.

There is another key point that needs to be made. The Debian developers
identified two lines of code involved in generating the multitude of Valgrind
errors. Both lines introduced an indeterminate amount of entropy from the
uninitialized memory location, but one of the lines also introduced entropy
from other sources such as system time, the PID, the UID and the random
number generator. By focusing on the uninitialized variable, the developers
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overlooked all the other sources of randomness. Had these sources of entropy
been introduced in separate lines, only the entropy coming from the uninitial-
ized memory location would have been eliminated from the program. This
is how Booby Trap 3 was sprung. The developers were led into this trap by
inadequate commenting of the code which itself was too clever.

Figure 4 shows part of the reply 4 to the letter shown in Figure 3 is repro-
duced in Figure . It includes just one paragraph from the original letter which is
emphasized. There are several problems with the reply. First, the reply begins
with the phrase “Not much.” It is not clear what “not much” refers to. If it refers
to the sentence just above, then it suggests that the uninitialized variables do
not add much entropy to the random number generator (RNG). This would
support commenting out the lines in question. On the other hand, the original
correspondence concluded with the line “What do you people think about
removing those 2 lines of code?” It is possible that the writer was responding
to that question and was stating that he did not think much of removing the
two lines of code. Another ambiguity in the reply is the statement “If it helps
with debugging, I’m in favor of removing them.” Did the author mean that he
was in favor of removing the lines but only for debugging purposes, or was
he supporting the removal of the lines permanently? In any event, the Debian
developer decided that this was the approval that he needed to remove the
lines of code. The ambiguity in this communication was Booby Trap 7.

Figure 3 Portion of a Letter to the OpenSSL Project

Figure 4 A Reply to the Letter from Figure 3
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11 Discovery, Mitigation and Consequences

Debian released Debian Security Advisory DSA-1571 [39] in 2008. It stated
that Lucianon Bello discovered the flaw in the OpenSLL package used by
Debian. It suggested some remediation such as regenerating various security
keys. The announcement should have been enhanced to impress upon people
the importance of this error. A variety of exploits aimed at this bug can be
found in [18, 19, 39 – 42]. The sources just cited point to sources that should
be consulted for additional exploits. We discuss an exploit in more detail in
Section 12

Compromises affected not only Debian systems with the faulty software,
but other systems that engaged in certain types of interactions with compro-
mised computers. Reference [43] contains a discussion of weak keys, but
this discussion would be very difficult for a non-expert to follow. Similarly,
exploring DSA-1571 [39] provides many details, but again these would be
difficult to follow for the non-expert. The failure to completely explain all
consequences of this vulnerability and the failure to more widely alert the
user community is Booby Trap 8.

There was another booby trap set by the Debian organization in the way
that they handled the announcement of the vulnerability. In particular, they
posted the vulnerability patch on May 7, 2008 but withheld the public
announcement of the vulnerability until May 13, 2008. This is Booby Trap 9.
The problem here is that there are skilled people who read code changes
and who would understand the significance of this error even without the
announcement. Not seeing the announcement at the same time as the patch,
they would realize that there would be a window of opportunity to brute-force
attack systems. Reference [19] reports that there was a sharp increase in the
number of brute-force attacks against many hosts during the period between
May 7 and May 13.

The inappropriate commenting out of two lines reduced the key space to
a maximum of 215 = 32,768 keys. The total number of keys is greater because
the set of 32,768 depends on the system used. In any event, generating the
total number of keys for all systems is feasible with limited equipment. [19]
even demonstrates how to use Amazon Cloud Services to generate the keys
in a relative hurry for under $25.

References [15 – 19, 42] all discuss the consequences of this failure. Of
particular interest is the graph in Figure 5 which is derived from [42]. It appears
that after nearly six months more than 40% of the vulnerable certificates had
not been updated. This is Booby Trap 10.
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Figure 5 The Rate of Updating Vulnerable Certificates

12 An SSH Attack

In this section we wish to briefly describe in detail a possible attack against
OpenSSH because of the weakness in OpenSSL. The reason OpenSSH was
affected was because it uses the cryptography library in OpenSSL and hence
uses the faulty PRNG from OpenSSL.

SSH supports a method for connecting to a server without using a
password. The idea is based on the application of public key cryptography.
In public key cryptography there are two keys that act as inverses of each
other. Anything encoded using one key can be decoded using the other key.
One key is called the public key and may be distributed without restriction.
It can be published, displayed on a website or otherwise restricted. The other
key is called the private key and must be maintained securely by the person
wishing to receive messages encoded by the public key. In a successful public
key system it should be extremely difficult (computationally impossible) to
construct the private key given the public key.

Generally, the public and private keys are generated at the same time and
are often based on a value supplied by a PRNG. If the PRNG is compromised
and produces a small number of outputs, this would mean that only a small
number of possible key pairs can be generated using that PRNG. Recall, that
because of the reduced entropy to the PRNG in the Debian OpenSSL package,
only 32,768 (215) key pairs are possible.
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The passwordless login using SSH works as follows The person who
wants to use such a feature generates a public-private key pair. The public key
is stored on the server in a particular folder in the account space that belongs
to the account which is to support passwordless login. Login then proceeds
as follows. The user contacts the server and presents the login and the public
key to the server. The server then checks whether the public key is present in
the appropriate space in the account space and sends back a message encoded
with the public key. In principle, only the holder of the matching private key
can properly decode the message. Since the contents of the message are used
as the basis of the link, the server has some confidence that the correct person
has been connected.

With the Debian OpenSSL flaw only 32,768 key pairs were possible. This
number of key pairs can be generated relatively easily to give all possible key
pairs for key lengths of 1,024, 2,048 and 4,096 bits. The exploit proceeds as
follows. The attacker picks a user ID of someone likely to use passwordless
login such as a system administrator. Passwordless login is used by many
system administrators because they want to quickly log into many different
computers. The attacker then presents the user ID along with each of the public
keys in turn until the server gives a proper response at which time the attacker
uses the corresponding private key to initiate the session. While 32,768 choices
seems like a lot, this is a not a large number of trials for a computerized brute
force attack.

TJ O’Connor’s book, Violent Python [45, pp. 41–55] describes such an
attack in detail and provides Python code for this example. Details on SSH
are available in the book by Barrett, Silverman and Byrnes [46]. A detector of
weak key material is available at the Debian.org site [39] and directly at [47].
This detector is written in Perl and contains information about the keys.

The author would like to thank his RIT colleagues Bruce Hartpence and
Bill Stackpole for some useful discussions about SSH.

13 Conclusions and Suggestions for Improvement

In this paper we identified ten booby traps that led to the DOD and contributed
to worsening the consequences. We list them below with a brief description
and some suggestions for dealing with each booby trap. It is clear that these
booby traps are not unique to the DOD and perhaps the lessons learned here
can be helpful elsewhere.
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1. Poor Commenting. This is a standard problem in coding and it is not clear
that we are making progress. Figure 6 [44] shows a more recent version of
the code that was involved in the DOD. Note that while there is a comment
warning people not to remove a particular instance of MD Update,
there is no explanation of why an uninitialized variable is being used.
Furthermore, there are several other references to MD Update in the
same code section but there is no explanation of what these other calls
are achieving. Poor commenting is a system failure. It is not properly
taught in most computer science programs and there are few good tools
for writing useful comments. Knuth [48, 49] has put forward a philosophy
of programming and produced tools to support his approach, but so far
this effort has had limited impact. More effort needs to be put into this
initiative and similar initiatives. On a related note, more widespread use of
Test-Driven Development [50, 51] can provide programmers with useful
information about what code is supposed to do along with tests that can
help limit errors stemming from code modification.

2. Lack of Proper Instruction.As noted in this paper, most computer science
professionals have an inadequate basis for understanding the difficulties
of using PRNGs. We suggest that material dealing with random numbers
and PRNGs become part of the standard computer science curriculum.

Figure 6 More Recent Version of the OpenSSL Source Code
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3. Overly Clever Coding. Programmers should realize that while very clever
coding might save some space and coding time, it is very difficult to
understand and is a fertile breeding ground of errors. Figure 6 [44] shows
there there are now more calls to MD Update so the functionality has been
separated to some extent, but no information is given about what each
call is doing.

4. Uncritical Use of Automated Software Analysis Tools. Figure 7 which
comes from [18] shows the comparison of code before and after the
modification. The right half of the figure has the changes in green. The
presentation is a bit deceptive because the effect of the introduced lines is
to remove the lines dealing with MD Update from the program. We need
to make it more obvious to an observer that the changes have affected
the lines containing MD Update.

5. Overwhelming Error Messages. Thought needs to be given on how to
demonstrate all weaknesses in some code without overwhelming the
person using the automated tool.

6. Repairs by Nonexperts. If the Federal government wants to help improve
US cybersecurity it should consider offering code reviews for critical
software. Clearly, it is not reasonable for the Federal government to
review all code, but Debian and its derivatives such as Ubuntu are very
popular and are the basis of a significant number of servers on the Internet.
Given the recent Snowden revelations and the deliberate introduction of
weaknesses into the BSAFE package by the NSA, it is not clear that one
can depend on the Federal government to give a honest appraisal.

Figure 7 Diff Obscuring High Level Understanding
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7. Ambiguous Communication. Perhaps a more formal process can be
instituted here to make sure that all questions are posed and answered
unambiguously. It appears that the standard method of just mailing to
a site and having people selectively reply to sections of the e-mail is
fraught with danger.

8. Poorly Distributed and Overly Technical Announcements. We need to get
more people with public relations and communications skills active in the
open source community. These people must be made to feel welcome and
not put down by the technical community since they have an important
job to perform.

9. Posting Patches Prematurely. Clearly, it is recommended that organi-
zations not publicly post patches before they announce vulnerabilities.
Perhaps they can post patches only to vetted customers to give them a
chance to update their systems.

10. User Community Not Taking Cybersecurity Seriously Enough or Per-
haps not Having the Resources to Deal With Critical Issues. This is a
challenging problem that deserves a separate discussion.

We wish to conclude with one additional recommendation. While systems
such as Knuth’s CWEBB and Beck’s Test-Driven Development introduce
more formal procedures into code design and creation, there is still room for
global formal methods. Books by Holtzmann [52] and Berg, Boebert, Franta
and Moher [53] provide a good place to acquire the basics. A current open-
source software tool is called Spin and and programmers are encouraged to
become become familiar with it [54, 55].
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